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Collisional positron acoustic 
soliton and double layer 
in an unmagnetized plasma having 
multi‑species
Shahrina Akter1,2 & M. G. Hafez1*

This paper explores the head-on collision between two-counter propagating positron acoustic 
solitons and double layers (DLs) in an unmagnetized collisionless plasma having mobile cold positrons 
fluid, immobile positive ions and ( r, q)-distributed hot positrons, and hot electrons. By employing 
the extended Poincaré–Lighthill–Kuo method, the coupled Korteweg–de Vries (KdV), modified 
KdV (mKdV) and Gardner equations are derived to archive this goal. The effect of dimensionless 
parameters on the propagation characteristics of interacting KdV solitons (KdVSs), mKdV solitons 
(mKdVSs), Gardner solitons (GSs) and DLs are examined in detail by considering the limiting cases of 
( r, q)-distribution. It is noted that the interaction of GSs and DLs are reported for the first time. The 
outcomes might be comprehended and beneficial not only in space and astrophysical environments 
but also in laboratory studies.

The existence of electron–positron (EP) and electron–positron-ion (EPI) plasmas in space and astrophysical 
environments (SAEs) are well confirmed. Besides, EP pair production can be found not only just in SAEs but also 
in laboratories, where positrons can be employed to study particle movement in tokamark plasmas1,2. Producing 
space or astrophysical-like plasmas in the laboratory for reporting the basic features of such plasma is not an easy 
challenge for researchers. But, one may study such physical scenarios by proposing theoretical model equations 
(TMEs) under various types of plasma assumptions. One can then implement the exhausting mathematical 
procedures (EMPs) to solve the TMEs. Many researchers3–22 have already studied the features of various kinds 
of acoustic wave phenomena by assuming EPI plasma involving different distributed lighter plasma particles via 
EMPs. Since various plasma species are inhabited in the different regions of phase space23. It is feasible to incor-
porate varied temperatures of the species while designing quasi-stationary nonlinear structures in a multi-species 
plasma models. For instance, the basic features of electron acoustic propagation in an unmagnetized collisionless 
EPI plasma were studied in Ref.24 by taking Nce0 ≈ (0.1− 0.4) cm−3 , Np0 ≈ (1.5− 3) cm−3 , Nhe0 ≈ 1.53 cm−3 , 
The ≈ (200− 1000) eV , and Tp ≈ (200− 1000) eV into account, where NJ0 and TJ is the unperturbed density 
and temperature ( J = ce(he) ) and p for cold (hot) electron and positron into account.

On the other hand, positron acoustic (PA) waves are one kind of electrostatic waves in which the inertia is 
controlled by the mobile cold positrons (MCPs) mass. The thermal pressure of other charged lighter particles 
(e.g. hot positrons (HPs) and hot electrons (HEs)) are contributed to the production of the restoring force in 
the plasmas. One can study the dynamics of positively charged inertial MCPs fluid based on the condition 
VtMCP ≪ ω/k ≪ VtHP,HE and their frequency much higher than frequency of ion ( Vtj , j = MCP,HP,HE are 
the thermal velocity for plasma species). However, various kinds of plasmas are produced by consisting of sub-
stantially high energy particles in most of SAEs. Such energetic particle mainly arises with the control of exterior 
forces by acting on the wave-particle interactions or natural space. PAMELA satellite has already confirmed that 
the prosperity of positrons in the cosmic radiation with energies 1.5− 100 GeV25. As a result, the propagation 
of PA waves having multi-species has been reported by many researchers7–17. For instance, Shah and Rakha8 
examined the wave phenomena excitation by positron showers of astrophysical naturally doped superthermal 
plasmas; Shah et al.9 investigated the nonplenar PA shock wave excitations that observed in some object of SAEs; 
Saha et al.7 investigated the PAWs for understanding in the physics behind auroral acceleration regions; and Saha 
and Tamang11 studied the analysis of PA waves in multi-species plasmas for understanding the dynamic features 
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of the cosmic rays. They have showed that the propagation of PA waves might be very beneficial to understand 
the nature of various SAEs, such as neutron starts26, active galactic nuclei27, pulsar magmetosphere28, solar wind, 
ionosphere, lower part of magnetosphere, and auroral acceleration regions11. Due to the existence of PA waves in 
many SAEs, Tribeche and his research group14,15 have reported only the electrostatic PA one sided propagating 
solitary waves and DLs in the four-component EPI plasmas by the mixture of immobile positive ions (IMPIs), 
MCPs, and isothermal HPs as well as HEs. Later, Mamun and his research group12,21 have reported the roles of 
superthermal as well as nonthermal electrons and positrons on PA solitons and DLs in an unmagnetized EPI 
plasma by deriving only the single Korteweg–de Vries (KdV), modified KdV (mKdV), and Gardner equations. 
In only a few works13,17, the collisional wave phenomena between two-counter propagating PA solitons have 
been examined in the aforementioned plasmas either considering isothermal or superthermal HEs and HPs. 
El-Shamy et al.13 have studied the characteristics of the head-on collision (HOC) between two PA solitary 
waves by deriving only the coupled KdV equations in a four component EPI plasma. Recently, Alam et al.17 
have examined the HOC between two PA solitons described by only the coupled KdV and mKdV equations for 
the model equations proposed in Ref.12. Such equations are unable to describe the features of collisional wave 
phenomena in the plasmas when the nonlinear coefficients of these equations are equal to zero. It is provided 
that there are still now so many possibilities to report the unrevealed physical issues in such plasmas by deriving 
new coupled nonlinear evolution equations (NLEEs). However, the subsistence of flat top or shoulders cannot be 
ignored as model by either with the Maxwellian or kappa distribution as observed in many SAEs, e.g. the Earth’s 
magnetosphere and magnetosheath29,30, polar cusp31, etc. In such cases, one requires to use the more suitable 
generalized non-Maxwellian velocity distribution function32,33 for the lighter species. Such distribution function 
has two spectral indices in which one is performing as superthermality index on the tail of the velocity curve 
and another one is indicating the high energy particles on a broad shoulder of the velocity curve. It is therefore 
important to study the PA resonance wave phenomena described by new coupled NLEEs with the presence of 
the generalized non-Maxwellian velocity distributed lighter species.

Further, the most important striking properties of solitons are their asymptotic preservation of shape once 
they undergo a collision, as first described by Zabusky and Kruskal34. As a result, two different soliton interactions 
occur in not only one-dimensional but also the quasi-one-dimensional system in which one is the overtaking 
collision and the other is the head-on collision (HOC)35. The overtaking collision of solitary waves can be studied 
by formulating only the multi-wave solutions travel in the same direction of the single NLEEs (e.g. KdV equa-
tion, Burgers equation, etc.). In overtaking collision, the angle between the interacting waves is also zero. Very 
recently, Hafez et al.36 have reported overtaking collision of traveling wave by formulating the multi-solutions 
of the Burgers equation. They have clearly mentioned in their findings that the overtaking wave phenomena are 
propagating in the same direction. However, for a HOC between two-counter propagating waves, one must search 
for the development of waves traveling to both sides. Note that the basic features of small but finite amplitude 
wave phenomena are studied by the reductive perturbation approach37, whereas the Sagdeev potential approach38 
is usually implemented to study the large amplitude wave phenomena. Both approaches are only provided the 
single NLEEs. By implementing these methods, it is not possible to study HOC between two waves propagating 
towards each other. Because, two oppositely propagating solitary wave can exceed through each other without 
suffering any interface apart from for time delayed in their positions. Besides, the HOC between two-solitons 
occur when the angle between two counter propagating solitons is π35. One can also consider the limiting case of 
long-wavelength approximation, like the reductive perturbation approach, by assuming the interaction between 
two solitons having small but finite amplitude is weak. As a result, one can expect the HOC to be quasi-elastic and 
there will support phase lags of both solitons after the collision. Hence, one needs to employ a suitable asymptotic 
expansion to solve the original model equations. In such situations, one can employ the asymptotic expansion 
approach, that is, the extended Poincare–Lighthill–Kuo (ePLK) method39–41 to study the feature of HOC wave 
phenomena from the considered plasma model equations.

Harvey et al.42 have reported experimentally and numerically the HOC between two-counter propagating 
solitons of equal amplitudes in strongly coupled plasma. They have found that the solitons are delayed after the 
collision and a longer delay is obtained for solitons with higher amplitude. They have also checked the accuracy 
of the experimental measurements by considering the KdV model43 and mentioned that the accuracy is not high 
enough to check whether the delay is proportional to the square root of the initial amplitude. In most of the 
previous studies13,22,43–49, researchers have studied the colliding same amplitude solitons and their phase shift 
by considering the square root of the initial amplitude, while the amplitude of solitons is strongly dependent 
on the plasma parameters. As a result, there are still now possibilities for studying the HOC wave phenomena 
between two solitons having proper amplitudes via the weakly nonlinear theories. Besides, Zhang et al.50 have 
clearly described the application scope of the ePLK method to study the HOC between two waves by deriving 
two-sided KdV equations via the Particle-in-cell numerical method. They have concluded that the ePLK method 
is only valid when the amplitudes of both the colliding solitary waves described by the coupled KdV equations 
are small enough. In Refs.42,50, researchers have also mentioned that one can study the basic features of colliding 
some small but finite amplitude secondary structures by taking higher order correction in the collision event. 
Note that the amplitudes of such colliding secondary structures are comparatively higher rather than colliding 
KdV solitons. Moreover, the coupled KdV and mKdV equations are not applicable to study the collisional wave 
phenomena properly not only around but also at the critical values for any specific plasma parameters. Also, 
such equations admit only collisional wave phenomena between two solitons but not double layers (DLs). In 
such a case, one can derive the coupled Gardner equations to study the collisional wave phenomena between 
two solitons and DLs propagating towards each other. To the best of our knowledge, no research work has been 
studied the collisional PA two-counter propagating solitons and DLs not only around the critical values but also 
at the critical values described by the coupled Gardner equations in any plasma environment. Thus, the work 
presented in this article explores the collisional PA solitons and DLs described by KdV, mKdV and Gardner 
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equations in an unmagnetized plasma consisting of IMPIs, MCPs, and double spectral index non-Maxwellian 
velocity distributed HPs as well as HEs. The effect of plasma parameters on the collisional PA two-counter 
propagating KdV solitons (KdVSs), mKdV solitons (mKdVSs), Gardner solitons (GSs) and Gardner DLs (DLs) 
are described along with graphical representation.

Model equations
An unmagnetized collisonless mult-species plasma system is considered by the mixture of MCPs with mass mcp , 
IMPIs, HPs and HEs along with Ne0 = Ncp0 + Nhp0 + Ni0 , where Ni0,Ne0 , Ncp0 and Nhp0 are the unperturbed 
IMPIs, HEs, MCP and HPs number densities, respectively. It is noted that HPs and HEs are assumed to follow 
the generalized non-Maxwellian velocity distribution. Because the existence of flat top or shoulders would not 
be considered as model by either Maxwellian or kappa distribution as observed in some SAEs29–33. As a result, 
one can use the following double index non-Maxwellian velocity distribution18,32,33:

where

where q and r are the real parameters that measuring the superthermality on the tail of the velocity curve and 
the high energy particles on a broad shoulder of the velocity curve, respectively. It is noted that such parameters 
indicate the departure from Maxwellian and kappa equilibrium. One can easily recover the Maxwellian and 
kappa distribution by setting the limit r = 0, q → ∞ and r = 0, q → κ + 1 , respectively. One can also use such 
distribution as the physically meaningful distributions by considering q > 1 and q(r + 1) > 5/218,33. By integrat-
ing frq(Ve) with the help of cylindrical coordinates, Ulla et al.18 have defined the total number HE density as

where

where φ is the normalized electrostatic potential. Since positron is the opposite charge particle of electron, the 
total number HPs density can be written as Nhp = Nhp0
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. To study the colli-
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and Te(Thp) is the HEs (HPs) temperature, (3) the electrostatic potential ( φ ) is normalized by kBTef /e , (4) time 
( t  ) is normalized by ω−1

pc =
√

mcp/4πNcp0e2 and (v) length (z) is normalized by �Dm =
√

kBTef /4πNcp0e2.

Mathematical analysis
To examine the collisional wave phenomena between two-counter propagating soliton and their corresponding 
phase shift, one can use the following starching coordinates39–41,49:

where ξ and η are the trajectories of soliton moving headed for each other, and �p is the phase speed of PAWs and 
0 < ε < 1 . Also, the perturbed variables can expand based on the concept of ePLK method3,13,17 as
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and
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Coupled mKdV equations and its stationary solutions.  For case (2),

which yields the critical value (say Kv ) of any specific parameter (say Nhc ) as

In order to examine the collisional wave phenomena between two soliton and phase shift around Kv , one may 
insert φ(2)

l = φ
(2)
r = 049. So, Eq. (11) is obtained as

Based on the case (2), the O
(

ε3
)

 equations are obtained as below.

where

Equations (22)–(24) can then be converted with the help of (21) to

where

(19)∇P0 = −2ε2
D

C
φ2aφ2w , ∇Q0 = 2ε2

D

C
φ2aφ2w .

(

3

2�4p
+H2

)

= 0,

(20)Nhc = Kv = −
3Necδ�

2
1 +�2σ ±

√

6Necσδ�
2
1�2 + 6Necδ�

2
1�2 + σ 2�2

2

3�2
1σ

.

(21)







φ(2)

N
(2)
cp

U
(2)
cp






=











0

3

2�4p

�

�

φ
(1)
l

�2

+
�

φ
(1)
r

�2
�

1

2�3p

�

�

φ
(1)
l

�2

−
�

φ
(1)
r

�2
�











.

(22)

∂N
(1)
cp

∂τ
− �pD1N

(3)
cp + D2U

(3)
cp + D2

[

N
(1)
cp U

(2)
cp + N

(2)
cp U

(1)
cp

]

− �p(D1P0)
∂N

(1)
cp

∂ξ
− �p(D1Q0)

∂N
(1)
cp

∂η

+ (D2P0)
∂U

(1)
cp

∂ξ
+ (D2Q0)

∂U
(1)
cp

∂η
= 0,

(23)

∂U
(1)
cp

∂τ
− �pD1U

(3)
cp + D2φ

(3) + D2

[

U
(1)
cp U

(2)
cp

]

− �p(D1P0)
∂U

(1)
cp

∂ξ
− �p(D1Q0)

∂U
(1)
cp

∂η

+ (D2P0)
∂φ(1)

∂ξ
+ (D2Q0)

∂φ(1)

∂η
= 0,

(24)
(

∂2

∂ξ2
+

∂2

∂ξ∂η
+

∂2

∂η2

)

φ(1) = H1φ
(3) − N (3) +H3

{

φ(1)
}3

,

H3 =

(

q− 1
)− 3

1+r Ŵ

(

q+ 3
2+2r

)

× Ŵ

(

−3
2+2r

)

×
(

Nhcδ
3 + Necσ

3
)

16b3Ŵ
(

3
2+2r

)

× Ŵ

(

q− 3
2+2r

) .

(25)
−�pD1N

(3)
cp + D2U

(3)
cp = S1

�

φ
(1)
l ,φ

(1)
r , P0,Q0

�

−�pD1U
(3)
cp + �

2
pD2N

(3)
cp = S2

�

φ
(1)
l ,φ

(1)
r , P0,Q0

�







(26)

S1

(

φ
(1)
l ,φ(1)

r , P0,Q0

)

=

[

−
1

�2p

∂φ
(1)
l

∂τ
−

6

�5p

{

φ
(1)
l

}2 ∂φ
(1)
l

∂ξ

]

+

[

−
1

�2p

∂φ
(1)
r

∂τ
+

6

�5p

{

φ(1)
r

}2 ∂φ
(1)
r

∂η

]

+

[

−
1

�5p

{

φ(1)
r

}2

−
2

�p

∂P0

∂η

]

∂φ
(1)
l

∂ξ
+

[

1

�5p

{

φ
(1)
l

}2

+
2

�p

∂Q0

∂ξ

]

∂φ
(1)
r

∂η
+

2

�5p

φ
(1)
l φ(1)

r

[

∂φ
(1)
l

∂ξ
−

∂φ
(1)
r

∂η

]

,



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6453  | https://doi.org/10.1038/s41598-022-10236-6

www.nature.com/scientificreports/

The solution of the corresponding homogeneous equation of Eq. (25) provides the similar results to O
(

ε2
)

 
equations. Now, the particular integral of Eq. (25) can be defined as

From Eqs. (26) and (27), one obtains

where

To extract the secularity in N (3)
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cp  , one must be considered f1(ξ) = 0 and g2(η) = 0 . As a result, one 
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Equation (30) is known as the coupled mKdV equations. It is noted that the obtained coefficients M1 and M2 
are in good agreement with the coefficient α and B of the coupled mKdV equations of Ref.17 for only  r = 0 and 
q → κ + 1 . The stationary solutions of these equations are given as
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where φ1a =
(√

6U0/M1M2

)

 and φ1w =
√
(M2/U0) are the amplitudes and widths of the soliton traveling toward 

each other from their initial positions.
Now, Eq. (28) gives us

where

It is confirmed that h1(η) and h2(ξ) must become secular in the next higher order equations and provides

Finally, one can also obtain the phase shifts due to the head-on collision between two mKdVSs as

Coupled Gardner equations and its stationary solutions.  It is noted that Eq. (30) is not helpful to 
study the resonance wave phenomena at Kv . At this point, one considers

where |Nhc − Kv| ∼ ε because it’s a very small quantity and S ∼ 1(−1) for Nhc > Kv ( Nhc < Kv ). Hence, one can 
re-determine the O

(

ε3
)

 equation from Eq. (3) by adding ρ3 ∼ −ε3 1
2
SD{φ}2 and yields

Simplifying Eqs. (22), (23) and (35) in the similar procedure that are given in Eqs. (25)–(35), one can easily 
derive the following coupled Gardner equations:

The soliton solutions of Eq. (36) can be written as

w h e r e  φa1,a2 = −(SD/M1)

[

1∓
√

1+ U0/
(

S2D/6M1

)

]

 ,  U0 = (SDM2)φa1,a2 + (M1M2/6)  a n d 
φgw = 2/

√
−M1φa1,a2/6.

However, the DL solution of Eq. (36) is defined as

where φgD = (6U0/SM2)
(

U0 = −S2DM2/6M1

)

 is the height and φDW = 2/φgD
√
−M1/6 is thickness of the DL. 

Also, the phase functions can be obtained by the following:

(32)

N
(3)
cp =

1

4�2p

[(

3

2�4p
− �

2
pH3

)

(

{

φ(1)
r

}3

+
{

φ
(1)
l

}3
)

− �
2
p

(

∂2φ
(1)
r

∂η2
+

∂2φ
(1)
l

∂ξ2

)]

+
1

4�2p
h1(η)

∂φ
(1)
l

∂ξ

+
1

4�2p
h2(ξ)

∂φ
(1)
r

∂η
+

1

4�2p

(

1

3�4p
+ 3�2pH3

)

[

φ(1)
r

{

φ
(1)
l

}2

+ φ
(1)
l

{

φ(1)
r

}2
]

,

U
(3)
cp =

1

4�p

[(

3

2�4p
− �

2
pH3

)

(

{

φ(1)
r

}3

−
{

φ
(1)
l

}3
)

− �
2
p

(

∂2φ
(1)
r

∂η2
−

∂2φ
(1)
l

∂ξ2

)]

+
1

4�p
h1(η)

∂φ
(1)
l

∂ξ

−
1

4�p
h2(ξ)

∂φ
(1)
r

∂η
+

1

4�p

(

1

3�4p
+ 3�2pH3

)

[

φ(1)
r

{

φ
(1)
l

}2

− φ
(1)
l

{

φ(1)
r

}2
]

,

h1 =

(

−
1

�4p

+ 3�2pH3

) η
∫

{

φ(1)
r

}2

dη′ − 4P0, h2 =

(

−
1

�4p

+ 3�2pH3

) ξ
∫

{

φ
(1)
l

}2

dξ ′ − 4Q0.

(33)P0 =
1

4

(

−
1

�4p

+ 3�2pH3

) η
∫

{

φ(1)
r

}2

dη′, Q0 =
1

4

(

−
1

�4p

+ 3�2pH3

) ξ
∫

{

φ
(1)
l

}2

dξ ′.

(34)∇P0 = −ε2
1

2

(

−
1

�4p

+ 3�2pH3

)

φ1aφ1w , ∇Q0 = ε2
1

2

(

−
1

�4p

+ 3�2pH3

)

φ1aφ1w .

A ∼ A0 = S

(

∂A

∂Nhc

)

Nhc=Kv

|Nhc − Kv| = εSD,

(35)
(

∂2

∂ξ2
+

∂2

∂ξ∂η
+

∂2

∂η2

)

φ(1) = H1φ
(3) − N (3) +

SD

2

{

φ(1)
}2

+H3

{

φ(1)
}3

.

(36)
∂φ

(1)
l

∂τ
+ SDM2φ

(1)
l

∂φ
(1)
l

∂ξ
+M1M2

�

φ
(1)
l

�2 ∂φ
(1)
l

∂ξ
+M2

∂3φ
(1)
l

∂ξ3
= 0

∂φ
(1)
r

∂τ
− SDM2φ

(1)
r

∂φ
(1)
r

∂ξ
−M1M2

�

φ
(1)
r

�2
∂φ

(1)
r

∂η
−M2

∂3φ
(1)
r

∂η3
= 0.











.

(37)
φ
(1)
l =

�

1
φa1

−
�

1
φa2

− 1
φa1

�

cosh
2 (ξ−U0τ )

φgw

�−1

φ
(1)
r =

�

1
φa1

−
�

1
φa2

− 1
φa1

�

cosh
2
�

η+U0τ
φgw

��−1











,

(38)φ
(1)
l =

φgD

2

{

1+ tanh

(

ξ − U0τ

φDw

)}

, φ(1)
r =

φgD

2

{

1− tanh

(

η + U0τ

φDw

)}

,



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6453  | https://doi.org/10.1038/s41598-022-10236-6

www.nature.com/scientificreports/

Results and discussion
To study the interaction of two-counter propagating PA not only KdVSs and mKdVSs but also GSs and DLs in the 
proposed plasmas, the nonlinear coupled KdV, mKdV, and Gardner equations have been derived by employing 
the ePLK method. Note that the coupled Gardner equations are derived for the first time. Based on the useful 
stationary wave solutions of these equations, the effects of Nhc (Nhp0/Ncp0) , Nec ( Ne0/Ncp0 ), Nic ( Ni0/Ncp0 ), δ 
( Tef /Thp ), σ ( Tef /Te ), r and q on the collisional PA solitons and DLs are described and presented graphically. 
In this investigation, the parametric values of these parameters are considered based on the Refs.51–54 those are 
reliable not only in SAEs but also in laboratory plasmas.

The effect of Nhc , Nec , δ , σ , r and q on the phase velocity ( �p ) are displayed in Fig. 1a–d. The phase velocity of 
PA waves is increased (decreased) with the increase of q and r ( Nhc , Nec , δ and σ ). It is identified that the phase 
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Figure 1.   Variation of λp with regards to (a) r for different values of q with Nhc = 0.09, Nec = 0.65, δ = 0.8 and σ = 1; 
(b) Nec for different values of Nhc with r = 0, q = 3, δ = 0.8 and σ = 1; (c) Nec for different values of Nhc with r = 0.1, 
q = 3, δ = 0.8 and σ = 1; and (d) σ for different values of δ with Nhc = 0.09, Nec = 0.65, q = 3 and r = 0.01.
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velocity is strongly dominated by the superthermality on the tail of the velocity curve and the high energy par-
ticles on a broad shoulder of the velocity rather than the density and temperature ratios. It is also found that �p 
is increased exponentially (red curve of Fig. 1a) with the increase of superthermal parameter of HEs and HPs 
( r = 0 ), which is in good agreement with the Ref.12.

In Fig. 2, the HOC between two equal amplitude PA KdVSs by varying  q and r along with the constant para-
metric values of other parameters are displayed. This figure shows that both of compressive and rarefactive col-
lisional PA KdVSs are supported in which the amplitudes and widths of PA KdVSs are decreasing (monotonically 
decreasing) with the increase of r ( q ). Whereas, the influences of time ( τ ), δ , Nec and σ  on the HOC between two 
equal amplitude PA KdVSs are demonstrated in Figs. 3 and 4, respectively with the presence of Kappa and flat-
topped distributions. These figures exhibit that the amplitudes and widths of interacting PA KdVSs are decreasing 
(monotonically increasing) with the increase of Nec and δ ( σ ). Besides, the interacting PA KdVSs becomes pulse 
like shaped with the changes of time. It is investigated from the above figures that the colliding PA KdVSs lose 
their energies monotonically with the increase of both superthermality on the tail of the velocity curve and the 
high energy particles on a broad shoulder of the velocity. But, the colliding PA KdVSs lose their energies without 
monotonically with the increase of the population of superthermal HEs and HPs, which is also in good agreement 
with the previous investigations12,17. In the physical point of view, the HEs and HPs are dynamically interacted 
with the MCPs with the losses of electron energy and MCPs density. As a result, the contribution of restoring 
force that provided by HPs and HEs pressure is decreased for the production of electrostatic resonances. However, 
the driving force (provided by M CPs inertia) is decreased because the growth of ion density is only interpreted 
as the depopulation of ions from the plasma system. It is also found from the above figures that the right to left 
propagating KdVSs is initially at ξ = 0, η → −∞ , left to right propagating KdVSs is initially at η = 0, ξ → +∞ 
and after that they are asymptotically far away from each other. When τ → ±∞ , the reverse situations are arisen, 
as it is expected. Later than competition of the processes of HOC between KdVSs, the stationary merged coherent 
structures are formed within −∞ < t < +∞ . Due to the collision of two counter propagating solitons along 
the trajectories, they are deviated far from their initial position. As a result, the time delays (phase shifts) are 
generated. To understand the influence of Kappa and flat-topped distributions on phase shift, the variation of 
phase shift with regards to q and r by considering the remaining parameters constant is displayed in Fig. 5. This 
figure shows that the phase shift is remarkably increased with the increase of r , while slightly increased up to 
q → 7 and then almost remain unchanged with the increase of q . It is also found that the maximum growth rate 
are occurred with the absence of flat-topped parameter, that is r = 0 . This means that the maximum growth of 
phase shift is produced with the presence of only super-thermal HEs and HPs.

On the other hand, the coupled KdV equations are failed to address the collisional PA wave phenomena based 
on case (2). Because, the interacting KdVSs amplitude and their corresponding phase shifts are approaching to 
infinity at Kv for any related parameters. To overcome such complicatedness, the coupled mKdV equations involv-
ing of higher order nonlinearity are derived based on case (2). By the useful solutions of such equations, the HOC 
between two-equal amplitude PA mKdVSs and their corresponding phase shifts around Kv ’s with the presence 
of Kappa and flat-topped distributions are displayed in Fig. 6. These figures show that the interacting mKdVSs 
modify their polarities in the neighborhood of Kv because such interacting solitons take up maximum energy 
with the change of maximum phase shifts. In addition, Fig. 6d is shown that the colliding solitons described by the 
coupled mKdV equations gain much more energies with the presence of only superthermal HEs and HPs, like the 
colliding solitons described by the coupled KdV equations. But, the amplitude of colliding mKdVSs and their cor-
responding phase shifts are comparatively higher rather than the colliding KdVSs and their corresponding phase 
shifts, which is in good agreement with the experimental and numerical investigations42,50. It is also observed that 
the interaction of mKdVSs takes lay only around Kv which yields only the compressive two-counter propagating 
solitons with their shifting phases. However, the mKdV equations are failed to examine the nature of interact-
ing wave phenomena at Kv and any value less than Kv because the nonlinear coefficient of mKdV equations are 
becomes complex at these points. In these situations, one needs to derive another coupled NLEEs to overcome 
such difficulty. Thus, the coupled Gardner equations are first time derived to study the nature of resonance wave 
phenomena not only around either less or greater than Kv but also at Kv . It is observed that the coupled Gardner 
equations are divulged both of collisional PA solitons and DLs. Figure 7a and b show the electrostatic resonance 
potential due to HOC between two equal amplitude PA GSs propagating towards each other for Nhc = 0.1 > Kv 
and Nhc = 0.001 < Kv , respectively. Whereas, Figs. 8 and 9 show the interaction of left to right ( φ(1)

l (ξ , τ) ) and 
right to left ( φ(1)

r (η, τ ) ) propagating DLs and the electrostatic resonance potential due to HOC between two 
equal amplitude PA DLs for Nhc = 0.1 > Kv and Nhc = 0.001 < Kv , respectively. These figures clearly indicate 
that both of compressive and rarefactive collitional PA GSs and DLs are produced in the considered plasmas. It 
is obviously observed that the right to left propagating PA GSs and DLs is initially at ξ = 0, η → −∞ , left to 
right propagating PA GSs and DLs is initially at η = 0, ξ → +∞ and after that they are asymptotically far away 
from each other. When τ → ±∞ , the reverse situations are arisen, as it is expected. Later than competition of 
the processes of HOC between PA GSs and DLs, the stationary merged coherent structures are formed within 
−∞ < t < +∞ . Figures 7, 8, and 9 also indicate that the maximum amplitudes of the colliding GSs and DLs are 
occurred not only around the critical but also at the critical number density ratios with the presence of Kappa 
and flat-topped distributions. It is predicted from the above discussion that the coupled Gardner equations are 
very useful rather that mKdV equations for describing the nature of both collisional PA solitons and DLs not 
only around the critical values but also at the critical values. It would be concluded from the above discussions 
that the theoretical outcomes might be very useful in understanding the nature of nonlinear propagation PA 
resonance solitons and PA resonance DLs in many SAEs, especially, in auroral acceleration regions, cosmic rays, 
solar wind, pulsar magmetosphere, and so on and in laboratory plasmas.
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Figure 2.   Collisional PA KdVSs 
[

φ(1)
= φ

(1)
l

+ φ
(1)
r

]

 for different values of (a) q (r = 0.1) and (b) r (q = 3). The 
remaining dimensionless parameters are chosen as Nhc = 0.0015, Nec = 0.5, σ = 0.5 and δ = 1 with U0 = 0.01 and 
τ = 2500.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6453  | https://doi.org/10.1038/s41598-022-10236-6

www.nature.com/scientificreports/

Figure 3.   Collisional PA KdVSs 
[

φ(1)
= φ

(1)
l

+ φ
(1)
r

]

 for different values of (a) τ (δ = 1) and (b) δ (τ = 2500). The 
remaining dimensionless parameters are chosen as Nhc = 0.08, Nec = 0.5 and σ = 0.5 with U0 = 0.01, r = 0.1 and 
q = 3.



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6453  | https://doi.org/10.1038/s41598-022-10236-6

www.nature.com/scientificreports/

Figure 4.   Collisional PA KdVSs 
[

φ(1)
= φ

(1)
l

+ φ
(1)
r

]

 for different values of (a) Nec (σ = 0.5) and (b) σ (Nec = 0.5). 
The remaining dimensionless parameters are chosen as Nhc = 0.08 and δ = 1 with U0 = 0.01, τ = 2500, r = 0.1 and 
q = 3.
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Summary
In this article, the collisonal PA solitons and DLs have been investigated by formulating the coupled KdVs, 
mKdVs and Gardner equations in an unmagnetized plasma having IMPIs, MCPs, and Kappa with flat-topped 
distributed HPs and HEs. Note that the coupled Gardner equations have been derived for the first time to report 
not only the interaction of PA solitons but also PA DLs. The effects of plasma parameters on HOC between two-
counter propagating solitons and DLs having equal amplitudes have been investigated. The outcomes show that 
the plasma parameters are notably modified the electrostatic potential resonances and their phase shift with the 
presence Kappa and flat-topped distribution in which the solitons energies remarkably minimized with the pres-
ence of the high energy particles on a broad shoulder of the velocity curve but gains much more energies with 
the presence of only HEs and HPs. It is also observed that the coupled KdV and Gardner equations are divulged 
both of compressive and rarefactive collitional solitons, whereas but only compressive collitional solitons with 
some limitations are supported by the coupled mKdV equations. In addition, the coupled Gardner equations are 
supported the PA collisonal DLs. It would be provided that the coupled Gardner equations must be very useful 
rather than mKdV equations for analyzing resonance wave dynamics in the plasmas.

Figure 5.   Influence of q and r on phase shift (ΔQ0) with Nhc = 0.08, Nec = 0.5, ǫ = 0.1, δ = 0.5 and σ = 1.
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(a) (b)

(c) (d)

Figure 6.   Collisional PA mKdVSs 
[

φ(1)
= φ

(1)
l

+ φ
(1)
r

]

 with different values of τ around (a) 
Kv = 0.006,538,446,158 (Nhc = 0.08) and (b) Kv = 0.006,538,446,158 (Nhc = 0.1) with Nec = 0.5, δ = 0.5, σ = 1, q = 3, 
r = 0 and U0 = 0.0075; (c) their phase shift ΔQ0 due to the collision between two PA mKdVSs with Nhc = 0.08, 
Nec = 0.5, δ = 0.5, σ = 1, q = 3, r = 0,  ε = 0.1 and U0 = 0.0075; and (d) effect of r (q = 3.5) on collisional PA mKdVSs 
with Nhc = 0.08, Nec = 0.5, δ = 0.5, σ = 1, and U0 = 0.0075.
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Figure 7.   Electrostatic potential 
[

φl = φ
(1)
l

(ξ , τ)+ φ
(1)
r (η, τ)

]

 structures with different values of time due to 
head-on collision between GSs for (a) Nhc = 0.1 > Kv and (b) Nhc = 0.001 < Kv with r = 0, q = 3.5, Nec = 0.4, σ = 3.5 and 
δ = 0.9.
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Figure 8.   (a) Head-on collision between two equal amplitude DLs described by φ(1)
l

(ξ , τ) [Dashed dotted 
curves] and φ(1)

r (η, τ) [point curves] for different values of time and (b) 3D collisional shock wave structures 
of electrostatic potential φl = φ

(1)
l

(ξ , τ)+ φ
(1)
r (η, τ) for Nhc = 0.003 < Kv with r = 0, q = 3.5, Nec = 0.4, σ = 3.5 and 

δ = 0.9.
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