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Compact bunker shielding 
assessment for 1.5 T MR‑Linac
Jiwon Sung1, Yeonho Choi2, Jun Won Kim1, Ik Jae Lee1 & Ho Lee1*

This study evaluated the effect of the 1.5 T magnetic field of the magnetic resonance-guided linear 
accelerator (MR-Linac) on the radiation leakage doses penetrating the bunker radiation shielding wall. 
The evaluated 1.5 T MR-Linac Unity system has a bunker of the minimum recommended size. Unlike 
a conventional Linac, both primary beam transmission and secondary beam leakage were considered 
independently in the design and defined at the machine boundary away from the isocenter. Moreover, 
additional shielding was designed considering the numerous ducts between the treatment room and 
other rooms. The Linac shielding was evaluated by measuring the leakage doses at several locations. 
The intrinsic vibration and magnetic field were inspected at the proposed isocenter of the system. For 
verification, leakage doses were measured before and after applying the magnetic field. The intrinsic 
vibration and magnetic field readings were below the permitted limit. The leakage dose (0.05–12.2 
µSv/week) also complied with internationally stipulated limits. The special shielding achieved a five-
fold reduction in leakage dose. Applying the magnetic field increased the leakage dose by 0.12 to 4.56 
µSv/week in several measurement points, although these values fall within experimental uncertainty. 
Thus, the effect of the magnetic field on the leakage dose could not be ascertained.

Magnetic resonance imaging (MRI) scanners are popular medical devices that direct radiofrequency (RF) pulses 
into the human body, resonating the hydrogen nuclei in tissue to emit signals. The signals from each tissue are 
converted into digital images by the scanner1–3. MRI provides higher contrast in the images of soft tissues such 
as fat, muscle, brain cells, ligaments, and tendons as compared with other diagnostic imaging technologies4–6. 
Moreover, MR images are acquired without any ionizing radiation, thus keeping patients safe from the harmful 
effects of radiation7–9.

The magnetic resonance-guided linear accelerator (MR-Linac), a linear accelerator and MRI scanner com-
bination, is a recent medical development. It offers high-resolution real time MR imaging during treatment10–13. 
Similar to conventional MRI, MR images acquired via MR-Linac are affected by the electromagnetic noise of 
nearby geomagnetic fields and electronic devices.

Electromagnetic pulse frequencies used in MRI scanners range from 1 to 300 MHz, similar to the signals 
emitted from TVs, radios, and other household appliances14. If this electromagnetic noise is present in the vicin-
ity of an MR-Linac, the MR-Linac receives them alongside the RF signals emitted from the body of the patient. 
This might reduce image quality or generate artifacts in the MR images. Conversely, the magnetic fields and RF 
signals emitted from the MR-Linac affect nearby electronic devices, such as medical devices. Therefore, MR-
Linac requires not only a radiation shielding structure, but also RF shielding walls to both prevent surrounding 
electronic devices from contaminating the MR images and prevent MR signal interference with nearby medical 
devices15. The shielding walls of the MR-Linac should effectively shield against leakage doses through the numer-
ous ducts for hose pipes and power, data, and control cables.

The 1.5 T MR-Linac Unity (Elekta AB, Stockholm, Sweden) introduced at our hospital is the first of its type 
in Korea. The magnetic field affects paths of the secondary electrons generated by radiation, which results in 
electron return effect (ERE) and electron stream effect (ESE)16,17. The Unity has a unique design in which the 
radiation beam passes through primary collimator, monitor chamber, multileaf collimator (MLC), V-shaped 
diaphragm, cryostat, gradient coil, and system body coil18. This structure results in increased radiation scat-
tering compared to conventional LINAC. The shielding walls of the Unity bunker require additional shielding 
material to block electromagnetic noise from the outside. The constructed bunker was of the minimum size 
recommended by the vendor19. Unlike conventional Linacs, both primary beam transmission and secondary 
beam leakage were defined at the boundary of the machine and away from the isocenter. Therefore, the bunker 
wall was designed to be thick enough to block both primary beam transmission and secondary beam leakage. 
These physical phenomena and structural differences are in distinct contrast with a conventional Linac and are 
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critical for determining the type and thickness of the shielding wall material, which has an impact on the cost of 
the 1.5 T MR-Linac. To the best of our knowledge, a study on the effect of magnetic fields on the leakage dose rate 
in compact bunkers housing a 1.5 T MR-Linac has not yet been reported. Therefore, we measured and verified 
the leakage doses at seven different locations, including at those around the ducts, met the criteria suggested by 
NCRP 151, and evaluated the magnetic field effect on leakage dose by comparing leakage dose measurements 
taken before and after applying the magnetic field.

Results
Figure 1a shows the vibration magnitude measurements over 5 s; the vibration magnitudes were all similar. 
The results show that vibration levels are acceptable, as suggested by Philips, and that the Unity machine could 
be properly installed. Figure 1b shows that vibration was below the Philips Marlin 1.5 T specification for the 
frequency range of 1 to 50 Hz.

Alternating current (AC) magnetic field disturbances were below 1.0 mG in all axes (Fig. 2). Direct current 
(DC) magnetic field fluctuations were below 8.41 mG, 9.23 mG, and 13.05 mG in the X, Y, and Z-axis, respec-
tively (Fig. 3).

Table 1 shows the leakage dose values measured before and after applying MR. The total leakage doses at all 
measurement points were below the NCRP standard criteria of 20 or 100 μSv/week. The average total leakage 
doses due to the primary beam were measured as 0.115 and 0.063 μSv/week before and after the static magnetic 
field of 1.5 T was turned on, respectively. The average total leakage dose due to the secondary beam was measured 
as 4.437 and 4.794 μSv/week before and after the static magnetic field of 1.5 T was turned on, respectively. These 
results show that, regardless of whether the MR was turned on, the leakage doses due to the secondary beam 
were larger than those due to the primary beam.

With regard to the leakage doses measured before the MR was applied, the maximum average leakage dose 
due to the secondary beam was 12.230 μSv/week in the control room. The next highest leakage dose of 4.958 
μSv/week due to the secondary beam was observed in the waiting room; the remaining measuring points showed 
similar levels of leakage. This is attributed to the reflection of photon leakage within the bunker. The highest 
value of photon leakage dose due to the secondary beam was 11.940 μSv/week in the control room. The next 

Figure 1.   Magnitude of vibration according to (a) measurement time and (b) frequency.
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highest leakage dose, 4.958 μSv/week due to the secondary beam, was in the waiting room, with the remaining 
doses exhibiting similar levels. The neutron leakage doses, however, were negligible at all measurement points.

As regards the leakage doses measured after the MR was applied, the maximum average leakage doses due to 
the secondary beam were 9.512 μSv/week in the waiting room and 8.298 μSv/week in the control room. This is 
the result of photon leakage reflection, and shows little change from the dose without MR. The photon leakage 
doses due to the secondary beam were also measured to be as high as 9.512 μSv/week in the waiting room and 
8.298 μSv/week in the control room, with the remaining doses measured to have similar levels. The measured 
values of the neutron leakage doses were negligible. The increase in leakage dose with applying MR ranged from 
0.12 μSv/week in the treatment door to 4.55 μSv/week in the waiting room.

Figure 4 shows image of the duct before and after shielding. Unlike the existing method, the duct was shielded 
by attaching a shielding material from the outside. Although the maximum leakage dose was measured around 
the ducts, leakage was reduced by a factor of 5 by shielding the duct.

Discussion
The unique design of Unity demonstrates characteristics that differ from those of the conventional Linac. Interac-
tion between the primary beam and MR-related devices such as the cryostat and MR coils generates additional 
scattered radiation. In addition, secondary electrons generated via the interaction between photons and air, are 
influenced by the static magnetic field and exhibit spiral movement. Owing to the movement of these electrons, 
the scattered beam can be formed wider than the expected area compared to the conventional Linac20. In par-
ticular, even if the magnetic field strength is small, it can occur from the leakage radiation passing through the 
duct. Many studies related to this have been published21–24, but studies on the effect of the MR leakage dose s 

Figure 2.   AC magnetic field measurement over 20 min.
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have not been reported yet. In addition, our bunker was designed to be the smallest within the range suggested 
by the manufacturer due to the spatial limitations. Therefore, this study estimated whether 1.5 T magnetic field 
affects the leakage doses passing through the radiation shielding wall.

Before the installation of MR-Linac, the magnitude of vibration and magnetic fields was measured at the 
installation location to obtain baseline measurements. Vibration responses were below the magnet specification 
limit (Philips Marlin 1.5 T specification for the frequency range of 1 to 100 Hz) during the time of the exami-
nation. Specific sources for the measured vibration responses could not be identified during the examination.

DC magnetic field fluctuations were below 13.05 mG during the examination. The main source for DC mag-
netic field disturbances was from above the main entrance driveway, approximately 3 m away from the proposed 
isocenter. A proven solution to compensate for DC magnetic field disturbances created by moving metal (eleva-
tors, trains, subways, vehicles etc.) would be the ETS-Lindgren magnetic active compensation system (MACS). 
This system can be installed during the construction of the RF shielded enclosure; with this system installed, 
the DC magnetic field disturbances will normally be reduced to 1 mG pk-pk or less at the MRI isocenter. All 
AC magnetic field disturbances were below 1.0 mG. After a visual inspection of the proposed MRI area, no AC 
magnetic field sources were located that had measureable disturbances greater than 1 mG within 15.24 m of the 
measurement location.

The results in Table 1 confirmed that leakage doses in all measurement positions satisfied the criteria sug-
gested by NCRP 151. Instantaneous leakage dose rates below 20 μSv/hr were measured, a level acceptable to the 
Korea Institute of Nuclear Safety.

To evaluate whether the magnetic field generated in Unity affects the leakage doses, we compared the leakage 
dose before and after applying MR in the shielding walls and in the vicinity of the duct. The results revealed that 
the leakage doses before and after applying MR are similar. Three explanations exist for these results. First, the 
instantaneous leakage dose rate itself is very low. Second, the instantaneous leakage dose rate changes in real 
time, and the measurement location selection changes the highest measured value. Third, the survey meter itself 

Figure 3.   DC magnetic field measurement for 30 min.

Table 1.   Comparison between leakage doses before and after applying 1.5 T MR. The numbers indicate 
measurement positions shown in Fig. 6. PR primary radiation, SR secondary radiation.

Type #

Photon Neutron Sum (Photon + Neutron)

Criteria (μSv/week)
Before MR (μSv/
week) After MR (μSv/week)

Before MR (μSv/
week) After MR (μSv/week)

Before MR (μSv/
week) After MR (μSv/week)

*PR
① 0.116 0.052 0.000 0.000 0.116 0.052 100

⑥ 0.115 0.075 0.000 0.000 0.115 0.075 20

*SR

② 11.940 8.298 0.290 0.000 12.230 8.298 100

③ 0.427 0.544 0.000 0.000 0.427 0.544 100

④ 4.958 9.512 0.000 0.000 4.958 9.512 20

⑤ 1.579 1.214 0.000 0.000 1.579 1.214 20

⑦ 2.530 1.963 0.460 2.440 2.990 4.402 20
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contains an uncertainty range. It can be said that the degree of influence of the leakage dose resulting from the 
application of MR is insignificant because it is within the uncertainty range. Comparing the leakage dose around 
the duct before and after additional shielding indicated that the instantaneous dose rates are similar, with an 
average of 1.362 μSv/hr before applying MR and 1.64 μSv/hr during applying MR. Therefore, the effect of MR 
on the leakage dose can be concluded to be negligible.

Conclusion
A 1.5 T MR-Linac system was installed at our hospital for the first time in Korea. The bunker was constructed 
with the minimum bunker size recommended by the vendor. This study evaluated the 1.5 T magnetic field pro-
duced by the MR-Linac to determine leakage dose escaping the shielding walls in our bunker. The results did not 
show any significant difference between leakage doses before and after applying 1.5 T MR. Further, all measured 
leakage doses satisfy the dose limits proposed by NCRP 151.

Materials and methods
Structural characteristics and room layout.  The Unity, an MR-Linac model, was approved for clinical 
use by the U.S. Food and Drug Administration (FDA) for patient treatments in 201825. The Unity combines a 7 
MV standing‐wave Linac and a 1.5 T Philips big‐bore MRI (Philips Healthcare, Amsterdam Netherlands). The 
system has a source axis distance (SAD) of 143.5 cm and a maximum field size of 57.4 × 22 cm with field defining 
diaphragms in the cross-plane and 160 MLC leaves in the in-plane direction.

The Unity system is a bore-type machine in which a linear accelerator rotates around the MRI system. 
The nonstandard SAD results in different beam characteristics, such as the profile shape and percentage dose 
depth compared to the conventional 100 cm SAD. The beam path of the MR-Linac includes the MR cryostat, 
gradient coil support structure, quadrature body coil (QBC), anterior and posterior receiver coils, and the patient 
support system (Fig. 5).

The Unity space is divided into four areas: treatment, machine, control, and technical room, as shown in 
Fig. 6. The treatment room contains the treatment delivery system; that is, the primary source of radiation and 
the field generator unit (FGU). At the bottom, a circle denotes the 30 G magnetic field cutoff where the risk 
of ferromagnetic objects becoming projectiles is elevated. The 5 G cutoff is contained within the outer edges 
of the walls of the treatment and machine rooms. The treatment room is shielded by a radiofrequency (RF) 
cage composed of copper to prevent extraneous electromagnetic noise generated by the MR from interfering 
in nearby medical devices. The machine room is located within the treatment room but is outside the RF cage. 
This room allows access to the gantry components and RF cage filter panel; it contains the service crane, raised 
access floor, and heat exchanger. Moreover, there is the area where cables and services connect to the RF cage. 
The control room is intended for the radiation therapist or other radiation staff who operate the MR-Linac to 
treat patients and observe patient movement during treatment. This room contains the Unity operator’s console, 
workstations, and CCTV monitor. The technical room contains the treatment delivery system cabinets and MR 
cabinets required for the operation of Unity.

Figure 4.   Comparison (a) before and (b) after the special shielding design to reduce leakage dose around the 
ducts.
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Shielding design.  The Unity room established in our hospital is smaller in size than conventional rooms 
because it was designed for an earlier treatment machine that has been decommissioned. Due to spatial limita-
tions, the maze corridor recommended by the supplier to reduce leakage doses was not included in our Unity 
room structure. Based on the criteria suggested in NCRP 15126, the control room and entrance to the treatment 
room were designated as controlled areas, whereas the others were designated as uncontrolled areas. Accord-

Figure 5.   Unity structure.

Figure 6.   Unity area layout including (a) measurement locations (red dots) and (b) distances between isocenter 
and shielding walls.
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ing to this classification, the shielding wall was designed such that the leakage dose in the controlled areas and 
uncontrolled areas do not exceed 100 and 20 μSv/week, respectively.

Two types of radiation barriers are typically considered in this case, namely primary and secondary. The 
primary barriers are exposed to direct photon radiation from the target or source, whereas the secondary bar-
rier receives scattered radiation resulting from the primary beam hitting the surfaces of the treatment room, in 
addition to radiation transmitted through the accelerator head.

The parameters of the shielding wall were calculated using the formulas presented in Table 2.
In the parameter formulas, P is the shielding design goal beyond the barrier; d is the distance from the x-ray 

source or isocenter to the protected point; and W is the workload, specified as the absorbed dose from photons 
delivered to the isocenter in a week. The secondary barrier workload Ws was calculated via intensity modulated 
radiotherapy (IMRT) factor. The use factor U is the fraction of a primary-beam workload that is directed toward 
a given primary barrier; the occupancy factor T is the fraction of the workweek for which a person is present 
beyond the barrier; TVL is the tenth value layer determined by the radiation energy and shielding material, and t 
is the barrier thickness. According to the suggestions of NCRP 151, the values of P, U, and T depend on shielding 
location. Therefore, these were calculated according to the dimensions of the bunker. Moreover, although Unity 
uses 7 MV energy, the TVL values were selected for an energy value of 10 MV to further reduce the leakage doses.

Typically, neutrons are not produced by low-energy photons (≤ 10 MV) incident on the various materials of 
target, collimators, and other shielding components27. However, Unity has been shown to produce small numbers 
of photo-neutrons, with a fluence of less than 3 × 104 cm−2 Gy−1 at the isocenter and less than 9 × 103 cm−2 Gy−1 
at a distance of 90 cm from the isocenter along the MR bore19. This neutron fluence can cause neutron leakage 
out of the bunker, especially if a maze is not present19.

As power, data, control, and hose piping require the construction of ducts, additional shielding is required. 
The ducts are first shielded with the wall thickness calculated using the formula for the secondary barrier. 
Additional shielding is then implemented where the leakage dose from the duct is higher than the leakage dose 
limit. The lead thickness used for the duct shielding is 30 mm, while the borated polyethylene (BPE) thickness is 
approximately 40 mm. The materials and thickness of the shielding walls for each location are shown in Table 3.

Preliminary examination for the intrinsic vibration and magnetic fields.  Prior to the installa-
tion of MR-Linac, the vibrational magnitude and magnetic fields were measured at the installation location to 
determine the baseline parameters. Vibrational analysis is commonly conducted both on the vibrational time-
domain and frequency-domain signals; frequency domain data are obtained by applying a Fourier transform to 
the time-domain waveform. The vibration data were collected using one PCB Piezotronic seismic accelerometer 
positioned at the proposed isocenter location, as shown in Fig. 7. Data were collected over a 60-min interval 
using a 24-bit data acquisition system with a sensitivity of 10 V/g.

The AC and DC magnetic field analyses were performed by positioning a magnetometer at the proposed 
location of the isocenter, as shown in Fig. 7. Both analyses were conducted over a 30-min interval with the 
magnetometer set at a height of 1 m. The AC measurement was set up to measure ambient AC magnetic fields 
at the frequencies of 60, 120, and 180 Hz for the X, Y and Z-axes, as well as the vector resultant. All AC and 
DC magnetic field measurements were conducted using a 24-bit data acquisition system and a magnetometer 
with a range of 10 G. All data were acquired with 1000 linear samples at a scan rate of 1000 samples per second.

Table 2.   Parameter formulas for the primary and secondary beam.

Primary barrier Secondary barrier

B Pd2

WpUT
Pd2

10−3WsUT

N − logBp − logBs

T np × TVLp ns × TVLs

Table 3.   Parameters and information for shielding walls according to each location. The numbers indicate 
measurement location shown in Fig. 6. PR primary radiation,*SR secondary radiation.

Type Figure 2a P (μSv/week) d (m) W (Gy/week) U T

Shielding thickness

Concrete (cm) Lead (cm) BPE(cm) Equiv. concrete (cm)

PR
① 100 4.47 1700 0.22 0.2 79.0 15.0 0 180.8

⑥ 20 3.91 1700 0.22 0.2 42.3 21.0 0 184.8

SR

② 100 4.52 8500 1 0.2 86.1 9.1 0 141.4

③ 100 6.27 8500 1 0.125 0.0 22.0 10 133.7

④ 20 6.29 8500 1 1 120.0 5.0 0 150.4

⑤ 20 3.99 8500 1 0.2 45.2 19.3 0 162.5

⑦ 20 3.02 8500 1 0.05 50.0 13.0 0 129.0
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Evaluation of MR effect for leakage doses.  The effect of the 1.5 T magnetic field on the leakage dose 
was evaluated by comparing the leakage doses measured before and after the 1.5 T magnetic field was applied. 
We measured leakage dose using a gamma survey meter (S. E. International, Inc., TN) and neutron meter (LUD-
LUM Measurement, Inc., TX). The gamma survey meter and neutron survey meter were calibrated in January 
2021 and May 2021 by accredited calibration laboratories, respectively. The radiation source used for gamma sur-
vey meter calibration was a Cs-137 source; the average calibration factor was 1.132 × 10−2 Sv/R with a measure-
ment uncertainty of 6.6%. The radiation source used to calibrate the neutron survey meter was a Cf-252 source, 
with a calibration factor of 4.5 μSv/hr and measurement uncertainty of 8.5%.

The measurement locations for the leakage dose passing through the shielding wall are shown in Fig. 6a. 
In practice, as a conservative approach, we measured several points around each measurement location and 
recorded the highest reading. The number of experiments executed for each measurement point was at least 
two. Because the measured values (instantaneous dose rate) change in real time, measurements were taken for 
approximately 20 to 30 s to ensure that the most stable value was recorded at each position. Two measuring points 
were located in each of the control room and corridor. The first was located at a primary radiation leak and the 
other at a secondary radiation leak. The remaining rooms had one measurement point each at secondary radia-
tion leaks. The irradiation conditions (maximum field size, dose rate, and gantry angle) vary depending on the 
measurement point. When measured from the point in the waiting and technical rooms, the gantry moves at 0°; 
when measured from the point in the control room and corridor, the gantry moves at 90° and 270°, respectively.

Data availability
All data generated or analyzed during this study are included in the article.

Received: 26 January 2022; Accepted: 6 April 2022

References
	 1.	 Amaro, E. Jr. & Barker, G. J. Study design in fMRI: Basic principles. Brain Cogn. 60, 220–232 (2006).
	 2.	 Doan, B.-T., Meme, S. & Beloeil, J.-C. General principles of MRI (John Wiley & Sons Ltd: Chichester, UK, 2013).
	 3.	 Song, A. W., Huettel, S. A. & McCarthy, G. Functional neuroimaging: Basic principles of functional MRI. Handb. Funct. Neuro-

imaging Cogn. 2, 22–52 (2006).
	 4.	 Aisen, A. M. et al. MRI and CT evaluation of primary bone and soft-tissue tumors. Am. J. Roentgenol. 146, 749–756 (1986).
	 5.	 Kalmar, J. A. et al. A review of applications of MRI in soft tissue and bone tumors. Orthopedics 11, 417–425 (1988).
	 6.	 Jung, S. H. et al. Magnetic resonance image-based tomotherapy planning for prostate cancer. Radiat. Oncol. J. 38, 52 (2020).
	 7.	 Ding, G. X., Munro, P., Pawlowski, J., Malcolm, A. & Coffey, C. W. Reducing radiation exposure to patients from kV-CBCT imag-

ing. Radiother. Oncol. 97, 585–592 (2010).
	 8.	 van Herk, M., McWilliam, A., Dubec, M., Faivre-Finn, C. & Choudhury, A. Magnetic resonance imaging–guided radiation therapy: 

A short strengths, weaknesses, opportunities, and threats analysis. Int. J. Radiat. Oncol. Biol. Phys. 101, 1057–1060 (2018).
	 9.	 Kagawa, T. et al. Basic principles of magnetic resonance imaging for beginner oral and maxillofacial radiologists. Oral Radiol. 33, 

92–100 (2017).
	10.	 Klüter, S. Technical design and concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 18, 98–101 (2019).
	11.	 Tijssen, R. H. et al. MRI commissioning of 1.5 T MR-linac systems–a multi-institutional study. Radiother. Oncol. 132, 114–120 

(2019).
	12.	 van de Schoot, A. J. et al. Evaluation of plan quality in radiotherapy planning with an MR-linac. Phys. Imaging Radiati. Oncol. 10, 

19–24 (2019).
	13.	 Ugurluer, G. et al. Stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in 

oligometastatic patients: initial clinical experience. Radiat. Oncol. J. 39, 33 (2021).
	14.	 Bottauscio, O. et al. Assessment of computational tools for MRI RF dosimetry by comparison with measurements on a laboratory 

phantom. Phys. Med. Biol. 60, 5655 (2015).
	15.	 Lamey, M. et al. Radio frequency shielding for a linac-MRI system. Phys. Med. Biol. 55, 995 (2010).
	16.	 Nachbar, M. et al. Partial breast irradiation with the 1.5 T MR-Linac: First patient treatment and analysis of electron return and 

stream effects. Radiother. Oncol. 145, 30–35 (2020).
	17.	 Koerkamp, M. L. G. et al. Optimizing MR-Guided Radiotherapy for Breast Cancer Patients. Front. Oncol. 10 (2020).

Figure 7.   Location of vibration and magnetic field examination (red point).



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6712  | https://doi.org/10.1038/s41598-022-10498-0

www.nature.com/scientificreports/

	18.	 Yang, B. et al. Out-of-field dose and its constituent components for a 1.5 T MR-Linac. Phys. Med. Biol. 66 (2021).
	19.	 Limited, E. Elekta Unity Site Planning Guide 2018).
	20.	 Zhang, Y. et al. Out-of-field dose assessment for a 1.5 T MR-Linac with optically stimulated luminescence dosimeters. Med. Phys. 

48, 4027–4037 (2021).
	21.	 O’Brien, D., Roberts, D., Ibbott, G. & Sawakuchi, G. O. Reference dosimetry in magnetic fields: Formalism and ionization chamber 

correction factors. Med. Phys. 43, 4915–4927 (2016).
	22.	 van Asselen, B. et al. A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Phys. Med. Biol. 

63, 125008 (2018).
	23.	 Intven, M. et al. Online adaptive MR-guided radiotherapy for rectal cancer; feasibility of the workflow on a 1.5 T MR-linac: Clinical 

implementation and initial experience. Radiother. Oncol. 154, 172–178 (2021).
	24.	 Park, J. M., Wu, H.-G., Kim, H. J., Choi, C. H. & Kim, J.-I. Comparison of treatment plans between IMRT with MR-linac and 

VMAT for lung SABR. Radiat. Oncol. 14, 1–8 (2019).
	25.	 Hall, W. A. et al. The transformation of radiation oncology using real-time magnetic resonance guidance: A review. Eur. J. Cancer 

122, 42–52 (2019).
	26.	 Deye, J. A. et al. Structural shielding design and evaluation for megavoltage x-and gamma-ray radiotherapy facilities in National 

Council on Radiation Protection and Measurements 2005).
	27.	 Khan, F. M. & Gibbons, J. P. Khan’s the physics of radiation therapy (Lippincott Williams & Wilkins, 2014).

Author contributions
Conceptualization, H.L., J.W.K., and I.J.L.; methodology, J.S. and H.L.; validation, Y.C. and H.L.; formal analysis, 
J.S.; investigation, J.S. and Y.C.; data acquisition and curation, J.S. and Y.C.; writing-original draft preparation, 
J.S.; writing-review and editing, H.L.; supervision, H.L.; All authors have read and agreed to the published ver-
sion of the manuscript.

Funding
This work was supported by the 2020 Research Grant of Gangnam Severance Hospital Research Committee 
(DHHD000067), by the National Research Foundation of Korea (NRF) grant funded by the Korea government 
(MSIT) (2022R1A2C2011556), and by the Basic Science Research Program through the NRF funded by the 
Ministry of Education (2019R1I1A1A01062157).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Compact bunker shielding assessment for 1.5 T MR-Linac
	Results
	Discussion
	Conclusion
	Materials and methods
	Structural characteristics and room layout. 
	Shielding design. 
	Preliminary examination for the intrinsic vibration and magnetic fields. 
	Evaluation of MR effect for leakage doses. 

	References


