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Error rate reduction of single‑qubit 
gates via noise‑aware 
decomposition into native gates
Thomas J. Maldonado1,2*, Johannes Flick3, Stefan Krastanov4,5 & Alexey Galda6,7,8

In the current era of Noisy Intermediate‑Scale Quantum (NISQ) technology, the practical use 
of quantum computers remains inhibited by our inability to aptly decouple qubits from their 
environment to mitigate computational errors. In this paper, we introduce an approach by which 
knowledge of a qubit’s initial quantum state and the standard parameters describing its decoherence 
can be leveraged to mitigate the noise present during the execution of a single‑qubit gate. We 
benchmark our protocol using cloud‑based access to IBM quantum processors. On ibmq_rome, we 
demonstrate a reduction of the single‑qubit error rate by 38%, from 1.6× 10

−3 to 1.0× 10
−3 , provided 

the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never 
decrease gate fidelity, provided the system’s T

1
 and T

2
 times have not drifted above 100 times their 

assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to 
improve the fidelity of quantum circuits for which some knowledge of the qubits’ intermediate states 
can be inferred. This paper presents a pathway to using information about noise levels and quantum 
state distributions to significantly reduce error rates associated with quantum gates via optimized 
decomposition into native hardware gates.

Four decades after the conception of a quantum computer (QC)1, its far-reaching computational potential 
remains abundantly  clear2. Among the various physical systems whose quantum properties can be harnessed 
for  computation3–6, superconducting transmon qubits have demonstrated promise in their ability to realize scal-
able  QCs7–9 and have accordingly been made available to the public via cloud-based services offered by private 
companies such as IBM, Rigetti Computing, and Amazon. Despite the recent increase in availability, in the cur-
rent era of Noisy Intermediate-Scale Quantum (NISQ)  technology10, our ability to utilize these machines to their 
full potential remains significantly inhibited by the computational errors that arise from interactions between 
the physical qubits and their environment.

While these detrimental interactions can be suppressed through the development of noise-resilient quan-
tum hardware, the effective noise present during circuit execution can also be mitigated by optimizations in 
the compilation  process11. Examples of software-based optimization protocols have been demonstrated across 
the full quantum computing stack, from high-level circuit depth compression via quantum-assisted quantum 
 compiling12 down to the optimization of individual native gates-the default quantum operations calibrated by the 
hardware provider-through the use of pulse-level  control13–15. Some notable examples include noise tailoring via 
randomized  compiling16, dynamical decoupling of idle  qubits17, optimized state preparation via active  reset18,19, 
and measurement via excited state promoted  readout20,21.

In this paper, we pioneer a software-based optimization protocol for fidelity improvements of general single-
qubit gates by leveraging knowledge of the qubit decoherence parameters to generate an optimized noise-aware 
decomposition into native hardware gates. The optimization of native gates themselves is a complementary task 
and a powerful noise-mitigation tool in its own right, but it requires pulse-level control, a level of hardware access 
both unfamiliar and inaccessible to many users of NISQ devices. The goal of this paper is to demonstrate a reduc-
tion of single-qubit error rates without the need for this lower level of access. By optimizing the decomposition of 
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single-qubit gates without improving the native gates themselves, we demonstrate the efficacy of a protocol that 
is straightforward to implement at the gate level and requires minimal knowledge of the underlying Hamiltonian 
governing the qubit dynamics during gate execution. Accordingly, it can be easily adapted for use in QCs based 
on arbitrary physical systems. Our results demonstrate that it is possible to significantly improve the fidelity of 
single-qubits gates by leveraging knowledge of the qubit’s initial state, along with its characteristic coherence 
times T1 and T2 . We perform two randomized benchmarking (RB)22 experiments: (i) on the ibmq_rome23 quan-
tum processor, we empirically determine the reduction of the single-qubit error rate offered by our optimization 
technique when the initial state of the input qubit is known, and (ii) on the ibmq_bogota24 quantum processor, 
we analyze the sensitivity of our approach to the accuracy and drifts of the device’s calibrated T1 and T2 coherence 
times. Our results demonstrate that it is possible to reduce the single-qubit error rate by up to 38% and that the 
approach is extremely robust against drifts and miscalibrations of T1,2 coherence times, providing measurable 
fidelity improvements even when the T1,2 values are up to 2 orders of magnitude different from the true values, 
i.e. off by a factor of 0.1 to 100. While we demonstrate our approach on two five-qubit IBM transmon devices, 
our optimization protocol is hardware-agnostic and assumes the two most prominent channels of Markovian 
noise in NISQ devices: relaxation and dephasing.

Native gates. We start by introducing IBM’s native gate set and describing how the compiler of quantum 
circuits decomposes single-qubit gates into native gates. Throughout this paper, we use the terms single-qubit 
gate, rotation, and operation interchangeably. An arbitrary rotation U on the Bloch sphere can be parameterized 
by its Euler  angles25. Concretely, ∀U ∈ SU(2) , ∃α , β , δ ∈ [0, 2π) , γ ∈ [0,π ] such that

where Rz and Ry are rotations about the z- and y-axes, respectively. Since a global phase enacted on a quantum 
state has no physical effect, the value of α is irrelevant. Effectively, Eq. (1) defines the decomposition of an arbi-
trary single-qubit gate into three rotations, two about the z-axis and one about the y-axis. In this paper, we work 
exclusively with the native gates used by IBM in their standard decomposition  framework26: rotations about the 
x-axis by integer multiples of π/2 and rotations about the z-axis by an arbitrary angle. We note that, in principle, 
IBM’s native gate set can be expanded using pulse-level  control13,14, but in hopes of making our protocol easier 
to implement for those without this lower level of access, we maintain the standard native gate set described 
above. The decomposition outlined in Eq. (1) can be rewritten in terms of these native gates Rz and Rx(±π/2):

Thus, any single-qubit gate can be applied via the sequential application of IBM’s native gates defined by 
Eq. (2).

Before proceeding to the noise model, we make a brief note on the physical implementation of the native 
gate set on IBM quantum  processors26. IBM quantum systems are built using fixed-frequency superconduct-
ing transmon qubits, wherein the qubits are manipulated using microwave pulses. The Rx(±π/2) gates in the 
decomposition defined by Eq.  (2) are implemented using calibrated microwave pulses, while the Rz rotations 
are realized as zero-duration “virtual” gates by adding a phase offset in  software27. For the purposes of the noise 
model outline below, it is important that microwave pulses of fixed shape and duration are applied to qubits only 
to implement the Rx(±π/2) native gates.

Noise model. While there are a number of noteworthy sources of single-qubit decoherence, including 
 leakage15 and non-Markovian  noise28, we limit our attention to amplitude damping (relaxation) and dephasing, 
respectively characterized by IBM’s publicly reported T1 and T2 coherence times. All single-qubit noise specifica-
tions for ibmq_rome23 and ibmq_bogota24 were provided by IBM through  Qiskit29 and are tabulated in the 
Supplementary Information.

Based on the physical implementation of IBM’s native gates discussed above, we model the noisy application 
of an Rx(±π/2) gate as an instantaneous rotation, followed by decay and dephasing over time t∗ equal to the gate 
duration. We emphasize that this model is an approximation, and though it is not necessarily exact, it captures 
enough of the noise dynamics for the purpose of this study. This is mathematically realized via the initial appli-
cation of an Rx(±π/2) unitary, followed by the appropriate Kraus operators. Accordingly, we model the noisy 
application of a single-qubit gate parameterized by Euler angles (β , γ , δ) by applying these Kraus operators after 
each instance of Rx(±π/2) in Eq. (2); a pictorial representation can be found in Fig. 1. In this model, the noisy 
application of a single-qubit gate with Euler angles (β , γ , δ) will transform an initially pure state with Bloch sphere 
coordinates (θ ,φ) into a mixed state with the following density matrix:

(1)U(β , γ , δ) = eiαRz(β)Ry(γ )Rz(δ) ,

(2)U(β , γ , δ) = eiαRz(β)Rx(−π/2)Rz(γ )Rx(π/2)Rz(δ) .

(3)ρ(β ,γ ,δ,θ ,φ) =

[

a b
b∗ 1− a

]

,

(4)a =
1

2

[

(

− sin γ cos (φ + δ) sin θ + cos γ cos θ
)

(1− �A)
3/2

√

1− �P + 1+ �A

]

,
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The derivation of this expression is provided in the Supplementary Information.
The variable �A is equal to the probability of a spontaneous emission during the application of an Rx(±π/2) 

gate, and �P is equal to the probability of a spontaneous phase flip during the application of an Rx(±π/2) gate. 
Both parameters are defined as functions of the system’s T1 and T2 times, respectively, along with the Rx(±π/2) 
gate duration t∗:

We note that all time-dependent terms in Eqs. (3–5) are functions of t∗/T1,2.

Optimization. Using the noise model given by Eqs. (3–5), we now outline the protocol by which the fidelity 
of an arbitrary single-qubit gate can be improved. Suppose we wish to implement the target operation U(βt , γt , δt) 
acting on the initially pure state with Bloch sphere coordinates (θ ,φ) , represented below by |ψ(θ ,φ)� . Our proto-
col amounts to maximizing the following fidelity over the Euler angles (β , γ , δ):

We find the optimal Euler angles (β ′, γ ′, δ′) via gradient descent over the parameters (β , γ , δ) . In the pres-
ence of noise, the native gate decomposition of U(β ′, γ ′, δ′) will map the initial state |ψ(θ ,φ)� to the target state 
U(βt , γt , δt)|ψ(θ ,φ)� with higher fidelity than the default decomposition of U(βt , γt , δt) . We note that Eq. (8) has 
an explicit closed form and that in general, U(β ′, γ ′, δ′) �= U(βt , γt , δt) , i.e., the optimized decomposition is not 
constrained to perform the target operation perfectly in the absence of noise. Throughout this study, the gradient 
descent was performed in Python using the function scipy.optimize.minimize from the  SciPy30 library 
with the method L-BFGS-B. For the parameters used in both experiments performed on IBM’s hardware, the 
gradient descent to optimize a single gate could be performed in approximately 0.2 s on a standard computer.

To provide some intuition for how the optimized operation improves the fidelity, we begin by noting that the 
effect of amplitude damping is most pronounced on the south pole of the Bloch sphere (excited state), and the 
effect of phase damping is most pronounced on the equator of the Bloch sphere (equal superposition states). Thus, 
to best map the initial state to the target state, the optimizer finds a trajectory through the Bloch sphere that most 
aptly avoids these noisy regions. For the sake of visualization, we have included an example of an optimized (blue) 
and an unoptimized (red) trajectory through the Bloch sphere in Fig. 2, wherein the optimized trajectory tends 
towards the coherent north pole more than its unoptimized counterpart. Figure 2 was generated using  QuTiP31,32.

Results
Error rate reduction on ibmq_rome. We now experimentally validate the protocol outlined above 
on qubit 3 of the ibmq_rome device by empirically determining the reduction in the single-qubit error 
rate achieved by the optimizer. At the time of the experiment, the qubit had the following characteristics: 
T1 = 46.4 µs , T2 = 105 µs , pulse duration t∗ = 35.6 ns , and therefore damping probabilities �A = 7.7× 10−4 
and �P = 3.4× 10−4 (see Eqs. (6–7)). Because the fidelity improvement offered by the optimizer is relatively 
small, we use an RB experiment to detect the improvement in fidelity by accumulating it over a long sequence 
of gates.

We begin by generating a circuit composed of a sequence of randomized single-qubit gates C = (G1, ...,GN ) 
acting on the initial state |ψ0� = |0� . To randomize each gate Gi ∈ C , we sample its axis of rotation uniformly 
from the surface of the Bloch sphere and its angle uniformly from the interval [0, 2π) . We note that our method 

(5)
b =

e−iβ

2

[

(

cos (φ + δ) cos γ sin θ + sin γ cos θ
)

(1− �A)(1− �P)

− i
(

sin (φ + δ) sin θ(1− �A)+ �A

)

√

1− �A

√

1− �P

]

.

(6)�A = 1− e
−t∗/T1 ,

(7)�P = 1− e
−t∗/T2 .

(8)F(βt , γt , δt ,β , γ , δ, θ ,φ) = �ψ(θ ,φ)|U(βt , γt , δt)
†ρ(β ,γ ,δ,θ ,φ)U(βt , γt , δt)|ψ(θ ,φ)� .

Figure 1.  Noisy gate application: a single-qubit gate U(β , γ , δ) is decomposed into native gates according to 
Eq. (2). Each Rz gate is applied via a noiseless frame change. Each Rx(±π/2) gate is applied via a microwave 
pulse and modeled as an instantaneous rotation, followed by decoherence over time t∗ equal to the duration of 
the microwave pulse.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6379  | https://doi.org/10.1038/s41598-022-10339-0

www.nature.com/scientificreports/

for randomly generating single-qubit gates is one of many and that another popular approach is to sample 
from the Clifford  Group33. We then optimize each gate Gi acting on the initial state |ψi−1� = Gi−1...G1|0� . The 
result is a new circuit Copt composed of the optimized versions of the gates in the circuit C. For each circuit C 
and Copt , we denote the subsequence composed of the first d gates by Cd and Cd

opt , respectively. We measure the 
unoptimized fidelity after d gates by applying Cd , then applying the 2-pulse native gate decomposition of (Cd)−1 , 
and then measuring the probability of collapse to |0� . Similarly, we measure the optimized fidelity by applying 
Cd
opt , followed by (Cd)−1 , and then measuring the probability of collapse to |0� . In the presence of noise, the 

subsequence that maps the |0� state closer to the target state |ψd� = Cd |0� will return the higher probability of 
measuring |0� after (Cd)−1 is applied. We generate 10 circuits, each consisting of N = 246 randomized rotations. 
For each of the 10 circuits, we measure the unoptimized and optimized fidelities at circuit depths increasing by 
7, d ∈ {1, 8, 15, ..., 246} . The empirically obtained fidelities at each depth d are then averaged over the 10 circuits. 
Readout errors were mitigated for all measurements made on ibmq_rome and ibmq_bogota by inverting 
a calibration  matrix34 composed of IBM’s publicly reported readout error probabilities.

The results from simulating the execution of the circuits using our noise model and from executing the circuits 
on ibmq_rome qubit 3 are displayed in Fig. 3a,b, respectively. In both plots, the blue points represent the average 
fidelities of the optimized circuits, and the red points represent the average fidelities of the unoptimized circuits. 
The accumulation of noise in both circuits is reflected in the decrease in fidelity with circuit depth. We fit the data 
with the ansatz f (x) = 1

2 (1+ exp−ax) because it satisfies the limiting cases f (0) = 1 and limx→∞ f (x) = 1
2 . 

Thus, the error rate of one randomized single-qubit gate is given by the following expression:

In the simulation and on the hardware, the optimized circuits outperformed the unoptimized circuits, thereby 
experimentally validating the optimization protocol put forth in this paper. Both the optimized and unoptimized 
circuits on the hardware have lower fidelities than in the simulation. We attribute this to two factors. First, our 
noise model only accounts for relaxation and dephasing, when in reality there are other noise channels present, 
such as sources of non-Markovian noise and leakage. Second, we made the approximation that a noisy single-
qubit gate can be modeled as coherent evolution followed by decoherent evolution, when in reality the two occur 
simultaneously. We believe these two factors are the largest contributors to the lower fidelities observed on the 
hardware. Finally, from direct calculation of the optimized and unoptimized error rates defined by Eq. (9), we 
conclude that on ibmq_rome qubit 3, our optimization protocol reduces the error rate of a single-qubit gate 
acting on a known initial state by 38%, from 1.6× 10−3 to 1.0× 10−3 . The unoptimized error rate that we report 
here does not agree with IBM’s reported error rate of 3.4× 10−4 . We attribute this discrepancy to differences in 
methodology when calculating error rates, as well as to other sources of error not included in the model, such 
as coherent or calibration errors. The discrepancy is also likely attributable to a bias introduced by the 10 rand-
omized gate sequences used in the  experiment35. Nonetheless, we maintain our reported error rate reduction as 

(9)error rate = 1− fidelity = 1− f (1) ≈
a

2
.

Figure 2.  Optimized vs. unoptimized trajectories: an optimized trajectory (blue) and unoptimized trajectory 
(red) are mapped through the Bloch sphere in the presence of simulated noise corresponding to coherence 
times 100x shorter than the coherence times of ibmq_rome qubit 3 on its date of use (07/14/20). Also depicted 
is the initial state (orange), target trajectory (dotted black), and target state (green). To maximize fidelity, the 
optimized trajectory evolves the qubit through an intermediate state (after the Rx(π/2) pulse) that avoids 
regions of the Bloch sphere (south pole and equator) that are more susceptible to noise.
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an estimate for the degree to which the noise present during the execution of a single-qubit gate can be mitigated 
by leveraging knowledge of the initial state of the input qubit and a description of the noise present during gate 
execution. An experiment of identical structure was carried out on Rigetti’s Aspen-836 device and is detailed in 
the Supplementary Information.

Single‑qubit state preparation. As an illustrative example application of the optimization protocol out-
lined above, we now analyze its ability to improve the preparation fidelity of a single-qubit state. Suppose that 
we wish to implement the target operation U(φt , θt , 0) mapping the initial state |0� to the target state with Bloch 
sphere coordinates (θt ,φt):

Without loss of generality, we set δ = θ = φ = 0 and reduce Eq. (8) to the following:

We find the optimal Euler angles (β ′, γ ′, 0) via gradient descent over the parameters β and γ . In the presence 
of noise, the native gate decomposition of U(β ′, γ ′, 0′) will map the initial state |0� to the target state |ψ(θt ,φt)� 
with higher fidelity than the default decomposition of U(φt , θt , 0).

We now proceed by analyzing the relationship between the improvement in preparation fidelity offered by 
the optimizer and the amount of noise in the system. Since �A and �P are typically of comparable magnitude, 
we consider the improvement offered by optimization in the presence of noise parameterized by � = �A = �P . 
For a fixed noise level � , we randomly sample the target state |ψ(θt ,φt)� uniformly from the surface of the Bloch 
sphere. We then find the optimal angles β ′ and γ ′ and simulate the application of U(φt , θt , 0) and U(β ′, γ ′, 0) on 
the input |0� . Finally, we calculate the increase in fidelity to the target state |ψ(θt ,φt)� and repeat this 100 times 
to find the average increase in preparation fidelity from optimization. The results from simulating the state 
preparation over a range of possible noise levels � are displayed in Fig. 4.

Knowledge of the initial state. The above optimization protocol requires knowledge of the initial state to 
achieve an improvement in fidelity, as reflected in the fidelity function’s explicit dependence on the initial state’s 
Bloch sphere coordinates (see Eq. (8)). However, perfect knowledge of the initial state is not necessarily required 
for optimization. Provided a probability density function p(θ ,φ) for the distribution of the initial state over the 
Bloch sphere, we can optimize the target operation U(βt , γt , δt) by maximizing the expected fidelity:

The fidelity function F(βt , γt , δt ,β , γ , δ, θ ,φ) is defined in Eq. (8). We find the optimal Euler angles (β ′, γ ′, δ′) 
via gradient descent over the parameters (β , γ , δ) . In the presence of noise, the native gate decomposition of 

(10)|ψ(θt ,φt)� = U(φt , θt , 0)|0� .

(11)F(θt ,φt ,β , γ ) = �ψ(θt ,φt)|ρ(β ,γ ,0,0,0)|ψ(θt ,φt)� .

(12)�F(βt , γt , δt ,β , γ , δ)� =

∫ 2π

0

∫ π

0
F(βt , γt , δt ,β , γ , δ, θ ,φ)p(θ ,φ)dθdφ .

Figure 3.  Scaling of fidelity with number of operations: the fidelity (vertical axis) representing the overlap 
between the state output by the noisy application of each circuit (unoptimized and optimized) and the 
target state output by the noiseless application of the unoptimized circuit is plotted against the circuit depth 
(horizontal axis) at which the fidelity was measured. Each data point is the average fidelity of 10 randomized 
gate sequences with 8,192 shots per measurement. Measurements were taken at circuit depths increasing by 7, 
d ∈ {1, 8, 15, ..., 246}.
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U(β ′, γ ′, δ′) will on average map an initial state |ψ(θ ,φ)� sampled from the distribution defined by p(θ ,φ) to the 
target state U(βt , γt , δt)|ψ(θ ,φ)� with higher fidelity than the default decomposition of U(βt , γt , δt).

We proceed by analyzing the expected fidelity improvement offered by our protocol as a function of the 
initial state uncertainty. We have already shown a nontrivial improvement in expected fidelity provided perfect 
knowledge (i.e., minimal uncertainty) of the initial state |0� in Fig. 4. The other extreme corresponds to no 
knowledge (i.e., maximal uncertainty) of the initial state and is represented by the distribution in which all 
states are equally likely:

The expected fidelity in this case is given by

Further analysis of Eq. (14) shows

 
Regardless of the target operation and the amount of noise, the expected fidelity achieves a local maximum 

at (β , γ , δ) = (βt , γt , δt) . We deduce that our protocol requires some knowledge of the initial state to improve 
expected fidelity. To further analyze this dependence, we examine the effect of maximizing the expected fidelity 
for a new probability density function:

The initial state is now uniformly distributed over the portion of the Bloch sphere with polar angle less than 
θmax . Accordingly, as θmax approaches 0, we recover the case of state preparation, and for θmax = π , we recover 
the case of maximal uncertainty. By varying θmax and examining its effect on the improvement in expected fidel-
ity achieved by maximizing

We quantify the degree to which an arbitrary single-qubit gate can be optimized as a function of the initial 
state uncertainty. To visualize this dependence, we begin by fixing the noise parameter � = �A = �P and the 
maximum polar angle θmax . We proceed to randomly generate a target rotation U(βt , γt , δt) by sampling the axis 
of rotation uniformly from the surface of the Bloch sphere and sampling the angle of rotation uniformly from 
the interval [0, 2π) . We then find the optimal Euler angles (β ′, γ ′, δ′) via gradient descent of Eq. (17) over the 
parameters (β , γ , δ) . Finally, we sample the initial state |ψ(θ ,φ)� uniformly from the portion of the Bloch sphere 
with polar angle less than θmax , simulate the application of U(β ′, γ ′, δ′) and U(βt , γt , δt) in the presence of noise 

(13)p(θ ,φ) =
1

4π
sin θ .

(14)�F(βt , γt , δt ,β , γ , δ)� =
1

4π

∫ 2π

0

∫ π

0
F(βt , γt , δt ,β , γ , δ, θ ,φ) sin θdθdφ .

(15)
∂�F�

∂β

∣

∣

∣

(β ,γ ,δ)=(βt ,γt ,δt)
=

∂�F�

∂γ

∣

∣

∣

(β ,γ ,δ)=(βt ,γt ,δt)
=

∂�F�

∂δ

∣

∣

∣

(β ,γ ,δ)=(βt ,γt ,δt)
= 0 .

(16)p(θ ,φ) =

{

sin θ
2π(1−cos θmax)

if θ < θmax ,

0 if θ ≥ θmax .

(17)�F(βt , γt , δt ,β , γ , δ)� =

∫ 2π

0

∫ θmax

0

F(βt , γt , δt ,β , γ , δ, θ ,φ) sin θ

2π(1− cos θmax)
dθdφ ,

Figure 4.  Average increase in preparation fidelity from optimization: the average increase in preparation 
fidelity (vertical axis) is plotted against the simulated noise level � (horizontal axis). For each of the 1000 evenly 
spaced noise levels, the increase in fidelity is averaged from 100 randomly sampled target states.
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parameterized by � , and calculate the increase in fidelity to the target state U(βt , γt , δt)|ψ(θ ,φ)� . We note that 
this represents the increase in expected fidelity due to the random sampling of the initial state. We repeat this 
for 100 randomized rotations and calculate the average increase in expected fidelity. The results over a range of 
possible noise levels � and polar angles θmax are displayed in Fig. 5. For θmax = 0 , we have perfect knowledge of 
the initial state |0� and accordingly recover Fig. 4. For θmax = π , we have no knowledge of the initial state and 
accordingly see no improvement in fidelity. Intuitively, the more we know about the initial state of the input 
qubit, the more we can fine-tune our optimization of the target operation to achieve a higher expected fidelity.

Sensitivity to coherence time drifts on ibmq_bogota. The optimization protocol outlined in this 
paper reduces the error rate of a single-qubit gate by employing the T1 and T2 times characterizing the qubit’s 
decoherence. These noise parameters are obtained empirically and are therefore subject to error as a result of 
coherence time drifts between measurements (see Fig. 6). In the RB experiment outlined below, we demonstrate 
that our technique can improve single-qubit gate fidelity even when the assumed noise parameters are reason-
ably inaccurate.

In reality, the coherence times assumed by the optimizer are fixed, and the system’s coherence times are free 
to drift. However, since the system’s coherence times are not controllable parameters, we simulate the effect of a 
drift by intentionally providing the optimizer with inaccurate T1,2 times. By varying the assumed T1,2 times and 
measuring the fidelity of the optimized decomposition, we quantify the sensitivity of the optimizer to inaccurate 

Figure 5.  Average increase in expected fidelity from optimization: the average increase in expected fidelity 
(color bar) is plotted against the simulated noise level � (horizontal axis) and the uncertainty in the initial state 
θmax (vertical axis). θmax = 0 corresponds to perfect knowledge of the initial state |0� and therefore recovery of 
Fig. 4; θmax = π corresponds to no knowledge of the initial state and therefore no fidelity improvement. Each of 
the 50x50 data points was generated from 100 randomly sampled target operations and initial states.

Figure 6.  Coherence time drifts on ibmq_bogota qubit 2: IBM’s publicly available coherence times on 
ibmq_bogota qubit 2 (vertical axis) are plotted against the date of calibration (horiztonal axis) up to one week 
before and after it was used in this study (08/10/20). Some of the reported coherence times violate T2 ≤ 2 · T1 , 
thereby suggesting calibration errors.
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coherence times. Though T1 and T2 can generally drift by different factors, we simplify our experiment by simulat-
ing drifts of T1 and T2 from their assumed values by the same coherence time drift factor k:

We justify this simplification in two ways. First, with limited reservable time on ibmq_bogota and limited 
computational resources for optimization, the experiment described in this section could only be made computa-
tionally feasible by reducing the scan of possible drifts from 2D to 1D. Second, though T1 and T2 do not generally 
drift by a common factor, they are indeed correlated, since T2 ≤ 2 · T1 . We note that in many systems, T2 ≪ T1 , 
and T2 is thus only weakly correlated with T1 . Nonetheless, up to one week before and after ibmq_bogota qubit 
2 was used in this study, T1 and T2 were moderately correlated with a correlation coefficient of 0.68 (see Fig. 6). 
Albeit an approximation, the dimensionality reduction that made this experiment computationally feasible is thus 
statistically motivated. For each scaled pair of coherence times assumed by the optimizer, we perform the same 
RB experiment used to generate Fig. 3, now optimizing each gate in a 300-gate circuit and measuring the fidelity 
at depths of 100, 200, and 300 gates. The fidelities are once again averaged over 10 randomized gate sequences.

The results from simulating the execution of the circuits using our noise model and from executing the cir-
cuits on ibmq_bogota qubit 2 are displayed in Fig. 7a,b, respectively. Each color corresponds to a particular 
circuit depth, as indicated by the legend. For each circuit depth, the corresponding dashed line represents the 
fidelity obtained without any optimization. The accumulation of noise in all circuits is reflected in the decrease 
in fidelity with circuit depth. As with the first experiment, the fidelities observed on the hardware are lower 
than those predicted by the simulation. We once again attribute this to noise channels unaccounted for by our 
noise model, as well as to the approximation that noisy single-qubit gates can be modeled as coherent evolution 
followed by decoherent evolution.

As the factor k approaches 0, the optimizer assumes that there is no noise in the system. For any target rota-
tion, in the absence of noise, the optimal rotation is the target rotation itself. Thus, as k approaches 0, we expect 
the fidelity offered by the optimizer to approach the unoptimized fidelity. This holds true in both the simulation 
data and the hardware data in Fig. 7. On the other hand, as k approaches ∞ , the optimizer assumes an unrealisti-
cally large amount of noise in the system. The gradient descent is therefore performed over an assumed landscape 
unrepresentative of the system. The optimal rotation found by the optimizer will thus become uncorrelated with 
the target rotation, and the resulting fidelity will drop to 0.5 on average. This limit is also correctly captured in 
both the simulation data and the experiments performed on the quantum processor; however, since this regime is 
impractical, we have omitted much of this fidelity drop-off for the sake of visualization. In between the extremes, 
we expect to see a fidelity greater than the unoptimized fidelity. Once again, this is correctly reflected in both 
the simulation and experimental data. Most importantly, when the initial state of the input qubit is known, the 
optimizer will only decrease gate fidelity if the coherence times have drifted above about 100 times their assumed 
values. Since such drastic drifts are unrealistic (see Fig. 6), we conclude that the optimizer is extremely unlikely 
to decrease gate fidelity and is therefore robust against coherence time drifts.

(18)(system T1,2) = k × (assumed T1,2) .

Figure 7.  Fidelity vs. Coherence Time Drift Factor (System T1,2/Assumed T1,2 ): the fidelity (vertical axis) 
representing the overlap between the state output by the noisy application of the optimized circuit and the 
target state output by the noiseless application of the unoptimized circuit is plotted against the factor (horizontal 
axis) by which the system T1,2 times differ from their assumed values during optimization. Horizontal dashed 
lines represent represent unoptimized fidelities. Each data point is the average fidelity of 10 randomized gate 
sequences with 16,384 shots per measurement. Measurements were taken at circuit depths increasing by 100, 
d ∈ {100, 200, 300}.
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Discussion
The optimization protocol outlined in this work reduces the error rate of single-qubit gates by leveraging knowl-
edge of the initial state of the input qubit, along with the level of decoherence in the system, defined via T1 and T2 
coherence times. On the ibmq_rome quantum processor, we proved that the protocol can reduce single-qubit 
error rates by 38%, from 1.6× 10−3 to 1.0× 10−3 , provided the initial state of the input qubit is known. On 
ibmq_bogota, we showed that the protocol always increases gate fidelity, provided the T1 and T2 times have 
not drifted below 0.1 or above 100 times their assumed values. The protocol can improve the expected fidelity of a 
single-qubit gate provided some knowledge of the initial state of the input qubit-the more localized the initial state 
distribution, the more we can improve the expected fidelity. The technique can be applied as a means to improve 
the fidelity of state preparation, as well as to improve the fidelity of quantum circuits for which some knowledge of 
intermediate states of qubits can be inferred; the former is well-suited for use in variational quantum eigensolvers 
(VQE), while the latter is likely only applicable in the near-term. Our optimization technique is not limited to the 
native gate set of IBM quantum hardware and can be adapted for optimization over an arbitrary native gate set.

In the noise model employed in this work, we used the approximation that native gates are applied instan-
taneously and are followed by a period of decoherence over the time interval equal to the gate duration. This 
approximation can be avoided by deriving a noise model from master equations involving the system’s Hamilto-
nian during gate execution (e.g., the Linbladian for Markovian environments), which falls outside of the scope 
of this work. If the exact initial state of the input qubit is unknown, the optimization protocol can be modified 
to instead maximize the expected fidelity, averaged over the distribution of possible initial states. Our technique 
can also be adapted to optimize n-qubit gates by parameterizing all possible decompositions into an expanded 
native gate set (including entangling gates), and then proceeding as usual with the noise model and expected 
fidelity maximization for a specified distribution of n-qubit initial states. Since this work focused specifically on 
the optimization of single-qubit gates, gradient descent was sufficient for fidelity maximization; however, since the 
degrees of freedom required to parameterize an n-qubit gate are exponential in n, efficient alternatives to gradient 
descent are likely necessary to maximize the fidelity of larger n-qubit operations with more practical run-times.

In the near-term, while the execution of quantum circuits can still be simulated by classical computers, one 
can track the state of each qubit and use our protocol to optimize an arbitrary gate embedded within a quantum 
circuit. While the target qubit to said gate will generally be entangled with other qubits in the circuit, its reduced 
density matrix can be recovered by tracing over the degrees of freedom introduced by the qubits with which it 
is entangled. Though this entanglement will cause the qubit’s initial state to be mixed, the optimization protocol 
can be easily adapted to accommodate mixed initial states, as is alluded to in the Supplementary Information. 
We emphasize that in the near-term, the protocol can be used to optimize all single-qubit gates on NISQ devices, 
beyond those involved in state preparation. This work presents a pathway to using information about noise levels 
and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized 
decomposition into native gates.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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