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Characterizing tuberculosis 
transmission dynamics 
in high‑burden urban and rural 
settings
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Rosanna Boyd4, Eleanor S. Click3, Alyssa Finlay3, Chawangwa Mondongo5, 
Nicola M. Zetola5,6 & Patrick K. Moonan3,6

Mycobacterium tuberculosis transmission dynamics in high‑burden settings are poorly understood. 
Growing evidence suggests transmission may be characterized by extensive individual heterogeneity 
in secondary cases (i.e., superspreading), yet the degree and influence of such heterogeneity is largely 
unknown and unmeasured in high burden‑settings. We conducted a prospective, population‑based 
molecular epidemiology study of TB transmission in both an urban and rural setting of Botswana, one 
of the highest TB burden countries in the world. We used these empirical data to fit two mathematical 
models (urban and rural) that jointly quantified both the effective reproductive number, R , and 
the propensity for superspreading in each population. We found both urban and rural populations 
were characterized by a high degree of individual heterogeneity, however such heterogeneity 
disproportionately impacted the rural population: 99% of secondary transmission was attributed to 
only 19% of infectious cases in the rural population compared to 60% in the urban population and the 
median number of incident cases until the first outbreak of 30 cases was only 32 for the rural model 
compared to 791 in the urban model. These findings suggest individual heterogeneity plays a critical 
role shaping local TB epidemiology within subpopulations.

Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, is a major global epi-
demic with an estimated 10 million new cases and 1.5 million deaths  annually1. TB incidence varies widely from 
country to country, ranging from less than 10 cases per 100,000 people in almost all high-income countries, to 
over 500 per 100,000 people in several low- and middle-income  countries1. These remarkable disparities suggest 
substantial reductions in incidence are achievable if policymakers are able to identify population-specific factors 
that determine TB transmission and implement targeted preventive  measures2–5.

Understanding TB transmission dynamics is a notorious challenge given the marked variation in timing 
between infection and clinical TB disease. Limited evidence suggests TB transmission may be characterized 
by a high degree of individual heterogeneity, or differences in the number of secondary cases caused by each 
infectious  individual6–10. Such heterogeneity implies outbreaks are rarer but more extensive, and has profound 
implications in infectious disease  control11–14. However, such research has overwhelmingly focused on individual 
outbreaks in low-burden settings, and the degree and population-level influence of individual heterogeneity in 
high-burden TB populations remains  unknown14,15. Researchers have explicitly called for an improved under-
standing of individual heterogeneity in high-burden  populations3,6,14–17.

Accurately identifying discrete transmission events is further complicated in high-burden TB settings 
due to the considerable prevalence in the population; individual-level transmission events are almost always 
 unobserved18. This precludes our ability to reconstruct accurate chains of transmission (e.g., transmission trees) 
required to assess individual heterogeneity in secondary cases 19. However, molecular characterization of M. 
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tuberculosis isolates combined with other epidemiologic (i.e., geospatial, social contact, etc.) data has been shown 
to reasonably approximate entire TB transmission cluster sizes in high-burden settings, defined as the simple 
sum of all cases in a chain of recent  transmission6,7,18,20. Since transmission chains give rise to transmission clus-
ters, there exists an intrinsic relation between the distribution of individual secondary cases and entire cluster 
 distributions21–23. Epidemiologic models have long exploited this relationship and have used the distribution of 
cluster sizes to infer the average number of secondary cases per each individual (known generally as the repro-
duction number, R ) in other infectious  diseases21–25. Extending the use of transmission cluster distributions to 
the problem of quantifying individual heterogeneity in TB transmission may provide more complete insight into 
transmission dynamics in in high-burden  settings10.

Botswana has one of the highest TB incidence rates in the world and recognized by the World Health Organi-
zation as one of the top 30 high TB/HIV  countries1. In this study, we prospectively collected detailed clinical, 
epidemiologic, geospatial, and genotypic data to characterize TB cluster distributions in both urban and rural 
settings of Botswana. We used these data to identify detailed TB genotypic and transmission subclusters through 
geospatial and social network analysis. Following previous studies, we used the distribution of TB transmission 
clusters to infer both the reproductive number R and the propensity for superspreading by virtue of the negative 
binomial dispersion parameter k7,26,27. The dispersion parameter k quantifies overdispersion in the distribution, 
with lower values of k (i.e., k ≪ 1 ) implying a greater propensity for  superspreading19.

We used empirical estimates of transmission and individual heterogeneity to develop individual-based models 
for each setting (urban and rural). We compared underlying transmission dynamics between settings by testing 
scenarios where model parameters were unique, partially similar, or identical. We used the best fitting model in 
each setting to examine the population-level impact of individual heterogeneity by calculating (1) the proportion 
of secondary cases attributable to infectious cases, (2) the probability of a large outbreak (i.e., superspreading 
event), and (3) the number of incident cases until the first large outbreak. We also evaluated the degree and direc-
tion of potential bias in empirical estimates by conducting a full simulation study modeling common limitations 
in TB observation, including missing cases, censorship, and imperfectly defined transmission clusters.

Methods
Sources of data. We conducted a prospective, population-based molecular epidemiologic study aimed 
at identifying TB transmission networks within Botswana (the Kopanyo study, “people gathering together” in 
local Setswana language)28,29. Study participants were recruited from two geographically distinct districts of 
Botswana: the greater Gaborone district, which contains the City of Gaborone and its surrounding suburbs, and 
the rural Ghanzi district. Gaborone is the political and economic capital and the most populated urban center of 
Botswana, with a population density of approximately 1400 people per square kilometer and a TB notification 
rate of approximately 440–470 cases per 100,000  population29. Ghanzi is a large, rural agricultural district in 
northwest Botswana with an estimated population density of 0.4 people per square kilometer and an estimated 
TB notification rate of 722 per 100,000  population29. The HIV prevalence in the general population in both 
regions at the start of the study timeframe was an estimated 17  percent30.

All patients with a clinical or culture-confirmed TB diagnosis between 2012 and 2016 in Botswana’s greater 
Gaborone and Ghanzi districts were eligible for the study. Participants were recruited from all TB clinics and 
directly observed treatment centers in greater Gaborone (n = 24) and Ghanzi (n = 6). Only patients on treat-
ment for 14 days or more prior to screening, incarcerated patients, or those refusing to consent were excluded 
from the study; additional details are available in the Supplementary Materials and a full protocol is available 
 elsewhere28. Social, behavioral, clinical, and demographic data were obtained by both medical record abstraction 
and standardized patient interview. Geospatial data were obtained and validated by geotagging the latitude and 
longitude of each participant’s primary residence, place of work, and locations of social gathering venues (i.e., 
places of worship, alcohol-related venues, etc.). Culture isolates were genotyped using a standardized protocol 
for 24-locus mycobacterial interspersed repetitive units—variable number of tandem repeats (MIRU-VNTR)31. 
Participants with matching MIRU-VNTR results were considered in the same genotypic cluster.

In December 2020, we retrospectively abstracted clinical encounter data from the Botswana Ministry of 
Health’s universal electronic medical record (EMR) database known as the Integrated Patient Management Sys-
tem (IPMS). IPMS contains detailed information on all clinical encounters in Botswana regardless of indication 
and it has been deployed to the vast majority of public and private clinics since the late 2000s (See supplemental 
materials Sect. 1.9). We abstracted all clinical encounters for Kopanyo participants in the IMPS database occur-
ring between March 1, 2004 and December 31, 2018.

Transmission sub‑cluster definition. MIRU-VNTR-based clusters may contain multiple transmission 
sub-clusters and overestimate TB  transmission6,7,32. We defined transmission sub-clusters as patients with the 
same genotype results identified in a geospatial cluster or having an epidemiologic link (Fig.  1). Geospatial 
clusters were defined using SaTScan (https:// www. satsc an. org; v9; see supplemental materials Sect. 1.3)33. Epi-
demiologic links (epi-links) were defined as patients with the same genotype results that frequented the same 
(i.e., place of work, place of worship, alcohol-related venue, etc.), resided at the same address, or had an overlap-
ping clinical encounter during the putative infectious period (supplemental materials Sect. 1.6). To relate epi-
links more plausibly to recent transmission, only patients with one or more epi-links and enrolled within two 
years were considered a possible transmission link, with exceptions related to healthcare facilities (supplemental 
materials Sect. 1.6). Cases with no established geospatial or epidemiologic link were considered isolated cases. 
Transmission clusters containing at least five participants with an incident case diagnosed within two years of the 
end of the study timeframe were considered censored (e.g., ongoing at the time of data collection).

https://www.satscan.org
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Modeling framework. We developed two primary models, an urban and rural model, based on if the par-
ticipant’s primary residence was in the greater Gaborone district or Ghanzi district, respectively. Both models 
were based on a classical Galton-Watson branching  process10,21,23. Briefly, each individual case in the population 
was assigned an associated individual reproductive number, denoted ν , drawn from a given probability distribu-
tion with mean R11. ν represents the expected number of secondary TB cases for each individual; the observed 
number of cases, denoted Z , is a consequence of ν and demographic stochasticity. Following previous studies, 
we assumed ν is gamma distributed with mean R and dispersion parameter k and modeled demographic sto-
chasticity using a Poisson  process11,21,34. This Poisson-gamma mixture yields a negative binomial distribution of 
secondary TB cases (offspring distribution), also with mean R and dispersion k . The free parameter k quantifies 
the degree of individual heterogeneity and is a measure of overdispersion in the distribution. Lower k values 
indicate increased individual heterogeneity, with values of k < 1 representing a high propensity for extensive 
recent transmission. Detailed methods are available in Sect. 1.1 of the supplemental materials and the full code 
is available at https:// github. com/ jpsmi thuga/ Urban Rural_ nbbpA nalys is.

Parameter inference from cluster data. We used maximum likelihood estimation (MLE) to jointly 
infer negative binomial model parameters R and k from empirical transmission cluster size distributions (see 
supplemental materials Sect. 1.1.1–1.1.5)22,23,27,35. We made mechanistic adjustments to account for two limita-
tions common in cluster sizes, denoted Y  . First, exact transmission sub-clusters may not always be cleanly and 
unambiguously identified within the larger genetic cluster. Disentangling transmission sub-clusters from larger 
genotypic clusters ad hoc has been shown to introduce  bias27. Instead, we conditioned the probability of a geno-
typic cluster reaching final size Y  on the number of transmission subclusters, n , identified in the genotypic cluster 
(i.e., P

(

Y = y|n
)

 ; See supplemental materials Sect. 1.1.4)22. This approach considers all possible ways n transmis-
sion subclusters can result in a final genetic cluster size of Y  . Second, we considered clusters that are ongoing 
at the time of data collection to be censored. We accounted for censoring by considering the probability that a 
censored genetic cluster of size Y  containing n transmission subclusters was at least size Y  (i.e., P

(

Y ≥ y|n
)

 ; See 
supplemental materials Sect. 1.1.6)7,23. Confidence intervals (95% CI) were obtained through profile  likelihood36. 
Using inferred parameters we also calculated the expected proportion of cases responsible for all secondary 
transmission (Supplemental Materials Sect. 1.5).

Figure 1.  Visualization of primary transmission sub-cluster definition. Using geospatial and epidemiological 
data, we estimated the size of TB transmission sub-clusters within a MIRU-VNTR genotypic cluster. Participants 
with the same M. tuberculosis genotype (black circles) were considered a genotypic cluster ( Y = 13 ). 
Participants were in a transmission sub-cluster if they were in the same SaTScan geospatial cluster (colored 
circles) or identified through an epidemiological link (solid lines). This fictitious example represents a genotypic 
cluster of size 13 with two transmission sub-clusters of size 8 (purple) and 3 (pink) and two isolated cases. White 
circles represent TB cases with a different MIRU-VNTR profile and are not included in the cluster definitions.

https://github.com/jpsmithuga/UrbanRural_nbbpAnalysis
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Comparing transmission dynamics between settings. Using model likelihoods we determined if 
there was statistical support for differences in transmission dynamics between the urban and rural  populations37. 
Let Ru, ku and Rr , kr represent the parameters for the urban and rural models, respectively. We developed six 
comparison models by placing restrictions on model parameters: (1) an unrestricted model, with no restric-
tions on model parameter s; (2) an identical transmissibilities model, which restricts R values to be the same 
( Ru = RR ); (3) an identical heterogeneities model, which restricts k values to be the same, ( ku = kr ); (4) a fully 
identical model, which forces all parameters to be the same for both populations ( Ru = Rr and ku = kr ); (5) an 
SIR-type heterogeneity model which assumes ku = kr = 1 and; (6) an SIR-type identical model, which assumes 
Ru = Rr and ku = kr = 1 . The latter two SIR-type models correspond to common assumptions made in typical 
differential-equation models of homogenous mixing and constant infectivity over an exponentially distributed 
infectious  period38–40. We compare model fit using the Akaike Information Criterion (AIC); the lowest AIC score 
determined the best fitting model. We then calculated information loss, which provides a measure of how likely 
the best fitting model explains the observed data relative to the comparison  models41,42.

Sensitivity analysis and model evaluation. We evaluated three primary sources of potential bias: the 
appropriateness of model assumptions, the definition of transmission clusters, and the sensitivity of param-
eter inference. Briefly, we compared models with two alternative distributional assumptions of ν (constant and 
exponential). We also considered three alternative transmission sub-cluster definitions, including a MIRU-only 
definition that inappropriately assumes genotypic clusters were themselves wholly observed transmission clus-
ters. This assumption biases transmission towards homogeneity, and thus provides a functional upper bound 
estimate of heterogeneity in the models. Lastly, we conducted a detailed simulation study to assess the sensitiv-
ity of parameter inference to data limitations. We simulated perfect and imperfect surveillance systems under 
R and k parameters inferred from the urban and rural cluster distributions. Perfect surveillance was defined as 
all cases completely observed with no censoring or sub-clustering. Imperfect surveillance was subject to biases 
imposed by (1) incomplete case observation (i.e., the probability that a case is identified, produces a culture-
positive result, and yields interpretable genotypic results), (2) active case finding (i.e., an otherwise unobserved 
case identified by contact tracing), (3) sub-clustering, or the inability to unambiguously tease apart multiple 
transmission clusters, and (4) censoring, or ongoing clusters at the time of data collection (Supplemental Fig-
ure S1). Detailed methods and results of all sensitivity analyses can be found in the supplementary materials, 
Sects. 1.2–1.5.

Ethics. This study was approved by the Centers for Disease Control and Prevention (CDC) Institutional 
Review Board (IRB); the Health Research and Development Committee, Ministry of Health and Wellness, Bot-
swana; and the University of Pennsylvania IRBs. All methods were carried out in accordance with relevant 
guidelines and regulations. Informed consent was obtained from all subjects and/or their legal guardian(s).

Results
Cluster data and parameter inference. A total of 4331 cases were enrolled in the study, of which 3736 
(86%) had a validated geocoded primary residence, 3891 (90%) had EMR data linked from the IPMS database, 
and 2137 (49%) had culture-positive, pulmonary tuberculosis with genotyping data available; 1683 (39%) had 
combined genotypic, geospatial, and epidemiologic data suitable for analysis (Table 1). Among these, 1290 (77%) 
were included in the urban population and 393 (23%) were included in the rural population (Table 1). There 
were no statistically significant differences in culture status, age, gender, successful assignment of MIRU-VNTR 
profile, obtaining EMR data, or validated geocoded address between patients included and not included in the 
analysis. The urban population contained 564 distinct MIRU-VNTR clusters; 386 urban participants (30%) were 
isolated cases. The rural population contained 114 distinct MIRU-VNTR clusters with 73 (19%) isolated cases. 
The largest genotypic cluster in the urban population was a censored cluster of size 78 with 15 transmission 
sub-clusters; in the rural population the largest cluster was a censored cluster of size 147 with 25 transmission 
sub-clusters.

The maximum likelihood estimates (MLE) of R were 0.44 (95% CI: 0.39–0.50) in the urban population and 
0.75 (95% CI: 0.48–1.46) in the rural population (Table 2; Fig. 2, Panel A); MLE estimates of k were 0.48 (95% 
CI: 0.31–0.87) and 0.08 (95% CI: 0.04–0.14) in the urban andrural populations, respectively.

Comparison of transmission dynamics between urban and rural populations. The two popula-
tions had markedly different underlying mechanisms of TB transmission (Fig.  3). The rural population was 
substantially more likely to experience larger transmission events relative to the urban population (Fig. 4). For 
instance, the rural model was 64 (95% CI: 30–196) times more likely to observe an outbreak of size 30 compared 
to the urban model, and the median number of incident cases until the first outbreak of size 30 was only 31.5 
(IQR: 13–60) for the rural model compared to 791 (IQR: 402–1253) in the urban model.

Of the six models developed to compare transmission dynamics in the two populations, the unrestricted 
model, which assumed the populations had entirely unique transmission parameters, best supported the observed 
data (Table 3). The identical transmissibility model, which assumed both populations had the same R value, was 
the second-best fitting model yet was four times less likely to explain the observed data than the unrestricted 
model. All other models, including the assumption of interest that the two populations had identical heterogene-
ity, were at least four orders of magnitude less likely to explain the data (< 1/10,000).

Both models estimated that most secondary transmission was attributable to a minority of infectious cases, 
yet the proportion of cases responsible for secondary transmission varied considerably between models (Fig. 5). 
For instance, an estimated 80 percent of secondary cases were attributable to 25 percent of infectious cases in 
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the urban model, yet that proportion was four times less in the rural model (6 percent). Similarly, around 60 
percent of infectious cases were responsible for 99 percent of secondary cases in the urban model, compared to 
only 20 percent in the rural model (Fig. 5).

Sensitivity analysis. Our assumption of a gamma-distributed ν was superior in fitting the observed data 
compared to the exponential or constant ν assumption for all models (Supplementary Figures S2 and S3). Our 
alternative transmission cluster definitions resulted in expected under- and overestimation of heterogeneity 
(Supplemental Figure S4). The MIRU-only definition provides the most conservative estimates of heterogeneity 
and biased k̂ towards homogeneity (Fig. 2B, Supplementary Figure S4), yet still implied a high degree of hetero-
geneity in both populations( k̂ = 0.50 (95% CI: 0.37–0.79) and k̂ = 0.47 (95% CI: 0.24–1.10) for the urban and 
rural populations, respectively).

Our cluster-based inference performed accurately and equally well under perfect surveillance conditions 
when compared to standard approaches using known individual-level data (i.e., transmission trees), with a 
median k̂ = 0.48 vs true k = 0.48 in the simulated urban population and median k̂ = 0.08 vs true k = 0.08 in 
the simulated rural population (Supplemental Figure S5, Fig. 6). Under assumptions that only 40% of cases 
were observed, only 15% of missed cases were later obtained through active case finding, and censoring and 
sub-clustering were consistent with observed values, inference of k̂ was slightly biased upwards (towards homo-
geneity) in both models (median k̂ = 0.63 vs true k = 0.48 and median k̂ = 0.14 vs true k = 0.08 in the simulated 
urban and rural populations, respectively; Fig. 6), suggesting transmission in both populations may be more 
heterogeneous than estimated. Importantly the models could clearly distinguish between the two populations 
despite these introduced biases (Fig. 5).

Discussion
This analysis revealed remarkable differences in TB transmission dynamics between urban and rural populations 
in a high-burden TB and HIV setting. While we emphasize that both populations were characterized by extensive 
outbreaks of recent transmission ( k < 1 ), the rural population demonstrated a substantially higher propensity for 
such events. These findings have important implications for TB policy programs seeking to interrupt transmis-
sion and suggest that early identification of TB clusters may have a disproportionate impact in further reducing 
TB incidence in the rural population compared to the urban population. Our results also establish empirical 
estimates quantifying heterogeneity in high-burden settings, allowing for future work to evaluate the impact 
of specific intervention strategies to represent the mechanisms underlying TB transmission more accurately.

Our findings are in stark contrast to the common perception in infectious diseases that densely populated 
urban areas are more prone to explosive outbreaks than sparely populated rural areas. These findings likely do 
not reflect individual-level factors but instead can be attributed to several underlying environmental, social, and 
cultural mechanisms. Urban dwellers may live in closer proximity to healthcare facilities and more readily access 
antituberculosis treatment and care relative to rural dwellers, thus reducing the duration of infectiousness. In 

Table 1.  Genotypic cluster and case distributions, by population.

Genotypic cluster size

Urban Rural

Clusters, n (%) Cases, n (%) Clusters, n (%) Cases, n (%)

1 386 (68) 386 (30) 73 (64) 73 (19)

2 75 (13) 150 (12) 19 (17) 38 (10)

3 39 (7) 117 (9) 5 (4) 15 (4)

4 17 (3) 68 (5) 7 (6) 28 (7)

5 5 (1) 25 (2) 1 (1) 5 (1)

6 7 (1) 42 (3) 2 (2) 12 (3)

7 7 (1) 49 (4) 0 (0) 0 (0)

8 4 (1) 32 (2) 2 (2) 16 (4)

9 5 (1) 45 (3) 1 (1) 9 (2)

 ≥ 10 19 (3) 376 (29) 4 (4) 197 (50)

Total 564 (100) 1290 (100) 114 (100) 393 (100)

Table 2.  Maximum likelihood estimates (MLE) for R and k by population. The primary analysis used 
epidemiologic, geospatial, and genotypic data to define transmission subclusters. The sensitivity analysis 
assumed MIRU-VNTR genotypic clusters were transmission clusters.

Primary analysis Sensitivity analysis (“MIRU-only”)

R̂(95% CI) k̂(95% CI) R̂(95% CI) k̂(95% CI)

Urban 0.44 (0.39–0.50) 0.48 (0.31–0.87) 0.56 (0.51–0.62) 0.50 (0.34–0.79)

Rural 0.75 (0.48–1.46) 0.08 (0.04–0.14) 0.71 (0.59–0.86) 0.47 (0.24–1.10)
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addition, rural populations may have fewer venues for social congregation (e.g., churches, alcohol-related venues, 
etc.). Fewer venues might concentrate a larger proportion of the population in these venues and result in a higher 
proportion of transmission relative to urban venues. Differences in social practices between populations may 
also provide insight; inhabitants of Ghanzi, like many populations in rural southern Africa, experience seasonal 
oscillating migration between their residence and towns and villages for employment and other economic and 
cultural reasons, often residing in temporary congregate lodging 29. Such migration has been shown to increase 
the risk of both acquiring and transmitting TB in similar  populations43–45.

We performed multiple sensitivity analyses to evaluate model development and inference. We first com-
pared multiple underlying assumptions of heterogeneity in the model, the evaluated differences between the 
populations using six comparison models. We also undertook a comprehensive simulation study both to verify 
that cluster-size distributions were sufficient for parameter inference and to evaluate the impact that imperfect 
surveillance has on the inference procedure. All analyses supported the primary findings that transmission in 
both populations was characterized by a high propensity for extensive transmission, and that rural popula-
tions had a higher probability of experiencing large outbreaks compared to the urban population. Importantly, 
despite a high degree of bias introduced, the models were able to easily distinguish between the urban and rural 
populations (Fig. 6).

Our simulated study demonstrated that our method produced unbiased estimates, yet the accuracy of esti-
mates depends on the data quality (Supplemental Figure S5, S6, S7). Accurate identification of genotypic clusters 
and transmission sub-clusters has been a historical challenge in TB surveillance. In our study over half (51%) of 
participants were missing genotypic data, primarily due to culture-negative clinical diagnoses; this proportion is 
consistent with other studies in the  region46–50. Since missing genotypic data was not differential by population 
(48% and 51%, in urban and rural, respectively; Chi-squared p = 0.19), demographic (i.e., 51% for both male 
and female, Chi-squared p = 0.99 and consistent across age groups, Kruskal–Wallis p = 0.54), or clinical charac-
teristics (i.e., 53% and 51% for HIV-infected and HIV-uninfected, respectively, Chi-squared p value = 0.29), we 
evaluated the impact of this limitation in our simulation study using a binomial probability. While this revealed 
that estimates were slightly biased towards homogeneity, this approach assumes genotypic data were missing 
at random, an assumption that cannot be verified by the empirical data. This assumption would be violated if 
culture status was differential by genotype. However, to our knowledge, there is no biological rational for coding 
regions of genes to impact replicative fitness in culture media, and mycobacterial strains from differing lineages 
share similar growth kinetics.

We also assumed missingness was not differential by population; it is reasonable, for example, that epi-links 
may be missed among unknown contacts in more densely populated urban area. However, our sensitivity analysis 
suggests such differences may need to be implausibly large to account for the observed difference in parameter 
estimates. For instance, despite the situational biases introduced into the model in Fig. 6, upwardly biased esti-
mates in the imperfect rural model (purple) remain sufficiently distinct when assuming perfect surveillance in 
the urban model (teal).

Our definition of transmission sub-clusters was imperfect. Although we used geocoded addresses to identify 
primary residences, individuals may be transient or have multiple residences. Our incorporation of epi-link 
data likely included false transmission events and excluded true transmission events to some unknown degree. 
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Figure 2.  Joint maximum likelihood estimates (MLE) of transmission parameters R and k inferred from 
transmission cluster analysis. The use of geospatial and epi-link data to identify transmission sub-clustering 
reveals marked differences in transmission dynamics. (A) MLE and corresponding 90 and 95 percent confidence 
regions (CRs) using genotypic, geospatial, and epi-link data to identify transmission sub-clusters within a 
genetic cluster; (B) Values under the assumption that MIRU-VNTR genotypic clusters are transmission clusters. 
This assumption biases results towards homogeneity and provides functional upper bound estimates of k.
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Such misclassification will alter the number and size distribution of transmission sub-clusters, but not genotypic 
clusters. Our approach to evaluate these data limitations was to infer parameters using only genotypic cluster 
distributions (MIRU-only analysis). MIRU-VNTR is a lower-resolution genotyping method than the more recent 
whole genome sequencing approach, and generally overestimates cluster  distributions51. Thus, this assumption 
makes transmission appear more homogenous (i.e., biases k̂ upwards towards homogeneity), and provides a func-
tional upper bound estimate. Analysis of this extreme assumption remained supportive of the high propensity 
for extensive outbreaks in both populations ( k ≪ 1 ) yet attenuates the stark differences between the urban and 
rural population seen when accounting for transmission subclusters (Fig. 2).

All models are a simplified representation of disease transmission and are subject to inherent limitations. 
Branching process models assume transmission is independent and identically distributed. This assumption 
would be violated if ν was correlated among cases within a given transmission chain, which can only be empiri-
cally evaluated with knowledge of exact person-to-person transmission events (i.e., transmission chains). Future 
datasets utilizing higher-resolution molecular techniques such as whole genome sequencing may enable our 
ability to test this assumption and account for any dependencies between observations. Branching process 
models also assume the mean susceptibility among individuals remains constant, average susceptibility does not 
meaningfully decline, and individual infectiousness and susceptibility are uncorrelated. Under this assumption, 
variation in individual susceptibility, even if unaccounted for, does not influence parameter  inference52. However, 
this assumption may be invalid if a substantial proportion of outbreaks occur in clustered pockets of vulnerable 
sub-populations (i.e.,  mineworkers53) or in scenarios where the depletion of susceptible individuals may mean-
ingfully impact outbreak trajectory (i.e., incarcerated  individuals54). Recent studies incorporating heterogeneous 
susceptibility suggest estimates could be both over- and underestimated depending on the network structure 
and contact distribution  patterns55,56. Future studies incorporating heterogeneous susceptibility, particularly 
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Figure 3.  Underlying transmission dynamics in urban and rural models. We fit urban and rural models to 
the distribution of transmission cluster size data to infer the degree of individual heterogeneity in secondary 
cases. While all models show that TB transmission is characterized by a high degree of individual heterogeneity, 
the rural model suggests a substantially higher propensity for explosive outbreaks of recent transmission. (A) 
Probability of observing large outbreaks originating from a single index case; (B) Probability density of expected 
number of secondary cases for each individual (i.e., underlying individual reproductive number, ν ). The 
uncertainty interval integrates across the entire range of 95% confidence intervals for both R̂ and k̂. 
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those in high-burden settings, can extend these findings and deepen our understanding of population-specific 
transmission dynamics.

Interrupting TB transmission in high-burden settings is fundamental to achieving TB elimination. This 
analysis developed well-characterized models quantifying TB transmission dynamics in a high-burden setting 
to estimate the propensity for extensive transmission. The results play a direct role in using surveillance systems 
to better understand the underlying mechanisms of TB transmission in high-burden populations.
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Figure 4.  Comparison of large TB outbreaks in high-burden urban and rural settings. (A) Relative probability 
of observing a large outbreak of at least size Y  generating from a single case in a rural population compared 
to an urban population; (B) Absolute probability that a single case results in an outbreak of size of 30 or 
greater. Colored contours indicate probability bands, with associated probabilities indicated on each band. 
Setting-specific estimates are provided for clarity. (C) Density curves for the number of incident cases until 
first observed outbreak of size Y = 15 , Y = 30 , and Y = 50 resulting from a single index case. Nested boxplots 
represent the median and interquartile range of 500 simulated surveillance systems, each with 2000 transmission 
chains (supplemental materials Sect. 1.8). All Y  values were arbitrarily chosen to represent sufficiently large 
outbreaks.
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Table 3.  Model results for comparing transmission dynamics in the urban and rural populations under 
various model assumptions.

Model Model assumptions/description Model parameter restrictions ∆ likelihood AIC ∆ AIC Relative information loss

Unrestricted Populations have different transmission dynam-
ics None Reference 1766.67 Reference Reference

Identical transmissibility Populations have same transmission potential 
but different heterogeneities Ru = Rr − 2.43 1769.52 − 2.85  ~ 1/4

Identical heterogeneity Populations have different transmission potential 
but same heterogeneity ku = kr − 12.39 1789.45 − 22.78  ~ 1/88,470

Fully identical Populations have identical transmission dynam-
ics

Ru = Rr

ku = kr
− 14.05 2543.41 − 24.10  ~ 1/3,723,000

SIR-type heterogeneity Populations have different transmission potential 
and SIR-type heterogeneity ku = kr = 1 − 12.50 1787.67 − 21.10  ~ 1/36,406

SIR-type identical Populations have same transmission potential 
and SIR-type heterogeneity

Ru = Rr

ku = kr = 1
− 17.13 1794.93 − 28.27  ~ 1/1,373,130

59.9% of infectious cases
drive 99% of secondary transmission
in urban population

18.6% of infectious cases
drive 99% of secondary transmission
in rural population
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Figure 5.  Expected proportion of TB transmission attributed to a given proportion of infectious cases, by 
population. The proportion of cases responsible for 99 percent of transmission in each model is denoted by the 
vertical dotted line. The uncertainty interval integrates across the entire range of 95% confidence intervals for 
both R̂ and k̂.
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Data availability
All code to perform the inference procedure, analysis, and simulations are available at https:// github. com/ jpsmi 
thuga/ Urban Rural_ nbbpA nalys is. Data access may be requested by contacting the corresponding author.
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