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Pairwise quantum criteria 
and teleportation in a spin square 
complex
Fadwa Benabdallah 1, Saeed Haddadi 2,3*, Hamid Arian Zad 4,5, 
Mohammad Reza Pourkarimi 6, Mohammed Daoud 7,8 & Nerses Ananikian 4,9

Thermal non-classical correlations quantified by concurrence entanglement, local quantum 
uncertainty, and quantum coherence in a four-qubit square chain are exactly examined. The 
influences of the Hamiltonian parameters on the mentioned pairwise quantum criteria and fidelity 
of teleportation are studied, and the most interesting findings are discussed in detail. It is found that 
the tuning anisotropy results in enhancing the thermal quantum correlations and coherence as well 
as average fidelity until achieving maximum values. We persuasively deduce that quantum coherence 
is a more efficient criterion than that of concurrence and local quantum uncertainty to detect the 
quantumness of a thermal state.

During the past two decades, various measures of quantum correlations in bipartite and multipartite systems 
have been proposed, and their properties have been intensively  investigated1–5. The most potential resource is 
quantum  entanglement6,7, which has been considered as the unique form of quantum correlations to enhance 
the quantum information technology at the time. Indeed, some separable quantum states may also perform bet-
ter than their classical counterparts for certain quantum  tasks8,9. Nevertheless, according to various  studies10–14, 
quantum correlations can not only be limited to quantum entanglement. Inspired by the Wigner-Yanase skew 
 information15, the local quantum uncertainty (LQU) has been introduced by Girolami et al.16 as a discord-like 
quantifier of non-classical correlations in multipartite  systems17. It quantifies the uncertainty which can arise in 
a given quantum state due to its noncommutativity with the measured local  observable18. The LQU is defined as 
a minimum of the skew information and a closed mathematical expression is available for any bipartite  system16. 
Furthermore, beyond its importance as a quantum correlation quantifier, LQU is relatively associated with 
the notion of quantum Fisher  information19–22, which makes it an easy-to-access key for quantum metrology 
 protocols16. Put together, the Wigner-Yanase skew information is also connected with quantum  coherence23–25. 
This approach is one of the subjects of interest in this paper. By arising from quantum state superposition, quan-
tum coherence is one of the central concepts for quantum information  processing26,27. It has been widely used 
as an important resource for quantum  technology28–32, with further relevant applications including quantum 
 optics26, quantum information  science33,34,  thermodynamics35,36, and so  forth37–39. Besides, the quantum coher-
ence could be pleasantly linked to quantum entanglement and entropic uncertainty  relations40–47, and discord-like 
correlations as  well48. Motivated by this connection, a wide variety of quantum coherence measurements have 
been proposed, and their properties have been investigated in detail over the  years25,48. For instance, Baumgratz 
et al.25 formulated a rigorous resource framework for the quantification of quantum coherence. They proposed 
the relative entropy of coherence and the intuitive l1−norm quantum coherence as proper quantifiers of quantum 
coherence, which take the form of easy to evaluate analytical expressions. Moreover, Hu et al.48 examined the 
discord-like quantum correlations and quantum coherence measures for bipartite and multipartite systems, and 
their relationship in various settings. The authors also provided a full review of the resource theory about the 
discord-like quantum correlations and quantum coherence, which are defined based on the different distance 
measures of states.
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The exactly solvable spin chains provide notable cornerstones of the quantum theory of  magnetism49–52. The 
1-D ferrimagnetically Heisenberg spin chains have attracted a great deal of attention, for the reason that they 
naturally bear strong magnetic properties and demonstrate some zero-temperature phase transitions between 
intriguing ground states that properly coincide with the quantized magnetization plateaus in respective magneti-
zation  curves53–55. The structural and magnetic properties of the ferromagnetically coupled tetranuclear copper 
CuII4  square complex have been experimentally investigated in Ref.56. The spin arrangement of this special complex 
in the crystal lattice leads to the formation of a square structure. Motivated by the considered model and results 
reported in this reference, in the present paper, we consider a four-qubit square complex to give a detailed inves-
tigation of the characteristics of thermal non-classical correlations including bipartite quantum entanglement, 
LQU, and quantum coherence at finite temperature, as well as, to demonstrate how these quantities behave in 
such a system at a thermal regime. Difference or similarity between thermal entanglement and other thermal 
quantum correlation quantifiers will be referred  to57,58. In this respect, we handle the concurrence, LQU, and 
the intuitive l1−norm quantum coherence for describing the thermal pairwise quantum criteria in a four-qubit 
square compound on the spin-1/2 Heisenberg XXZ model, under the influence of the external magnetic field, 
isotropic coupling constant, and exchange anisotropy.

We evaluate the thermal state of the system under consideration by adopting the partitioning scheme, which 
can be realized by considering the bipartite reduced density matrix whereby one traces over all other systems, 
leaving effectively only a two-qubit system, which allows us to carry out the calculation of different amounts 
of quantum correlations related to such a state. Within the comparison framework, the effects of an external 
magnetic field, inter-chain XX coupling constant and that of the exchange anisotropy in the z-direction on the 
parameter dependence of the aforementioned thermal pairwise quantum correlation measurements are rigor-
ously examined. Finally, we verify the quantum teleportation of two qubits in an arbitrary pure entangled state 
through the model under consideration in thermal equilibrium as a quantum  channel59–63. In fact, we investigate 
the output quantum correlations, coherence, and average fidelity.

This paper is arranged as follows. In "The model Section", we describe the physical model and its eigenstates 
with the corresponding eigenvalues. Furthermore, the exact solution of the model via the partitioning scheme 
is obtained in "Pairwise density operator Section". In "Quantum correlations and coherence Section", a brief 
review concerning the definition of concurrence entanglement, LQU, quantum coherence and their analytical 
expressions is given. In "Results and discussion Section", the effects of anisotropy, exchange interaction, and 
external magnetic field on the quantum correlations and coherence are discussed in detail. By using the standard 
teleportation protocol, we deal with the evaluation of the fidelity, average fidelity, and the non-classical correla-
tions of teleported state or output state in "Quantum teleportation Section". Finally, the concluding remarks are 
given in "Concluding remarks and outlook Section".

The model. In this section, let us consider the Hamiltonian of a four-qubit Heisenberg XXZ model as a 
cluster system, which is under the influence of an external magnetic field (see Fig. 1). The Hamiltonian of the 
model can be expressed as  follows64,65

where Ji with i = {1, 2, 3, 4} describes the strength of the spin interaction, being ferromagnetic when Ji > 0 . 
B is the external magnetic field, which is only applied to the z-direction, while � is the exchange anisotropy 
parameter. Moreover, g is the Landé g-factor with the assumption g = 2 , and Sαi  ( α = x, y, z ) are the spin-1/2 
operators. For convenience, we set � = 1 and Bohr magneton µB was absorbed into a definition of the magnetic 
field term. Let us notify that for simplicity, in the forthcoming analytical expressions and simulations, we consider 
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Figure 1.  Schematic structure of a four-qubit ( Q1 , Q2 , Q3 , and Q4 ) square complex on the Heisenberg XXZ 
model with the corresponding exchange anisotropy and spin interactions.
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J2 = J3 = J4 = J and uniform anisotropy �1 = �2 = �3 = �4 = � , assuming J1 = 1 as energy unit for all other 
parameters with {B, J , �, T} being dimensionless parameters. In the next sections, we will assume both pure 
ferromagnetic interactions ( J > 0 ) and mixed ferromagnetic-antiferromagnetic interactions between nearest-
neighbor spins by adopting J < 0 that means J2, J3, J4 < 0 but J1 = 1 > 0 . Regarding previous reports, some real 
magnetic compounds can be plausibly characterized in terms of our modeled spin-1/2  system66.

By straightforward calculations, one can find the eigenvalues and corresponding eigenstates of the mentioned 
Hamiltonian (1) in terms of the standard basis, as reported in Methods.

Pairwise density operator. For a system in thermal equilibrium at a temperature T (canonical ensemble), 
the state of the system is given by the density operator ρtotal(T) = exp (−βH)/Z , with Z = Tr

[
exp(−βH)

]
 

being the partition function of system and β = 1/kBT . Hereafter, the Boltzmann’s constant is set to the unit for 
simplicity, i.e., kB = 1 . Hence, the total density operator ρ total (T) of the described system can be characterized 
in terms of the eigenstates and eigenvalues of the Hamiltonian (1) as

where El and |ψl� are the eigenvalues and eigenstates of the Hamiltonian, respectively, as given in Meth-
ods. The whole system can be partitioned by considering the bipartite reduced density matrix of two-qubit 
ρij(T) = Trkl

[
ρijkl(T)

]
 with ρijkl(T)=ρtotal(T) , which obtained by tracing over all other systems except subsystems 

or modes i and j. In total, there are six different density matrices for our considered system. However, we find 
that the thermal state of ρ12(T) has the highest amount of quantum correlations and coherence. Therefore, from 
now on, let us consider only this state for analysis. In the standard basis of {|00�, |01�, |10�, |11�} , the reduced 
density matrix is given by

with the dots which are placed instead of zero entries. Since the components of the above matrix are too long to 
work with conveniently, let us eschew reporting them here.

Quantum correlations and coherence. In this section, let us discuss the main results obtained from the 
theoretical studies of pairwise density matrix and three described quantum criteria such as entaglement concur-
rence, LQU, and l1−norm of quantum coherence.

Entaglement concurrence. In order to describe the thermal quantum entanglement in the reduced density 
matrix ρT , we employ the most widely accepted measure for a two-qubit system ρ called concurrence C(ρ) , 
which has been described by  Wootters7. The case C(ρ) = 0 happens when the system state is separable, whereas 
C(ρ) = 1 reveals maximally entangled state. A straightforward definition of concurrence can be expressed as 
follow

where �i(i = 1, 2, 3, 4) are the eigenvalues in the decreasing order of the 4 × 4 matrix R = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy) , 

in which ρ∗ and σy are, respectively, the complex conjugate of ρ in the standard basis and the y−component Pauli 
matrix. Ultimately, the concurrence for our thermal state (3) can be achieved by

Local quantum uncertainty. The LQU was recently proposed as a discord-like measure of quantum correlations 
based on the principle of skew  information16. It is written as

where KA is a Hermitian operator (local observable) on the subsystem A admitting a non-degenerate spectrum. 
IB being the identity operator acting on the subsystem B, while I is the Wigner-Yanase skew information associ-
ated to the density matrix ρ and defined  as15

Here, I is non-negative and non-increasing under classical  mixing17,18. For a 2⊗ d (qubit-qudit) bipartite quan-
tum  systems16,18, the closed-form of the LQU is given by

where �max stands for the largest eigenvalue of the 3× 3 matrix WAB whose elements are given  by67,68

(2)ρtotal(T) =
1

Z

16∑

l=1

exp (−βEl)|ψl��ψl|,

(3)ρ12(T) ≡ ρT =



ρ11 . . .
. ρ22 ρ23 .
. ρ23 ρ33 .
. . . ρ44


 ,

(4)C(ρ) = max{0,
√
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√
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√
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√
�4},

(5)C(ρT ) = 2max{0, |ρ23| −
√
ρ11ρ44}.

(6)U (ρ) = min
KA

I (ρ,KA ⊗ IB),

(7)I (ρ,KA ⊗ IB) = −
1

2
Tr[(√ρ,KA ⊗ IB)

2].

(8)U (ρ) = 1− �max(WAB),
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where σ i(j)
A  with i(j) = {x, y, z} represent the Pauli operators of the subsystem A. The LQU provides a reliable 

quantifier of quantum correlations and it has a geometrical significance in terms of Hellinger  distance16,18. It is 
clear that having the matrix WAB , one can easily evaluate the LQU for qubit-qudit quantum systems contrarily 
to quantum  discord17. This is quite an easy task compared with the complicated minimization process over 
parameters due to the local  measurements13,16,18. We notice that for a two-qubit pure state, the LQU coincides 
with the concurrence and vanishes for classically correlated states. Moreover, it is invariant under local unitary 
 operations16,18.

In the Fano-Bloch  representation69,70, our thermal state ρT (3) can be written as follows

where R αβ = Tr
[
ρT ( σ

α⊗σβ)
]
 are the components of the total correlation tensor occurring in the Fano-Bloch 

decomposition associated with bipartite density matrix ρT . The non-vanishing components R αβ are given as

Therefore, in terms of the Fano-Bloch components Rαβ associated with the matrix ρT , the eigenvalues of (WAB)ij 
can be expressed as

with

Hence, the LQU for the considered thermal state ρT is gained from

Quantum coherence. Quantum coherence is an indisputable physical resource of quantum information pro-
cessing protocols. Even though quantum coherence in multipartite states is somehow related to quantum cor-
relations, it is a quantum property behind any correlation. Thus, coherence is a quantum resource different from 
entanglement and discord-like  correlations48. Regarding the latter, the amount of non-classical correlations is 
estimated in terms of the coherence, in the sense that coherence of subsystems could act as an upper bound for 
the quantum discord-like correlation of the total bipartite system.

Herein, we use the intuitive l1−norm of coherence  measure25, defined as the sum of the absolute off-diagonal 
elements of a quantum state ρ in the reference basis {|i�} . It can be calculated  as71

Thus, the corresponding l1−norm of quantum coherence of the our system described by the reduced thermal 
state ρT (3) is given by

It has been proved by Streltsov et al.72 that quantum coherence can be used as a resource for quantum entan-
glement creation. The l1−norm of coherence is a crucial link between various coherence measurements and 
 entanglement73. Although, quantum coherence may capture quantumness more than discord-like measures of 
quantum correlations, the later is exactly basis-independent measure of the  former25,74.

Results and discussion
To get an insight into the pairwise entanglement, we have plotted the concurrence (5) as a function of the tem-
perature T for several values of the magnetic field B and fixed � = 1 as well as J = 0.02 in Fig. 2a. It is observed 
that the concurrence is a decreasing function of T from its maximum value C(ρT ) = 1 for weak values of B, but its 
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j
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behavior is different for stronger magnetic fields. Besides, it undergoes substantial changes upon the anisotropy 
alterations, as seen in Fig. 2b. As a matter of fact, an increase in the � strengthens the entanglement. The field 
dependence of the concurrence is depicted in Fig. 2c at low temperature T = 0.02 and low coupling constant 
J = 0.02 , where several fixed values of the � are considered. One sees that for the finite values of parameters B, J, 
and T, the concurrence does not reach its maximum as soon as the anisotropy � enhances from zero. For � > 0 , 
the concurrence remains steady at low magnetic fields, then sharply increases nearby the critical magnetic field 
and reaches its maximum instantly. Eventually, this quantity shows a steep decrease close to the second critical 
magnetic field. Fig. 2d displays the concurrence against the exchange coupling J at low temperature T = 0.02 and 
� = 1 for various fixed values of the magnetic field. Here, it is evident that the concurrence has an anomalous 
behavior in the vicinity of some critical points. A sudden death of this measure of entanglement happens nearby 
the critical point J = −1.

Figure 3 illustrates the thermal LQU (16) of the model in different planes. Two plots (a) and (b) depict the 
temperature dependence of this function for fixed J = 0.02 , such that Fig. 3a corresponds to the several values 
of the magnetic field and � = 1 , whereas the other one corresponds to the case when several values of the ani-
sotropy are assumed at fixed B = 0.6 . Some differences are evident between LQU and concurrence. For example, 
the latter reaches its maximum value of 1 at finite low temperatures while the former, under the same conditions, 
does not. In addition, the concurrence vanishes at a critical temperature, while upon heating, LQU tends to zero 
but does not vanish. This particular behavior indicates the robustness of LQU against the concurrence at higher 
temperatures. Fig. 3c displays the LQU as a function of the magnetic field for several values of the exchange 
anisotropy, supposing low temperature T = 0.02 and J = 0.02 . With the increase of the magnetic field, this func-
tion sharply decreases and ultimately vanishes nearby the same critical magnetic point to the concurrence. It is 
worth mentioning that another notable difference between the magnetic behavior of LQU and concurrence is 
that, the former behaves anomalously when drops down in height to U(ρT ) = 1/2 . This phenomenon indicated 
by a horizontal dotted line, however, it was not observed in the concurrence behavior. This is in fact the well-
known sudden change behavior for the discord-like quantum correlations, which is caused by the optimization 
procedure in their respective  definitions75,76. As a result, the LQU is more sensitive than the concurrence to 
demonstrate thermal fluctuations or discontinuous phase spectra.

Last but not least, let us also emphasize another important consequence of the LQU analysis with respect to 
the coupling constant J. Fig. 3d illustrates the LQU versus the coupling constant J at low temperature T = 0.02 

)b()a(

)d()c(

Figure 2.  (a) Concurrence versus temperature for several fixed values of the magnetic field, taking J = 0.02 and 
� = 1 . (b) Concurrence versus temperature for several fixed values of the exchange anisotropy, taking J = 0.02 
and B = 0.6 . (c) The same function against magnetic field for various values of the exchange anisotropy at low 
temperature T = 0.02 and fixed J = 0.02 . (d) The exchange coupling dependence of the concurrence at low 
temperature T = 0.02 and fixed � = 1 , where different values of the magnetic field are assumed.
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and � = 1 , where four different values of the magnetic field have been taken. For mixed ferromagnetic-antifer-
romagnetic case J < 0 , we see that this function does not vanish but tends to U(ρT ) = 0.1 as J decreases further 
than critical point J = −1 . On the other hand, for the ferromagnetic coupling J > 0 , the LQU falls down close 
to the critical exchange and it shows a discontinuous alteration at low magnetic field B = 0.4 (blue line). Hence, 
the LQU could be a good witness of the discontinuous thermal behaviors of the model that is more efficient than 
the concurrence in this medium.

We depict typical thermal variations of the l1−norm of coherence of our model in Fig. 4. Plots (a) and (b) 
manifest the temperature dependence of the quantum coherence for the fixed J = 0.02 and various values of 
other parameters. It is evident that Cl1(ρT ) experiences its maximum at low temperature such as the concur-
rence. On the other hand, when the temperature increases, at low magnetic fields and low anisotropies such 
a function gradually decreases and tends to zero but does not vanish neither at higher magnetic fields nor for 
stronger exchange anisotropies. Returning to Fig. 3, it is observable that the l1− norm of coherence and LQU 
have somehow similar behavior to each other at high temperatures.

Figure 4c displays the coherence as a function of the magnetic field at low temperature T = 0.02 and low 
exchange coupling J = 0.02 , where several fixed values of the anisotropy � are assumed. Compared to previ-
ous figures, the same behavior to the coherence is evident close to the critical magnetic fields. The l1−norm of 
coherence Cl1 versus the coupling constant J at low temperature is plotted in Fig. 4d, where fixed value � = 1 
and four different magnetic fields are selected. It is visible a quite different behavior of this function compared 
with the LQU and the concurrence. Namely, for the case when J < 0 , by decreasing the exchange coupling J 
further than the critical point J = −1 , the quantum coherence not only does not vanish but also increases nota-
bly. Generally speaking, one can deduce from our observations that the l1− norm of coherence is more efficient 
than both concurrence and LQU to predict the quantumness of the thermal state even at high temperatures and 
high magnetic fields.

Quantum teleportation. In this section, we study quantum teleportation for an entangled mixed state as a 
resource, acts as a generalized depolarizing  channel77–79. Next, we investigate the effects of the anisotropy and the 
magnetic field on the possibility of teleportation through the model under verification. Let us assume the input 
state being an arbitrary unknown two-qubit pure state |ψin� , such as

From the mathematical point of view, the quantum channel is known as a completely positive and trace-preserv-
ing operator. Via this mechanism, an input density operator is mapped to an output density  operator77. Generally, 

(19)|ψin� = cos(θ/2)|10� + eiφ sin(θ/2)|01�, ∀ 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .

)b()a(

)d()c(

Figure 3.  LQU with respect to the same parameter sets in Fig. 2.
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when the quantum state is teleported through the mixed channel ρch , the output replica state ρout can be obtained 
by applying joint measurements and the local unitary transformations on the input state ρin = |ψin ��ψin| , hence

where σ0 = I  (I is the 2× 2 identity matrix) and pi = Tr(Eiρch ) satisfies the condition 
∑

i pi = 1 . 
E0 =

∣∣�−〉〈�−∣∣, E1 =
∣∣�−〉〈�−∣∣, E2 =

∣∣�+〉〈�+∣∣, and E3 =
∣∣�+〉〈�+∣∣, from which {

∣∣�±〉, 
∣∣�±〉} stand 

for the well known Bell states. In this paper, we consider the quantum channel as ρch = ρT . Therefore, The output 
density operator ρout takes the form

where

To describe the quality of the process of teleportation, it is often quite useful to study the fidelity between ρin 
and ρout to characterize the teleported state. When the input state is a pure state, one can apply the concept of 
fidelity as a useful indicator of the teleportation performance of a quantum channel  quantifier80,81. The fidelity 
is defined  as6

The fidelity is near zero if the input and output states are orthogonal, which means the information is fully 
destroyed during the transmission process, so the teleportation fails. While it is close to unity, it signifies that 
the input state is identical to the output state. In the situation when 0 < F < 1 , the quantum information is 

(20)ρout =
∑

i,j∈{0,x,y,z}
pipj(σ

i ⊗ σ j)ρin(σ
i ⊗ σ j),

(21)ρout =



�ρ11 . . .
. �ρ22 �ρ23 .
. �̺23 �ρ33 .
. . . �ρ11


 ,

(22)

ρ̃11 =(ρ11 + ρ44)(ρ22 + ρ33),

ρ̃22 =(ρ11 + ρ44)
2 cos2(θ/2)+ (ρ22 + ρ33)

2 sin2(θ/2),

ρ̃33 =(ρ11 + ρ44)
2 sin2(θ/2)+ (ρ22 + ρ33)

2 cos2(θ/2),

ρ̃23 =2eiφρ2
23 sin θ .

(23)F =
(
Tr

√√
ρinρout

√
ρin

)2

.

)b()a(

)d()c(

Figure 4.  Quantum coherence with respect to the same parameter sets in Figs. 2 and 3.
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subjected to distortions after transmitting to some extent. Through a straightforward calculation for our case, 
one finds

The average fidelity of teleportation FA can be formulated  as82,83

by integrating Eq. (25), the average fidelity FA for our case can be thus expressed as

It is obvious that the average fidelity FA depends on the quantum channel (thermal state) parameters in 
this case. In order to transmit a quantum state better than the classical communication protocols, FA must be 
greater than 23 which is the best fidelity in the classical world. In Fig. 5a, the average fidelity as a function of the 
temperature for the weak coupling J = 0.02 and fixed � = 1 is shown, where several fixed values of the mag-
netic field have been assumed. It is clear from this plot, that FA does not reach the limit of quantum fidelities 
for B � 0.8 , hence the teleportation of information happens for the magnetic field rage B < 0.8 . An increase in 
the temperature leads to a decrease in the possibility of teleportation. With looking to Figs. 2a, 3a and 4a, one 
realizes that for the parameter sets that situation FA < 2/3 occurs, three functions, i.e., concurrence, LQU, and 
coherence show a sharp decrease until they vanish at low temperatures and never reach their maximum values 
under cooling condition. On the other hand, in the parameter regions which FA > 2/3 , all three functions 
gradually tend towards maximum value under cooling.

In Fig. 5b, we depict the average fidelity versus the anisotropy � for several fixed temperatures and param-
eter sets J = 0.02 and B = 0.6 . A reentrance point is evident in this plot at which a sharp change in the average 
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2
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Figure 5.  (a) The average fidelity FA versus temperature, assuming J = 0.02 , � = 1 , and several fixed values of 
the magnetic field. (b) FA as a function of anisotropy � for fixed J = 0.02 , B = 0.6 , and different values of the 
temperature. (c) Field dependence of FA for various temperatures, where other parameters have been taken as 
J = 0.02 and � = 1 . (d) the same function at low temperature T = 0.02 against the coupling constant J when 
different fixed values of the magnetic field are considered such that � = 1 . Dotted lines indicate the classical 
limit of fidelity 2/3.
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fidelity behavior happens and this quantity immediately reaches its maximum FA = 1 within the anisotropy 
interval 0.8 � � � 1.5 at extremely low temperatures, accompanying with the achieving maximum value of the 
concurrence, LQU, and coherence. Generally, the average fidelity tends to limit value 2/3 with increasing the 
anisotropy. The relevant field dependence of the average fidelity at J = 0.02 and � = 1 shown in Fig. 5c has also 
similar behavior. It can be seen from this plot a steep decrease as well as line accumulation in the average fidelity 
function at low temperatures regime in the vicinity of critical magnetic field. Under heating, FA decreases at low 
magnetic fields. Accordingly, the possibility of teleportation through this model is restricted.

The most interesting finding from the fidelity investigations is manifested in Fig. 5d by which we illustrate 
the average fidelity with respect to the exchange coupling J at low temperature T = 0.02 and � = 1 . Similar 
to the other three functions, FA anomalously behaves nearby the critical exchange couplings. Surprisingly, 
in the antiferromagnetic region of J, close to the critical point J = −1 , the average fidelity sharply drops to its 
minimum. Consequently, the average fidelity could be an eligible candidate to trace the thermal fluctuations 
of a typical Heisenberg spin-1/2 square compound possessing either ferromagnetic or mixed ferromagnetic-
antiferromagnetic exchange couplings.

Finally, we present our results concerning with the temperature dependence of three discussed quantities 
for the output state ρout , i.e., C(ρout) , U (ρout) , and Cl1(ρout) for fixed J = 0.02 , � = 1 , and B = 0.6 in Fig. 6a. 
All functions decrease from a typical maximum when the temperature increases. The concurrence suddenly 
vanishes at a critical temperature, while other two functions monotonically decreases. The notable difference 
between U (ρout) and Cl1(ρout) is that, the former vanishes at a specific critical temperature while the latter does 
not reach zero even at high temperatures. Moreover, we plot in Fig. 6b the aforementioned quantities as func-
tions of the exchange coupling J at low temperature T = 0.02 and fixed B = 0.6 and � = 1 . By assuming mixed 
ferromagnetic-antiferromagnetic case ( J < 0 ), all three functions sharply decrease and vanish nearby the criti-
cal point J = −1 , reminding the same thermal behaviors of these criteria as well as fidelity at this point. With 
decrease of the J further than J = −1 , the concurrence remains zero, while the LQU and quantum coherence 
arise from zero and reach the non-zero values. On the other side, within the ferromagnetic region ( J > 0 ), one 
can observe the entanglement sudden death at J ≈ 0.5 , whereas the LQU and coherence show a sudden decline 
at this point, but remain alive even for higher values of J. According to our observations, we generally claim 
that the l1−norm of coherence could reveal more quantum information about the system under study, which is 
consistent with previous results.

Concluding remarks and outlook
We have considered a four-qubit cluster complex on a spin-1/2 Heisenberg XXZ model involving an exchange 
anisotropy in the presence of a magnetic field along the z-axis. Both pure ferromagnetic and mixed ferro-
magnetic-antiferromagnetic exchange couplings between nearest-neighbor spins have been verified. We then 
studied three quantum criteria such as concurrence, local quantum uncertainty, and quantum coherence for 
a pair of spins. Consequently, we have demonstrated that all three functions behave anomalously close to the 
critical points. At low temperature and weak coupling constant, we could observe maximum entanglement 
between selected pair of spins. According to our observations, we convincingly concluded that the quantum 
coherence is generally more sensitive than the other ones to witnessing the thermal fluctuations in different 
Hamiltonian parameter sets. We also understood that by tuning the strength of the anisotropy parameter, a sig-
nificant enhancement on the entanglement and various thermal non-classical correlations and coherence can be 
achieved. Finally, we have examined the possibility of teleportation through the model under consideration. We 
found that within a special interval of assumed exchange anisotropy, the average fidelity significantly enhances. 
However, the average fidelity tends to limit value 2/3 with further increase of the anisotropy. The average fidelity 
also represented different behaviors such as line accumulation and sharp dropping nearby the critical points.

Investigating aforementioned quantum correlations quantifiers, coherence, and the fidelity of teleportation 
for similar classes of small spin clusters might enlighten the quantum nature of them that would be applicable 

)b()a(

Figure 6.  (a) Three quantum criteria for the output state versus temperature T and parameter sets J = 0.02 , 
� = 1 , and B = 0.6 . (b) The same quantifiers as functions of the coupling constant J at low temperature 
T = 0.02 , assuming � = 1 and B = 0.6.
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in different subjects such as quantum information processing, quantum communication, and spintronics. Fur-
thermore, we think that our model can pleasantly bring insight into the ground-state phase diagram and several 
important magnetic and quantum features of some real materials with similar square-shaped structures. Our 
future activity will concern with this direction.

Methods
Eigenvalues and eigenstates of the Hamiltonian. In this section, we give the eigenval-
ues and the  corresponding  eigenstates of Hamiltonian (1) in terms of the standard computational basis 
B = {|000�, |001�, |010�, |011�, |100�, |101�, |110�, |111�} . The eigenvalues of the Hamiltonian are

with K = 5J2 − 2J + 1 . The corresponding eigenstates are given, respectively, by

where the following notations are adopted

Data availability
All data generated or analyzed during this study are included in this paper.

Received: 16 February 2022; Accepted: 5 April 2022

References
 1. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).
 2. Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002).
 3. Gūhne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1 (2009).
 4. Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: discord and related 

measures. Rev. Mod. Phys. 84, 1655 (2012).
 5. Haddadi, S. & Bohloul, M. A brief overview of bipartite and multipartite entanglement measures. Int. J. Theor. Phys. 57, 3912 

(2018).
 6. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
 7. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998).
 8. Datta, A., Shaji, A. & Caves, C. M. Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008).
 9. Lanyon, B. P., Barbieri, M., Almeida, M. P. & White, A. G. Experimental quantum computing without entanglement. Phys. Rev. 

Lett. 101, 200501 (2008).

(27)

E1 = −2B− 1
4 J −

1
4 + 1

4

√
K , E2 = −2B− 1

4 J −
1
4 − 1

4

√
K , E3 = E4 = 0,

E5 = 2B− 1
4 J −

1
4 + 1

4

√
K , E6 = 2B− 1

4 J −
1
4 − 1

4

√
K ,

E7 = 2B+ 1
4 J +

1
4 + 1

4

√
K , E8 = 2B+ 1

4 J +
1
4 − 1

4

√
K ,

E9 = �− 4B, E10 = −2B+ 1
4 J +

1
4 + 1

4

√
K ,

E11 = −2B+ 1
4 J +

1
4 − 1

4

√
K , E12 = �+ 4B,

E13 = − 1
2�+ 1

2

√
�2 + J − 2J + 1, E14 = − 1

2�− 1
2

√
�2 + J2 − 2J + 1,

E15 = − 1
2�+ 1

2

√
�2 + 5J2 + 2J + 1, E16 = − 1

2�− 1
2

√
�2 + 5J2 + 2J + 1,

(28)

|ψ1� = a+|0001� + b+|0010� + |0100� + |1000�,
|ψ2� = a−|0001� + b−|0010� + |0100� + |1000�,
|ψ3� = −|0011� + |1100�,
|ψ4� = α|0011� + |0101� + |1010�,
|ψ5� = c+|0111� + d+|1011� + |1101� + |1110�,
|ψ6� = c−|0111� + d−|1011� + |1101� + |1110�,
|ψ7� = c−|0111� − d−|1011� − |1101� + |1110�,
|ψ8� = c+|0111� − d+|1011� − |1101� + |1110�,
|ψ9� = |0000�,
|ψ10� = a−|0001� − b−|0010� − |0100� + |1000�,
|ψ11� = a+|0001� − b+|0010� − |0100� + |1000�,
|ψ12� = |1111�,
|ψ13� = −|0101� + e+|0110� − e+|1001� + |1010�,
|ψ14� = −|0101� + e−|0110� − e−|1001� + |1010�,
|ψ15� = |0011� + β|0101� + f+|0110� + f+|1001� + β|1010� + |1100�,
|ψ16� = |0011� + β|0101� + f−|0110� + f−|1001� + β|1010� + |1100�,

(29)

a± =
2J
(
3J2 ∓ J

√
K − 2J ±

√
K − 1

)
(
2J2 + J ±

√
K − 1

)(
J + 1∓

√
K + 1

) , α = −
J + 1

J
, β =

1

2

J + 1

J
,

b± =
J
(
J − 3±

√
K
)

(
2J2 + J ±

√
K − 1

) , c± =
2J2

(
J2 ∓ J

√
K + 2J ±

√
K − 3

)
(
J3 ∓ (J2 ± J ± 1)

√
K + 1

)(
J + 1∓

√
K + 1

) ,

d± =
J(2J2 − 3J ∓

√
K − 1)(

J3 ∓ (J2 ± J ± 1)
√
K + 1

) , e± =
J − 1

(
�±

√
�2 + J2 − 2J + 1

) ,

f± = −
1

2

5J2 + 2J + 1

J
(
�±

√
�2 + 5J2 + 2J + 1

) .



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6406  | https://doi.org/10.1038/s41598-022-10248-2

www.nature.com/scientificreports/

 10. Datta, A., Flammia, A. T. & Caves, C. M. Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005).
 11. Datta, A. & Vidal, G. Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007).
 12. Benabdallah, F., Slaoui, A. & Daoud, M. Quantum discord based on linear entropy and thermal negativity of qutrit-qubit mixed 

spin chain under the influence of external magnetic field. Quantum Inf. Process. 19, 252 (2020).
 13. Benabdallah, F. & Daoud, M. Dynamics of quantum discord based on linear entropy and negativity of qutrit-qubit system under 

classical dephasing environments. Eur. Phys. J. D 75, 3 (2021).
 14. Benabdallah, F., Arian Zad, H., Daoud, M. & Ananikian, N. Dynamics of quantum correlations in a qubit-qutrit spin system under 

random telegraph noise. Phys. Scr. 96, 125116 (2021).
 15. Wigner, E. P. & Yanase, M. M. Information contents of distributions. Proc. Nat. Acad. Sci. USA 49, 910 (1963).
 16. Girolami, D., Tufarelli, T. & Adesso, G. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 

110, 240402 (2013).
 17. Ali, M. Local quantum uncertainty for multipartite quantum systems. Eur. Phys. J. D. 74, 186 (2020).
 18. Jebli, L., Benzimoun, B. & Daoud, M. Quantum correlations for two-qubit X states through the local quantum uncertainty. Int. J. 

Quantum Inf. 14, 1750020 (2017).
 19. Luo, S. Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003).
 20. Luo, S. Wigner-Yanase skew information vs .quantum Fisher information. Proc. Am. Math. Soc. 132, 885 (2003).
 21. Petz, D. & Ghinea, C. Introduction to quantum Fisher information. Quantum Probab. Relat. Top. 1, 261 (2011).
 22. Hu, M. L. & Wang, H. F. Protecting quantum Fisher information in correlated quantum channels. Ann. Phys. (Berlin) 532, 1900378 

(2020).
 23. Girolami, D. Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014).
 24. Du, S. P. & Bai, Z. F. The Wigner-Yanase information can increase under phase sensitive incoherent operations. Ann. Phys. 359, 

136 (2015).
 25. Baumgratz, T., Cramer, M. & Pleino, M. B. Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).
 26. Ficek, Z. & Swain, S. Quantum Interference and Coherence: Theory and Experiments (Springer Series in Optical Sciences, Springer, 

Berlin, 2005).
 27. Xu, X. X. & Hu, M. L. Maximal steered coherence and its conversion to entanglement in multiple bosonic reservoirs. Ann. Phys. 

(Berlin) 534, 2100412 (2022).
 28. Bauch, T. et al. Macroscopic quantum tunneling in d-wave YBa2Cu3O7−δ Josephson junctions. Phys. Rev. Lett. 94, 087003 (2005).
 29. You, J. Q. & Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011).
 30. Ferrini, G., Minguzzi, A. & Hekking, F. W. J. Atomic physics and quantum optics using superconducting circuits. Phys. Rev. A 78, 

023606 (2008).
 31. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222 (2011).
 32. Fröwis, F. & Dür, W. Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011).
 33. Streltsov, A., Kampermann, H., Wölk, S., Gessner, M. & Bruß, D. Maximal coherence and the resource theory of purity. New J. 

Phys. 20, 053058 (2018).
 34. Streltsov, A., Adesso, G. & Plenio, M. B. Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017).
 35. Brandao, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M. & Spekkens, R. W. Resource theory of quantum states out of 

thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013).
 36. Naraisimhachar, V. & Gour, G. Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015).
 37. Hu, M. L., Gao, Y. Y. & Fan, H. Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. 

A 101, 032305 (2020).
 38. Hu, M. L., Fang, F. & Fan, H. Finite-size scaling of coherence and steered coherence in the Lipkin-Meshkov-Glick model. Phys. 

Rev. A 104, 062416 (2021).
 39. Li, B. M., Hu, M. L. & Fan, H. Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoher-

ence. Chin. Phys. B 30, 070307 (2021).
 40. Kim, S., Li, L., Kumar, A. & Wu, J. Interrelation between partial coherence and quantum correlations. Phys. Rev. A 98, 022306 

(2018).
 41. Zhao, F., Wang, D. & Ye, L. Relationship between entanglement and coherence in some two-qubit states. Int. J. Theor. Phys. 61, 10 

(2022).
 42. Haddadi, S., Pourkarimi, M. R. & Haseli, S. Relationship between quantum coherence and uncertainty bound in an arbitrary two-

qubit X-state. Opt. Quantum Electron. 53, 529 (2021).
 43. Dolatkhah, H., Haseli, S., Salimi, S. & Khorashad, A. S. Tightening the entropic uncertainty relations for multiple measurements 

and applying it to quantum coherence. Quantum Inf. Process. 18, 13 (2019).
 44. Xie, B. F., Ming, F., Wang, D., Ye, L. & Chen, J. L. Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. 

A 104, 062204 (2021).
 45. Ming, F. et al. Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A 102, 012206 (2020).
 46. Ding, Z. Y. et al. Experimental investigation of entropic uncertainty relations and coherence uncertainty relations. Phys. Rev. A 

101, 032101 (2020).
 47. Haddadi, S. et al. Measurement uncertainty and dense coding in a two-qubit system: combined effects of bosonic reservoir and 

dipole-dipole interaction. Results Phys. 32, 105041 (2022).
 48. Hu, M. L. et al. Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018).
 49. Yang, Y. Y. et al. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii-Moriya 

interactions. Front. Phys. 14, 31601 (2019).
 50. Wang, D. et al. Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous 

magnetic field. Laser Phys. Lett. 14, 065203 (2017).
 51. Hu, M. L., Xi, X. Q., Li, C. X. & Qu, H. Z. Population relaxation effects on entanglement dynamics of the two-qubit spin chains. 

Phys. B 404, 16 (2009).
 52. Haseli, S., Haddadi, S. & Pourkarimi, M. R. Entropic uncertainty lower bound for a two-qubit system coupled to a spin chain with 

Dzyaloshinskii-Moriya interaction. Opt. Quantum Electron. 52, 465 (2020).
 53. Oshikawa, M., Yamanaka, M. & Affleck, I. Magnetization plateaus in spin chains: “Haldane Gap’’ for half-integer spins. Phys. Rev. 

Lett. 78, 1984 (1997).
 54. Strečka, J. & Karl’ová, K. Magnetization curves and low-temperature thermodynamics of two spin-1/2 Heisenberg edge-shared 

tetrahedra. AIP Adv. 8, 101403 (2018).
 55. Arian Zad, H., Sabeti, M., Zoshki, A. & Ananikian, N. Electrocaloric effect in the two spin-1/2 XXZ Heisenberg edge-shared tet-

rahedra and spin-1/2 XXZ Heisenberg octahedron with Dzyaloshinskii-Moriya interaction. J. Phys.: Condens. Matter 31, 425801 
(2019).

 56. Salmon, L. et al. Structural, magnetic and theoretical calculations of a ferromagnetically coupled tetranuclear copper(II) square 
complex. New J. Chem. 38, 1306 (2014).

 57. Ming, F., Shi, W. N., Fan, X. G., Ye, L. & Wang, D. Effective entanglement recovery via operators. J. Phys. A: Math. Theor. 54, 215302 
(2021).

 58. Ming, F. et al. Tradeoff relations in quantum resource theory. Adv. Quantum Technol. 4, 2100036 (2021).



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6406  | https://doi.org/10.1038/s41598-022-10248-2

www.nature.com/scientificreports/

 59. Liu, J. M., Weng, B. & Xia, Y. Scheme for teleportation of atomic states within cavities in thermal states. J. Opt. Soc. Am. B 23, 1499 
(2006).

 60. Yu, P. F., Cai, J. G., Liu, J. M. & Shen, G. T. Teleportation via a two-qubit Heisenberg XYZ model in the presence of phase decoher-
ence. Phys. A 387, 4723 (2008).

 61. Freitas, M., Filgueiras, C. & Rojas, M. The effects of an impurity in an Ising-XXZ diamond chain on thermal entanglement, on 
quantum coherence, and on quantum teleportation. Ann. Phys. 531, 1900261 (2019).

 62. Fouokeng, G. C., Tedong, E., Tene, A. G., Tchoffo, M. & Fai, L. C. Teleportation of single and bipartite states via a two qubits XXZ 
Heizenberg spin chain in a non-Markovian environment. Phys. Lett. A 384, 126719 (2020).

 63. Arian Zad, H. & Rojas, M. Quantum coherence, quantum Fisher information and teleportation in the Ising-Heisenberg spin chain 
model of a heterotrimetallic Fe–Mn–Cu coordination polymer with magnetic impurity. Phys. E 126, 114455 (2020).

 64. Jafari, R. & Langari, A. Three-qubit ground state and thermal entanglement of anisotropic Heisenberg (XXZ) and Ising models 
with Dzyaloshinskii-Moriya interaction. Int. J. Quantum Inf. 9, 1057 (2011).

 65. Haddadi, S., Pourkarimi, M. R., Khedif, Y. & Daoud, M. Tripartite measurement uncertainty in a Heisenberg XXZ model. Eur. 
Phys. J. Plus 137, 66 (2022).

 66. Kochem, A. et al. Magneto-structural and computational study of a tetranuclear copper complex displaying carbonyl-π interac-
tions. Eur. J. Inorg. Chem. 2018, 5039 (2018).

 67. Khedif, Y., Daoud, M. & Sayouty, E. H. Thermal quantum correlations in a two-qubit Heisenberg XXZ spin-1/2 chain under an 
inhomogeneous magnetic field. Phys. Scr. 94, 125106 (2019).

 68. Khedif, Y., Haddadi, S., Pourkarimi, M. R. & Daoud, M. Thermal correlations and entropic uncertainty in a two-spin system under 
DM and KSEA interactions. Mod. Phys. Lett. A 36, 2150209 (2021).

 69. Bloch, F. Nuclear induction. Phys. Rev. 70, 460 (1946).
 70. Fano, U. Pairs of two-level systems. Rev. Mod. Phys. 55, 855 (1983).
 71. Hu, M. L. & Zhou, W. Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 

(2019).
 72. Streltsov, A., Singh, U., Dhar, H. S., Bera, M. N. & Adesso, G. Measuring quantum coherence with entanglement. Phys. Rev. Lett. 

115, 020403 (2015).
 73. Zhao, M. J., Ma, T., Quan, Q., Fan, H. & Pereira, R. l1 -norm coherence of assistance. Phys. Rev. A 100, 012315 (2019).
 74. Yao, Y., Xiao, X., Ge, L. & Sun, C. P. Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015).
 75. Pinto, J. P. G., Karpat, G. & Fanchini, F. F. Sudden change of quantum discord for a system of two qubits. Phys. Rev. A 88, 034304 

(2013).
 76. Hu, M. L. & Sun, J. Sudden change of geometric quantum discord in finite temperature reservoirs. Ann. Phys. 354, 265 (2015).
 77. Bowen, G. & Bose, S. Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 

267901 (2001).
 78. Yeo, Y. Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain. Phys. Rev. A 66, 062312 (2002).
 79. Zhou, Y. & Zhang, G. F. Quantum teleportation via a two-qubit Heisenberg XXZ chain - effects of anisotropy and magnetic field. 

Eur. Phys. J. D 47, 227 (2008).
 80. Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 12 (1994).
 81. Rahman, A. U., Haddadi, S., Pourkarimi, M. R. & Ghominejad, M. Fidelity of quantum states in a correlated dephasing channel. 

Laser Phys. Lett. 19, 035204 (2022).
 82. Hu, M. L. Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140 (2011).
 83. Pourkarimi, M. R. & Haddadi, S. Quantum-memory-assisted entropic uncertainty, teleportation, and quantum discord under 

decohering environments. Laser Phys. Lett. 17, 025206 (2020).

Acknowledgements
H.A.Z. acknowledges the receipt of the grant from the Abdus Salam International Centre for Theoretical Physics 
(ICTP), Trieste, Italy. H.A.Z. also acknowledges for the financial support of the National Scholarship Programme 
of the Slovak Republic (NSP). N. A. acknowledges the support of CS MES RA in the frame of the research project 
No. SCS 19IT-008 and research project No. SCS 21AG-1C006.

Author contributions
F.B. has put forward the main idea for the model and method and performed the calculations and graphical tasks. 
S.H. and H.A.Z. have contributed to interpreting the results and writing the manuscript. Thorough checking of 
the manuscript and confirming the conclusions were done by S.H., M.R.P., M.D., and N.A. The final draft of the 
manuscript was revised by S.H. and reviewed by all authors.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Pairwise quantum criteria and teleportation in a spin square complex
	The model. 
	Pairwise density operator. 
	Quantum correlations and coherence. 
	Entaglement concurrence. 
	Local quantum uncertainty. 
	Quantum coherence. 

	Results and discussion
	Quantum teleportation. 

	Concluding remarks and outlook
	Methods
	Eigenvalues and eigenstates of the Hamiltonian. 

	References
	Acknowledgements


