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A novel liver cancer diagnosis 
method based on patient similarity 
network and DenseGCN
Ge Zhang1, Zhen Peng1, Chaokun Yan1, Jianlin Wang1, Junwei Luo2 & Huimin Luo1*

Liver cancer is the main malignancy in terms of mortality rate, accurate diagnosis can help the 
treatment outcome of liver cancer. Patient similarity network is an important information which helps 
in cancer diagnosis. However, recent works rarely take patient similarity into consideration. To address 
this issue, we constructed patient similarity network using three liver cancer omics data, and proposed 
a novel liver cancer diagnosis method consisted of similarity network fusion, denoising autoencoder 
and dense graph convolutional neural network to capitalize on patient similarity network and multi 
omics data. We compared our proposed method with other state-of-the-art methods and machine 
learning methods on TCGA-LIHC dataset to evaluate its performance. The results confirmed that our 
proposed method surpasses these comparison methods in terms of all the metrics. Especially, our 
proposed method has attained an accuracy up to 0.9857.

Liver cancer is the main malignancy worldwide, and its incidence is still increasing annually1. According to GLO-
BOCAN 2020, liver cancer causes about 830,000 deaths, ranking third leading cause of cancer deaths in 20202. 
Studies have shown that early diagnosis of cancer can help improve survival rates3. However, the symptoms of 
liver cancer in early stage are not obvious4, most liver cancer patients are already in the middle and late stages 
when they are diagnosed, and treatment options are limited5. These factors causes that the liver cancer has a 
poor prognosis6. Therefore, it is of great practical importance to design a method that can effectively perform 
early diagnosis and help improve the treatment outcome of liver cancer.

With the emergence of gene sequencing technology, the amount of biological data has exploded7,8, which 
has provided researchers with plenty of omics data from different aspects, such as proteomics, transcriptomics, 
epigenomics, and genomics. Analyze and utilize these omics data for cancer diagnosis is a hot issue9–12. The cancer 
diagnosis methods can be normally categorized into two kinds, machine learning methods and deep learning 
methods. Sun et al.13 developed an improved feature selection method, called I-RELIEF, to extract hybrid features 
from breast cancer microarray data and clinical data. The extracted features were using to construct a breast 
cancer diagnostic model based on linear discriminant analysis (LDA). The excellent performance of the cancer 
diagnostic model was verified by comparing with several benchmark methods. Akay et al.14 proposed a breast 
cancer diagnosis method using SVM and F-score15. They first ranked the features by F-score, and then carried 
out grid search method to find parameters for SVM model which can get the best performance. Final experi-
ment results indicated that this method had a better performance compared with previous works. Tsai et al.16 
developed an artificial bee colony algorithm (ABC) combined with SVM for cancer diagnosis. They applied ABC 
to screen relatively important genes in gene expression data for cancer stage diagnosis, and identified some genes 
that could be used as biomarkers for further study. To address the problem that the success rate of liver cancer 
diagnosis is not satisfactory, Zhang et al.17 introduced a hybrid cancer diagnosis method, which is based on SVM, 
incremental feature selection (IFS) and max-relevance and min-redundancy (mRMR). Firstly, mRMR was used 
to screen the gene expression data, then IFS was used for further selection of the screened features, and finally 
the obtained genes were input to SVM for liver cancer diagnosis. However, Machine learning methods have dif-
ficulty processing raw data directly, they usually transformed the raw data into appropriate feature vectors. This 
may bring additional computational cost18.

Recent years, deep learning, which has the ability to capture intricate structures from raw data, started to 
gain attention in bioinformatics field and many cancer diagnosis methods based on deep learning method have 
been proposed19. Fakoor et al.20 reduced the dimensionality of gene expression data by principal component 
analysis (PCA). Then sparse autoencoder (SAE) was used for further feature extraction and finally softmax was 
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used for cancer diagnosis. lyu and Haque21 transformed the gene expression data into 2-D images, then input 
the 2-D images into convolutional neural network to classify cancer of 33 tumor types. Gao et al.22 introduced 
a novel cancer diagnosis method (DeepCC). DeepCC performs gene enrichment analysis to transform the 
gene expression data into functional spectra. Then the resulting functional spectra are input into a multilayer 
neural network for subsequent training. For both colorectal and breast cancer, DeepCC outperforms random 
forest (RF) and SVM for cancer subtype classification. However, previous deep learning-based models mainly 
use single omics data, which is limited to describe all the features of cancer23. It limits the performance of deep 
learning in cancer diagnosis.

Accordingly, cancer diagnosis methods based on multiple omics data are increasingly adopted24–26. Sun 
et al.27 proposed a deep learning method which is based on model fusion, named MDNNMD, for breast cancer 
prognosis. They used two types of omics data, gene expression data and copy number variation (CNV), as well 
as clinical data, and constructed three deep neural network (DNN) models for the three types of data, and finally 
fused the prediction scores of the three independent models as the final prediction result. Zhang et al.28 used 
variational autoencoder (VAE) to integrate methylation data and gene expression data to diagnose cancer. They 
used ten-fold cross-validation on 33 types of cancers to evaluate their method, and the final accuracy obtained 
by their method is 97.49%. Copy number variation, gene expression, and methylation data were used in these 
researches on cancer diagnosis. This indicated that copy number variation, gene expression, and methylation 
data bring useful information to cancer diagnosis. Thus, all these three omics data were selected in this work.

Previous studies have often only used genomics data. Interpretability is particularly required in genomics 
because of relatively smaller sample sizes and to better understand the molecular causes of disease so that tar-
geted therapies can be designed29. Patient similarity network (PSN) can address these problems and specializes 
in integrating multi-omics data and generating interpretable models30. However, previous works rarely took the 
patient similarity into account. To address this issue, we integrated three omics data of liver cancer and calculated 
the similarity between patients. As the similarity network is none-Euclidean data, previous neural networks like 
CNNs, are hard to handle this data31,32. Thus, graph convolutional network (GCN), which has the advantages 
in processing non-Euclidean data is used in this work. Meanwhile, since omics data have small sample size, we 
need a deeper network to fit the data and thus avoid the disadvantages associated with the small sample size33. 
But the number of GCN layers is rarely more than four because of the vanishing gradient problem34. To deal with 
this challenge, we selected the dense graph convolutional neural network (DenseGCN)35. DenseGCN improves 
information flow in the network by densely connecting different layers. DenseGCN is able to overcome the 
vanishing gradient problem and make the GCN architecture deeper, thus enabling better utilization of patient 
similarity network and multi-omics data for cancer diagnosis. To the best of our knowledge, this is the first effort 
to employ DenseGCN in cancer diagnosis field.

In this work, A novel liver cancer diagnosis method (pDenseGCN) based on patient similarity network and 
DenseGCN is proposed. We first used similarity network fusion (SNF) to construct the patient similarity network 
using three liver cancer omics data. Then, we extracted latent embedding representation of omics data by using 
denoising autoencoder (DAE). This can provide a more precise representation of liver cancer. Finally, we adopted 
DenseGCN for liver cancer diagnosis based on the patient similarity network and latent representation of omics 
data. By incorporating the supplemental information PSN into the model, we got a more comprehensive view 
of cancer and finally obtained better performance on liver cancer diagnosis. According to the reliable experi-
ments, our method pDenseGCN gained an accuracy score of 0.9857, and performed better compared with five 
state-of-the-art methods and machine learning methods.

The main contributions of this paper are as follows.

•	 A novel deep learning method, named pDenseGCN, is proposed for effectively liver cancer diagnosis.
•	 pDenseGCN utilizes SNF to construct a patient similarity network based on multi-omics, thus captures the 

similarity information between patients, which helps in liver cancer diagnosis.
•	 pDenseGCN adopts DenseGCN as the classifier. DenseGCN connects different layers densely to improve 

information flow in the network, which can overcome vanishing gradient problem. This brings better results 
in liver cancer diagnosis.

Methods
Proposed method.  There are three components in the proposed method pDenseGCN. The first compo-
nent is generating patient similarity network by omics datasets. Three omics datasets were applied as the input 
of similarity network fusion method to produce patient similarity network. The second component is extracting 
feature by denoising autoencoder. In this step, RNA-Seq, DNA Methylation and CNV were put into denois-
ing autoencoder respectively to obtain low-dimensional features. The next component is to input the obtained 
patient similarity network and feature matrix into dense graph convolutional network (DenseGCN) for classi-
fied training and prediction, and a cancer prediction framework was finally built. Figure 1 describes the overall 
workflow of our proposed method pDenseGCN. 

Construction of patient similarity network.  In order to construct the patient similarity network (PSN), 
we employed a method named Similarity network fusion (SNF), which can make full use of multi-omics36. SNF 
is applied to combine RNA-seq, DNA methylation and CNV data to generated a patient similarity network. 
Assuming that there are n patients, each of them has m type data (such as RNA-Seq and DNA methylation). 
We represent the PSN as a graph G=(V,E), where V represents the set of patients {x1 , x 2 , x 3..., x n } and the edges 
E correspond to the similarity between vertices v ∈ V. The weights between edges are represented by an n × n 
similarity matrix W which is computed by Eq. (1).
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where α is a hyperparameter, φ (x i  , x j ) is the Euclidean distance between patients x i  and x j and γ i,j is used to 
eliminate the scaling problem. In order to compute the fused matrix from multiple types of data, the similarity 
matrix is normalized as Eq. (2).

Assuming N i  is a set of x i  ’s neighbors. Then local affinity matrix S is calculated by Eq. (3).

Let P t  (h) represent normalized similarity matrix of h-th type data (1 ≤ h ≤ m) in the t-th iteration, P t  (h) is 
updated according to Eq. (4).

where the S (h) represents local affinity matrix of h-th type data. Through this process of continuous iterative 
fusion, a patient similarity network which contains complementary information from three omics dataset is 
finally obtained. The fused network can be used for classification or clustering, and in this work the fused simi-
larity network is taken as the input of DenseGCN for cancer diagnosis.

Feature extraction by denoising autoencoder.  To reduce the noise in the row omics data and the 
computational cost, we constructed three independent denoising autoencoders to extract latent embedding rep-
resentation from the omics datasets, respectively. The autoencoder (AE) is a neural network which typically 
contains two networks: an encoder network and a decoder network. The encoder network takes a feature vector 
x ∈ ℜ d as input and encodes it into a low-dimensional representation y ∈ ℜ q , define as fe : x → y. The decoder net-
work maps the low-dimensional representation y back to the input space, define as fd : y → z. The autoencoder is 
optimised by minimizing the reconstruction loss L between original input x and reconstructed input z as Eq. (5).

where fe , fd represent the parameters of the encoder network and the decoder network, respectively.
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Figure 1.   The overall workflow of pDenseGCN. (A) Similarity network constructed by SNF. (B) Features 
extracted by DAE network. (C) DenseGCN for cancer diagnosis.
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In this work a denoising autoencoder (DAE)37 is applied to extract latent embedding representation. The 
architecture of DAE is the same as AE, but the way to train network is different. DAE first corrupted the input 
data by adding noise, then the corrupted input data x _noise is fed to the autoencoder. By recovering the dam-
aged input data, DAE extracts robust latent embedding representation. We use the loss function Mean Squared 
Error to train DAE. The latent embedding representations extracted by three independent DAE are connected 
and then fed to the further work together with patient similarity network.

DenseGCN.  The patient similarity network constructed by SNF is non-Euclidean data that CNNs fail to 
handle32, so GCN is considered in this work because of their advantages in processing non-Euclidean data38. 
However, original GCN model is usually very shallow due to the vanishing gradient problem, this limits the abil-
ity of GCN to fit the data35. So an improved GCN model named DenseGCN is used in this work.

GCN takes a feature matrix X which describes every node in the graph and an adjacency matrix A which 
illustrate the structure of the graph as input and generates a node-level matrix Z. The layer-wise propagation 
rule of GCN can be formulated as Eq. (6).

where H(N) is the output of the N layer, and W(N-1) is a weight matrix of the N-1 layer. f(· ) represents graph 
convolution operation. σ(· ) is an activation function which is usually non-linear. This rule is valid but still has 
some limitations. Frist the feature vectors of all neighboring nodes are taken into consideration, but the node 
itself is ignored. This limitation can be fixed by adding self-connections to the adjacency matrix A, define as Â 
= A+E, where E represents the identity matrix. The second limitation is that A is usually not normalized, this 
means that the scale of the feature vectors will change when multiplying with A. To get rid of this limitation, 
symmetric normalization, defining as D−1/2AD−1/2 , is applied to standardize A, where D is the diagonal node 
degree matrix. Thus, propagation rule is reformulated as Eq. (7).

Theoretically, deeper networks are able to learn more abstract representations and require less data for training 
than shallow neural networks33,39, and at the same time, omics data are characterized by high dimensionality and 
few samples. This indicates that deep networks are more applicable to omics data. However, GCN is usually very 
shallow because of the vanishing gradient problem35, and most state-of-the-art GCNs are less than 4 layers34. 
Inspired by the dense connectivity of DenseNet40, a similar idea is adapted to GCN to improve information 
flow in the network and avoid gradient vanishing problem35. This dense model, named DenseGCN, has a new 
propagation rule which is define as Eq. (8).

where H(0) is the input feature matrix X, T(· ) represents a vertex-wise concatenation function. The structure 
of DenseGCN is shown in Fig. 2.

In summary, the original GCN is limited by the gradient disappearance problem, which makes it difficult to 
have a deep network architecture. In contrast, DenseGCN improves the flow of information by connecting layers 
densely to solve the gradient vanishing problem, and is able to have a deeper network architecture compared 
with original GCN. Thus, DenseGCN is more suitable for omics datasets.

Results
A series of experiments were conducted to evaluate the performance of proposed method pDenseGCN. First, 
pDenseGCN was compared with five state-of-the art methods, namely ASVM41, Xgboost-AD42, MGRFE-
GaRFE43, ET-SVM44, XOmiVAE45, and four machine learning methods, namely Linear Discriminant Analysis 
(LDA), Naïve bayes (NB), Random Forest (RF), and Decision Tree (DT). Then we investigated the influence 

(6)H(N) = f (H(N − 1),A) = σ(AH(N − 1)W(N))

(7)H(N) = f (H(N − 1)) = σ(D̃−
1
2 ÃD̃−

1
2H(N − 1)W(N))

(8)H(N) = T(f (H(N − 1),A), f (H(N − 2),A), . . . , f (H(0),A))

Figure 2.   The structure of DenseGCN.
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of patient similarity network and different omics data. Finally, we discussed the impact of different number of 
DenseGCN layers and features selected by DAE.

Datasets and data preprocessing.  We performed our proposed method pDenseGCN on Liver Hepa-
tocellular Carcinoma (LIHC) omics datasets acquired from TCGA portal (https://​www.​cancer.​gov/​tcga). A R 
package named TCGA-assembler46 was used to obtain DNA methylation, RNA-seq and CNV data of LIHC. The 
detail of above three datasets is described in Table 1.

Similar to the previous literature47, these three datasets are preprocessed by following steps. The first step 
is outlier removal. We delete these features which have more than 20% missing values. Similarly, these sample 
which have moved than 20% features have been removed. 404 common samples remained in this step. The next 
step is missing-data imputation. We use the mean of remaining features to impute the missing values based on 
the python package sklearn48. Finally, these three datasets are normalized according to Eq. (1).

where X is any column in the omics dataset, X nor is the corresponding columns after normalization, X max is the 
maximum values in X and X min represent the minimum values in X.

Evaluation metrics.  To fully evaluate different methods, accuracy, precision, recall, F1-score49, and AUC​50 
were used as the metrics. All of them are defined as follows.

Accuracy: The ratio of correctly predictions. Accuracy can be calculated as Eq. (10).

Precision: The ratio of samples categorized as positive to those which are actually positive. The formula of 
precision is Eq. (11).

Recall: The ratio of true positive samples divided into positive samples. It is defined as Eq. (12).

F1-score: The harmonic means of recall and precision. It can be calculated as Eq. (13).

AUC: The area under the receiver operating characteristics curve.

Experiment and parameter settings.  For these omics dataset, 60% of the data was randomly selected 
to train models and 20% of the data was randomly selected as the validation set. The remaining 20% data was 
used for testing. To reduce the deviation, we repeated the experiments five times and the average result of the 
five experiments was taken as the ultimate result of the experiment. All of our models were implemented using 
Pytorch. The experiments were executed on a PC with an Intel core i7-10700 processor of 2.90 GHz and 32.0 GB 
RAM. The relevant parameters of the used methods are listed in this part. For pDenseGCN, we determined the 
optimal learning rate (Lr) and the batch size according to the grid search method. For the comparison algorithm, 
the parameters given in its original paper were slightly modified to make it more suitable for our dataset. Table 2 
describes the detailed parameters.

Comparison with other methods.  To validate the performance of our proposed method pDenseGCN, 
we compared it with five state-of-the-art methods and four machine learning methods. We replicated them 
according to their publications or using publicly available programs. The details of these five state-of-the-art 
methods are described below.

(9)Xnor =
X − Xmin

Xmax − Xmin

(10)Accuracy =
TP + TN

TP + TN + FP + FN

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1− Score =
2× Recall × Precision

Recall + Precision

Table 1.   The details of three omics datasets.

Omics type Number of samples Number of features

RNA-Seq 424 20,530

DNA methylation 429 20,421

CNV 760 24,924

https://www.cancer.gov/tcga
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•	 ASVM41 is a novel multilayer recursive feature elimination algorithm based on embedded variable length 
encoding genetic algorithm aiming at cancer classification. It utilizes the Shuffled Frog Leaping algorithm 
to adaptively adjust the parameters of the Support Vector Machine based on data attributes to classify early 
stage cancers.

•	 Xgboost-AD42 is a novel cancer classification method. It integrates multi-omics data by autoencoder and 
utilizes extreme gradient boosting to accurately diagnostic classify cancer.

•	 MGRFE-GaRFE43 is aiming to use fewer genes for better cancer classification results. It applies a multilayer 
recursive feature elimination method based on an embedded genetic algorithm to get a better feature subset 
for cancer classification.

•	 ET-SVM44 adopts extra trees and variance threshold to select features from gene expression data, and uses 
these important features to diagnostic classify cancer based on SVM.

•	 XOmiVAE45 is an interpretable deep learning model for cancer diagnosis based on variational autoencoder. 
It uses variational autoencoder to extract low-dimensional expressions from genomics data, which are then 
fed into a multilayer perceptron for cancer classification.

The results are displayed in Table 3. As seen in Table 3, pDenseGCN has a better performance compared with 
other methods among all the metrics in LIHC dataset. In terms of accuracy, pDenseGCN achieves 98.57% 
accuracy, which is 1.31% better than the best remaining method XGBoost-AD and up to 23.9% better than 
other comparison methods. As for the other four metrics, pDenseGCN gains a best performance which are up 
to 26.03%, 35.49%, 22.46%, 24.09% better than other methods in terms of precision, recall, f1-score, and AUC. It 
proves that by introducing the patient similarity network, our proposed method is more advantageous in cancer 
diagnosis and more applicable to the LIHC dataset.

The influence of patient similarity network.  Constructing patient similarity network is one important 
component of pDenseGCN, since the patient similarity network allows DenseGCN to gain information from the 
neighboring patients. To investigate the influence of patient similarity network on cancer diagnosis, we designed 
two experiments. One experiment took patient similarity network as the input and the other one took an identity 
matrix as the input. The results are presented in Fig. 3. As Fig. 1 shows, the model trained with patient similarity 

Table 2.   Parameter settings.

Methods Parameters

pDenseGCN Lr(DAE) = 0.01, epochs(DAE)=50, batch size(DAE)=8,
Lr(DenseGCN)=0.01, epoch(DenseGCN)=500

ASVM m=4, n=8, q=5, numGlobal=30, numLocal=20

Xgboost-AE Lr(AE)=1.0, batch size(AE)=16, epoch(AE)=100

MGRFE-GaRFE global_bestsize = 120, layer_bestsize = 100 , total_layer = 2

ET-SVM C=0.004, kernel=‘linear’, decision_function_shape=‘ovo’, gama=1

XOmiVAE learning_rate=0.01, dropout=0.5, epoch=100

LDA solver=’svd’

NB var_smoothing=1e-09

RF n_estimators=10

DT splitter=’best’, min_samples_split=2,
min_samples_leaf=1

Table 3.   Results of comparison methods and proposed method. Significant values are in bold.

Precision Recall F1-Score Accuracy AUC​

pDenseGCN 0.9865 0.9865 0.9865 0.9857 0.9856

ASVM 0.937 0.9744 0.9553 0.9208 0.8531

XGBoost-AD 0.9736 0.9729 0.9732 0.9726 0.9759

MGRFE-GaRFE 0.9689 0.9397 0.9183 0.954 0.8306

ET-SVM 0.96 0.6316 0.7619 0.7945 0.8015

XOmiVAE 0.946 0.8974 0.9211 0.8537 0.8718

LDA 0.7262 0.8133 0.7673 0.7466 0.7447

RF 0.9605 0.9125 0.9359 0.937 0.9848

NB 0.8977 0.7914 0.8412 0.8452 0.8492

DT 0.9254 0.8267 0.8732 0.8767 0.8781
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network performs prior to the model trained without patient similarity network. In the case of precision, recall, 
F1-score, accuracy, and AUC, the model trained with patient similarity network is 9.29%, 15.6%, 12.6%, 12.2%, 
12.1% higher than the model trained without patient similarity network. This demonstrates that by introducing a 
patient similarity network, our proposed method pDenseGCN takes the information from neighboring patients 
into consideration when predicting the label of a patient. This effectively improves the classification results. 

Effectiveness of different omics data.  We carried out experiments with varied type of data to confirm 
the effectiveness of varied omics data and the effect of multi-omics data combination. The results are displayed 
in Table 4. In Table 4, RNA-seq, DNA Methylation and CNV represent three single omics data, respectively. 
RNA-Seq+DNAMethy, RNASeq+CNV, and DNAMethy+CNV represent three omics data pairwise combina-
tions, respectively. Multi-Omics represents our proposed method with three omics data. We can see from Table 4 
that the performance of our proposed method rises over time as the type of data used increases. These models 
trained with single omics data have an accuracy of up to 0.8286, however, when the model was trained with two 
omics data, the lowest accuracy was 0.9. The optimal performance is attained when the model is trained with 
three kinds of omics data with an accuracy value of 0.9857. It confirms that multiple omics do outperform single 
omics, and that the performance improves progressively as the number of omics data increases. This indicate 
that different omics data contain complementary information, which provides a comprehensive view of cancer 
and improves the result of cancer diagnosis. Besides, the model trained with DNA Methylation performs better 
in the three single omics data, this may indicate that DNA Methylation contains more information that facilitates 
cancer diagnosis.

The effect of DenseGCN layer numbers.  In order to explore the effect of different DenseGCN layer 
numbers on the final result, we designed several models with various number of layers. The results of differ-
ent models are shown in Table 5. As seen in Table 5, unlike the conventional GCN models, pDenseGCN still 
performs well even if the number of layers is more than three. Meanwhile, excluding 7-layers and 8-layers, the 
performance of pDenseGCN increases gradually with the increase of layers. This illustrates that deep network 
is more suitable to fit omics data and can gain a better performance than shallow network in cancer diagnosis. 
When the number of pDenseGCN layers reaches 10, multiple metrics such as Recall, F1-Score, Accuracy and 
AUC perform best. However, as the number of layers keeps increasing, these scores of metrics gradually decline. 
This is probably because although DenseGCN overcomes gradient vanishing by densely connecting layers to 

Figure 3.   The influence of the patient similarity network.

Table 4.   Results of different omics data. Significant values are in bold.

Precision Recall F1-score Accuracy AUC​

RNA-Seq 0.8197 0.6757 0.7407 0.75 0.7545

DNA methylation 0.931 0.7297 0.8182 0.8286 0.8346

CNV 0.9574 0.6081 0.7438 0.7785 0.7889

RNA-Seq+DNAMethy 0.9855 0.9189 0.951 0.95 0.9519

RNASeq+CNV 0.8375 0.9853 0.9054 0.9 0.9024

DNAMethy+CNV 0.9589 0.9459 0.9524 0.95 0.9502

Multi-omics 0.9865 0.9865 0.9865 0.9857 0.9856
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some extent, the number of DenseGCN layers is not the more the better. Therefore, the number of layers of 
pDenseGCN in this work is set to 10.

The effect of feature numbers extracted by DAE.  To investigate the effect of feature numbers on 
model performance, we conducted several experiments with different number of features extracted by DAE to 
explore the changes in experimental results. The results are displayed in Fig. 4.

As can be seen from Fig. 4, when the quantity of features ranges from 100 to 300, three metrics F1-Score, 
Accuracy, AUC exhibit an obvious rising trend. This may be because that useful information that the model can 
learn gradually increases as the amount of features increases. The proposed method reaches best performance 
when the number of features is set to 300, with an accuracy value of 0.9857. As the number of features continues 
to grow, the performance of our proposed method begins to gradually decrease instead. This indicates that when 
the number of features is large, irrelevant or redundant information may be incorporated, which does harm to 
the performance of model. Thus, 300 is selected as the number of features in this work.

Conclusion
Liver cancer is one of the common malignant tumors worldwide with a poor prognosis. Since effective diagno-
sis helps to improve the cure of liver cancer, there is an urgent need for a method that can accurately perform 
diagnosis of liver cancer. In this work, we establish a novel method pDenseGCN which consists of similarity 
network fusion, denoising autoencoder, and dense graph convolutional network for liver cancer diagnosis. The 
pDenseGCN takes multi-omics data to construct a patient similarity network, which brings more patient infor-
mation for cancer diagnosis. We explore the differences in the results of pDenseGCN trained with and without 
patient similarity network. The results indicate that the similarity information does contribute to cancer diagno-
sis. In addition, since the patient similarity network is non-Euclidean data, and the omics data is characterized 
by high dimensionality and few samples, pDenseGCN utilizes densely connected graph convolutional neural 
network to fit them better. Compared with state-of-the-art methods, pDenseGCN achieves better results in 
terms of the final prediction performance metrics. It demonstrates that our proposed pDenseGCN is a promis-
ing method for liver cancer diagnosis. In our future work, we are committed to extend our proposed method to 
multi-classification tasks, such as cancer subtype classification as well as pan-cancer classification.

Received: 14 October 2021; Accepted: 5 April 2022

Table 5.   Results of different DenseGCN layer numbers. Significant values are in bold.

Precision Recall F1-Score Accuracy AUC​

3-layers 1 0.6892 0.816 0.8357 0.8446

4-layers 0.8024 0.8784 0.8387 0.8214 0.8179

5-layers 1 0.9324 0.965 0.9643 0.9662

6-layers 0.9125 0.9865 0.9481 0.9429 0.9402

7-layers 1 0.7297 0.8437 0.8571 0.8649

8-layers 0.9667 0.7838 0.8657 0.8714 0.8767

9-layers 1 0.9459 0.9722 0.9714 0.973

10-layers 0.9865 0.9865 0.9865 0.9857 0.9856

15-layers 0.925 1 0.961 0.9571 0.9545

Figure 4.   Results of different number of features.
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