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Modelling epidemic spread in cities 
using public transportation 
as a proxy for generalized mobility 
trends
Omar Malik1,2*, Bowen Gong2, Alaa Moussawi3, Gyorgy Korniss1,2 & 
Boleslaw K. Szymanski2,4

We study how public transportation data can inform the modeling of the spread of infectious diseases 
based on SIR dynamics. We present a model where public transportation data is used as an indicator 
of broader mobility patterns within a city, including the use of private transportation, walking etc. The 
mobility parameter derived from this data is used to model the infection rate. As a test case, we study 
the impact of the usage of the New York City subway on the spread of COVID-19 within the city during 
2020. We show that utilizing subway transport data as an indicator of the general mobility trends 
within the city, and therefore as an indicator of the effective infection rate, improves the quality of 
forecasting COVID-19 spread in New York City. Our model predicts the two peaks in the spread of 
COVID-19 cases in NYC in 2020, unlike a standard SIR model that misses the second peak entirely.

Long-range mobility, such as traveling between cities, can cause a disease to spread through case importation 
across large  distances1, 2. Short-range mobility, such as usage of city buses or trams, has been correlated with 
a higher risk of contracting acute respiratory  infections3 and with the number of cases of COVID-19 within 
 cities4, 5. Accordingly, restrictions on human mobility, either directly by shutting down public  transportation6, 7 
or indirectly by restricting public and private  gatherings8, which were highly effective in stopping the spread of 
COVID-19. We hypothesize that alongside being a high-risk medium for infections, public transportation usage 
is also a good indicator for the level of short-range mobility for the entire population of a city.

COVID-19 in New York City. When it became clear that the COVID-19 virus is highly infectious, New 
York City (NYC) imposed restrictions that included shutting-down non-essential businesses and forbidding 
large gatherings, but kept public  transportation9 and schools  open10. The usage of NYC’s sprawling subway sys-
tem was found to be correlated with the spread of COVID-194, 5, 11 and mobility patterns in general were cor-
related with the spread of COVID-19 within regions of the  city12, 13. There are various models of disease spread 
that incorporate human mobility patterns, such as a recent disease transmission model inspired by collision 
theory gas-phase  chemistry14, or a metapopulation model that allows for the movement of individuals between 
 subpopulations15. We propose a model based on SIR dynamics where we explicitly model human mobility as a 
parameter and treat the infection rate as a function of the mobility of a region. To effectively model the spread 
of COVID-19 in NYC, we focus on data from the NYC subway. We hypothesize that trends in subway usage are 
correlated with the usage of other modes of transport, such as buses, taxis etc. We therefore treat subway usage 
as an indicator for broader human mobility patterns in the city.

Data
New York City subway turnstile data. Unlike pedestrian traffic, private automobiles, and to some extent 
taxis, public transportation, and in particular the subway, has detailed records of passenger traffic such as the 
total number of entries and exits from a station collected in real time. This enables us to extract some important 
statistics regarding passenger traffic using publicly available data on subway usage published by the Metropolitan 
Transportation Authority (MTA)16. As awareness of the pandemic grew in early 2020 the Governor of New York 
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announced a state of emergency on March 7 2020, followed shortly by the passage of an executive order, known 
as ’New York State on PAUSE’, that shutdown all non-essential businesses in the  state9, 17. New York City saw a 
decline in subway usage alongside various other modes of public transport, including  bikeshares18, 19, and  taxis20. 
As restrictions were slowly eased in the later half of the year, there was a corresponding increase in the usage of 
public transport, although some modes were preferred over others at different rates than before the pandemic. 
Bikehares, for example, had recovered to their 2019 levels by September 30, 2020 while subway ridership was 
at 30% of pre-pandemic  levels18. Despite the different rates at which different modes recovered, both bikeshares 
and the subway saw increases in usage in the latter half of 2020. We believe that this increase in both modes of 
transport corresponds to the underlying increase in human mobility as restrictions were loosened after June 8, 
2020. This motivates us to use this directly measurable traffic as a proxy for all traffic in the city.

We collected and analyzed the subway turnstile data of New York City for 12 consecutive months, starting 
from January 2020 to December 2020. The MTA publishes turnstile data on a weekly basis, which includes 
administrative information such as the control area, unit number, station name and line name, as well as the 
counts of the entries and exits at a specific time for a particular  turnstile16. The system collects these counts every 
four hours, each of which is a cumulative register value. The data were first converted into dataframes and then 
into a combination of control area code, remote unit, subunit channel position (SCP), as well as the time of the 
observation that serves as a unique ID to identify and remove duplicate records. We removed entries related to 
Port Authority Trans-Hudson (PATH) trains, since they do not represent the mobility among NYC boroughs. 
The absolute difference between the first and last counts at a turnstile on a particular day defines the number of 
subway riders passing through that particular turnstile. The geographic coordinates of the station and the borders 
of each borough allow us to place each station in its corresponding borough. We calculated the total number of 
borough-level subway riders by summing the numbers of riders at all the turnstiles of all subway stations located 
within each borough. To estimate the mobility between boroughs, we used a survey that was conducted among 
subway riders regarding the origin and destination of their  trips21. Given the number of departures at a given 
station, we used probabilities extracted from the survey to determine the destinations of those trips.

COVID-19 data. We used publicly available data published by the NYC government about the number of 
new COVID-19 cases reported for each day and for each of the five  boroughs22. Figure 1a shows that this data 
has a clear weekly cyclical pattern. Figure 1b shows that this pattern arises because of the much smaller numbers 
of cases that were reported on weekends than on weekdays. We remove this pattern by using a running 7-day 
average of the number of daily cases.

We also chose to restrict our analysis to 2020, since the introduction of vaccines in early 2021 decreases the 
number of people susceptible to infection. To account for this decrease on the spread of epidemics would require 
the introduction of another parameter that might change the quantitative effect of mobility on the spread of 
the disease.

Population data. All population data for New York City were taken from the 2020 census conducted by the 
US Census Bureau and published on their  website23.

Figure 1.  (a) The red line shows the daily reported cases of COVID-19 in New York City. The blue line shows 
the total daily number of trips taken on the subway, with entries related to the Port Authority Trans-Hudson 
(PATH) removed. The dotted line indicates the start of the NY PAUSE Program, (b) The fraction of total weekly 
cases reported on each day of the week, averaged over 44 weeks. While the weekdays remain largely consistent, 
there is a significant drop in reporting on weekends.
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Model
We start with the well-established SIR  model24, 25. While more powerful models for modelling disease spread 
exist, such as the SEIR  model26, we picked the SIR model in order to reduce the number of parameters and avoid 
overfitting. The COVID-19 hospitalization data that we use only reports daily newly infected cases and we do not 
believe this data is fine-grained enough to justify the use of a more complex model. The SIR model divides the 
total population (N) into susceptible (S), infected (I), and recovered or dead (R) compartments. The equations 
governing the spread of the disease are

where β and γ are the infection and recovery rate, respectively.
We modify the model by dividing the total population into subpopulations called regions, each with a frac-

tion of the population pj living in region j, thus 
∑

j pj = 1 . When we apply the model to New York City the 
different pj represent the populations of the five boroughs of New York City, normalized by the total population 
of the city, which was 8,804,190 in  202023. Within a region, people will have different infection rates based on 
their activity. The infection rate for individuals working from home and following strict quarantine protocols 
will be lower than the rate for frontline workers. Each activity-based cohort has an associated infection rate βjc . 
Additionally, people may also have access to different quality of healthcare, which may impact the frequency of 
testing and the likelihood of visiting a doctor. Both of these parameters influence the recovery rate of a patient. 
Each healthcare-based cohort has an associated recovery rate γje . The fraction of the total population in region 
j with behavior c and healthcare e is denoted as pjce . For parameters representing the population fractions, an 
omitted index indicates a sum over all values of this index, so pjc =

∑

e pjce and pj =
∑

c,e pjce etc.
Each cohort within each region follows SIR dynamics. The equations governing the population fractions of 

susceptible, infected and recovered individuals are given by:

where sjce(t), ijce(t) and rjce(t) are the population fractions of susceptible, infected and recovered individuals, 
respectively at time t.

Inter-region mixing. So far our model follows straightforward SIR dynamics. We now want to introduce 
inter-region mixing through a mixing parameter that tells us the population fraction of one region that is visit-
ing another region at a given time. In order to calculate this quantity, we need to know the origin, destination, 
and trip duration for every rider using the subway. From the data, we only know the borough of departure. We 
do not know an individual rider’s destination based just on the borough they departed from. Using an MTA 
survey on the use of the NYC subway, we can determine the probabilities of a trip departing and terminating at 
different  boroughs21.

In order to determine the average time spent visiting a borough, we also need to know the borough of origin 
of riders arriving at a station. From the survey, we know P(oj) , the probability of any trip originating in borough 
j, P(dj) , the probability of any trip terminating in borough j, and P(dj′ |oj) , the probability that a trip originating 
in borough j terminates in borough j′21.

It will be helpful to define a fractional time, τ , which measures the time of day as the fraction of the day that 
has passed since midnight. So, for example, 3 PM corresponds to a fractional time of τ = 0.625 . In order to 
determine the average duration that residents of one borough spend in another borough, we start by treating 
NYC as a closed system where individuals do not travel into or out of the city, and all residents of a borough 
return to it at the end of the day. If a rider k leaves borough j at fractional time τAk

 and returns at τDk
 , then the 

fraction of the day spent away from the borough is τAk
− τDk

.
If there are Mt total riders on day t, then the average fraction of the day spent away from the borough on that 

day is 
∑Mt

k=1(τAk
− τDk

)

Mt
 . This average can be rewritten by collecting all the arrival and departure times separately 

rather than tracking each rider’s individual arrival and departures so that 
∑Mt

k=1 τAk
−

∑Mt
k=1 τDk

Mt
 . The subway 

turnstile data does not track the arrival and departure of individual riders. Instead, it provides a number of 
snapshots everyday of the cumulative arrivals and departures. So, the data instead provides us with the number 
of arrivals, At,j(τk) , and departures, Dt,j(τk) , at fractional time τk , where the index k no longer refers to riders, 

(1)
d

dt
S(t) = −β

S(t)I(t)

N
,

(2)
d

dt
I(t) = β

S(t)I(t)

N
− γ I(t),

(3)
d

dt
R(t) = γ I(t),

(4)sjce(t +�t) = sjce(t)
(

1− βjc ijce(t)�t
)

,

(5)ijce(t +�t) = ijce(t)+
(

βjcsjce(t)ijce(t)− ijce(t)γje
)

�t,

(6)rjce(t +�t) = rjce(t)+ ijce(t)γje�t,
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but to the different times at which the number of entries and exits are recorded. We can then write the average 
fractional time spent by residents of borough j away from their home borough

where ttot is the total number of days. It should be noted that the sum over k is no longer over the number of 
riders, but over the number of snapshots of total entries and exits taken that day.

For a variety of reasons, such as travel into and out of the city and the usage of multiple modes of transport, 
the number of arrivals and departures at a station will not match exactly. In order to account for this, we match 
the number of arrivals and departures at a given snapshot in time in the data, and any discrepancy is added 
to the next time bin. Once all time periods have been accounted for, any unmatched arrivals or departures are 
ignored. The equation then becomes

where

where UA
t (τk) and UD

t (τk) are the unmatched arrivals and departures from the previous time period. An example 
of the matching process is shown in Table 1. We can now write our mixing parameter

On any given day we could estimate the number of people, expressed as a fraction of the total population, that 
travel from borough j to borough j′ by P(dj′ |oj)

∑

k

Dt,j(τk)

N
 . This would give us an estimate of how many of the 

people leaving borough j are heading towards j′ . However, we do not have detailed temporal resolution on the 
movement of riders within a borough and we do not know when any individual rider returns to their home 
borough. We define an effective population of visitors by multiplying this quantity with �τj , the estimate of the 
average time fraction spent away from borough j, that spend the entire day in borough j′ . The mixing parameter 
represents this effective visiting population.

The population fraction that leaves region j for all other regions is f −j =
∑

j′ �=j fjj′ , while the population frac-
tion that arrives at region j from all other regions is f +j =

∑

j′ �=j fj′j . The resulting total population fraction in 
region j becomes pj + f +j − f −j .

(7)�τj =
1

ttot

ttot
∑

t=1

∑

k τk
(

At,j(τk)− Dt,j(τk)
)

Mt
,

(8)�τj =
1

ttot

ttot
∑

t=1

∑

k τkmin
(

Ãt,j(τk), D̃t,j(τk)
)

M̃t

,

(9)Ãt,j(τk) = At,j(τk)+ UA
t (τk),

(10)D̃t,j(τk) = Dt,j(τk)+ UD
t (τk),

(11)UD
t (τk) = max

(

0, D̃t,j(τk−1)− Ãt,j(τk−1)
)

,

(12)UA
t (τk) = max

(

0, Ãt,j(τk−1)− D̃t,j(τk−1)
)

,

(13)UD
t (τ0) = UA

t (τ0) = 0,

(14)M̃t = min

(

∑

k

At,j(τk),
∑

k

Dt,j(τk)

)

,

(15)fjj′(t) = �τjP(dj′ |oj)
∑

k

Dt,j(τk)

N
.

Table 1.  An example of the matching process using real data. The columns labelled ENTRIES, EXITS, and 
TIME are from the turnstile data. We calculate the number of arrivals, At,j(τ ) , by subtracting successive values 
of the running total of entries. These arrivals are assigned a fractional time, τ , corresponding to the midpoint 
of successive time snapshots. The departures, Dt,j(τ ) , are calculated in the same way.

Entries Exits Time τ At,j(τ ) Dt,j(τ ) UA
t (τ ) UD

t (τ ) Ãt,j(τ ) Ãt,j(τ )

0007328037 0002483731 03:00:00

0007328044 0002483742 07:00:00 0.208 7 11 0 0 7 11

0007328075 0002483781 11:00:00 0.375 31 39 0 4 31 43

0007328193 0002483821 15:00:00 0.542 118 40 0 11 118 51

0007328375 0002483878 19:00:00 0.708 182 57 67 0 249 57

0007328499 0002483910 23:00:00 0.875 124 32 192 0 316 32
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We must now keep track of the part of the susceptible and infected populations of region j that do not leave 
the region, which we call ’stationary’, given by

It should be noted that while this ’stationary’ population does not leave the borough, the individuals that con-
stitute this population may still be mobile within their borough. This will be addressed later in this section. We 
also keep track of infected individuals visiting region j from other regions. These are given by

We can now write down the equations for the stationary susceptible and infected populations for region j:

We also need to track individuals from region j who are visiting region j′ . These are given by

These individuals will interact with stationary infected individuals from other regions. We can now write the 
equations for the individuals from region j visiting all other regions

We can combine the equations for the stationary and visiting populations by introducing a flow parameter 

The flow parameter lets us compactly write the dynamics of region j

Since the data provided by the NY government tracks the number of newly reported cases and does not report 
the number of active cases (i(t) in our model) we construct the quantity

where t is in units of days. In other words, inewjce (t) represents the number of new cases reported on day t and 
this is the quantity that we will fit to the data. Figure 2a shows a schematic representation of our mobility-based 
SIR model.

Introducing a public transportation node. While our model accounts for the spread of disease through 
the transit of infected individuals between regions, it does not take into account that use of public transportation 
poses a higher risk of  infection3. To account for this effect, we introduce a public transportation node, denoted 
by the index T. The fraction of the population permanently residing on this node is 0 ( pT = 0 ). We modify our 
model so that all riders travelling to another borough spend some part of their time at node T. This duration is 
taken from the average commute time reported by riders of each  borough21. The mixing parameter from node 
j to node T becomes

where �τjT is the commute time for riders in node t, expressed as a fraction of the day. Due to the introduction 
of a transport node we must also modify our expression for the inter-borough mixing parameter, which becomes

(16)sSjce = sjce
pj − f −j

pj
,

(17)iSjce = ijce
pj − f −j

pj
.

(18)i+jce =
∑

j′ �=j

ij′ce
fj′j

pj′
.

(19)sSjce(t +�t) = sSjce(t)(1− βjc i
S
jce(t)�t − βjc i

+
jce(t)�t).

(20)sVjce =
∑

j′ �=j

s
j′

jce =
∑

j′ �=j

sjce
fjj′

pj
.

(21)sVjce(t +�t) =
∑

j′ �=j

s
j′

jce(t)(1− βj′ci
+
j′ce(t)�t − βj′ci

S
j′ce(t)�t),

(22)�jce =sSj βjc

[

iSjce + i+jce

]

+
∑

j′ �=j

s
j′

j βj′c

[

i+j′ce + iSj′ce

]

.

(23)sjce(t +�t) =sjce(t)− �jce(t)�t,

(24)ijce(t +�t) =ijce(t)+
(

�jce(t)− ijce(t)γje
)

�t,

(25)rjce(t +�t) =rjce(t)+ ijce(t)γje�t.

(26)inewjce (t) =

t+1−�t
∑

t′=t

�jce(t
′)�t,

(27)fjT (t) = �τjT
∑

j′ �=j

P(dj′ |oj)
∑

k

Dt,j(τk)

N
,



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6372  | https://doi.org/10.1038/s41598-022-10234-8

www.nature.com/scientificreports/

Figure 2b shows a schematic depiction of the model with the public transportation node. The introduction of 
such a node allows us to independently model the infection rate during rides on public transportation systems, 
βT , for individuals using public transportation. Our model does not track individual interactions, but only the 
infection rate at the population level. We introduce the transport node to model the different rates of infection 
experienced by the fraction of the population that uses the subway, where they interact with a different mixture 
of populations than the mixture that they encounter in the boroughs in which they live and work.

Mobility-dependent infection rate. While inter-region mixing and the introduction of a public trans-
portation node account for mobility between regions, we also need to account for mobility within a region. To do 
this, we introduce a mobility parameter for each region, mj(t) , which represents the extent to which individuals 
are moving within the region. We then write our infection rate as

where β0
jce is the static infection rate. For the particular case of the NYC subway, mj(t) is calculated by taking a 

7-day moving average of the total trips that start in borough j and rescaling this quantity by dividing it by the 
maximum number of trips taken in one day in borough j in this training period, thereby scaling it between 0 and 
1. A plot of the average mobility parameter, defined as mavg(t) =

∑

j pjmj(t) , is plotted in Fig. 4b. We are using 
the level of subway usage as a stand-in for all short-range mobility. We found that the number of bike-share rides 
taken during the pandemic was correlated with the number of subway  trips19. We assume that subway usage is 
correlated with all mobility within the city, even as subway usage fell during the pandemic across cities around 
the  world27.

Results
While our model is able to incorporate complex demographic information such as healthcare status, access to 
testing, and public policies regarding gathering sizes and mask usage, we are limited by the data to which we have 
access. Since we only have public transportation data and the daily case count, we will assume that each region 
in our model, corresponding to one of the five boroughs of NYC, has a uniform demographic distribution. This 
means that we will be ignoring the c and e indices in our model.

In order to model the effect of different policies, we pick March 22, 2020, the official start day of the NY 
PAUSE Program, as the beginning of the lockdown. We assume that there are two different infection rates, one 
before and the other after this date. This assumption is made because the PAUSE program marks the start of the 
implementation of widespread mask usage and social distancing. These are non-mobility factors which impact 
the overall infection rate.

We also assume that the intensity of usage of public transportation is correlated with the infection rate. The 
infection rate for borough j then becomes

where βp(t) = βh before the start of the NY PAUSE Program on March 22 2020, and βp(t) = β l afterwards. The 
second term, mj(t − tD) , represents the normalized daily number of trips taken on the subway within a region. 
The parameter tD accounts for the population level delay between subway usage and the subsequent increase in 

(28)fjj′(t) =
(

�τj −�τjT
)

P(dj′ |oj)
∑

k

Dt,j(τk)

N
.

βjce(t) = β0
jcemj(t),

(29)βj(t) = βp(t)mj(t − tD),

Figure 2.  (a) Schematic representation of the mobility-based SIR model. Each region j has an associated 
infection rate βj and mobility parameters fjj′ and fj′j , which represent individuals from region j visiting region 
j′ and vice versa. (b) The enhanced model that includes a public transportation node without a permanent 
population. Inter-region mixing still occurs as in the basic model, but the visiting populations of every region 
pass through the transportation node for the duration of their commute time during which they are exposed to 
the higher infection rate associated with using public transportation. The effective population of region j that is 
commuting is given by fjT while the effective population of all other regions that are visiting region j are given 
by f +j .
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Covid-19 cases. We also average βj(t) over a 7 day moving window in order to smooth out abrupt changes due 
to both noise in mj(t) and the discontinuous transition in βp(t).

We have the values of fjj′(t) and mj(t) from the data, Using these two values, we can construct fjT . We need to 
learn the values of βh,β l, γ and τD . We also need to learn the values of βh

T and β l
T , the infection rate on the subway 

before and after the start of the PAUSE program. Figure 3a plots the results of fitting the model by minimizing 
the mean squared error (MSE). We fit our model by sweeping over a million values for these parameters, with 
our search guided by existing literature on the infection and the recovery  rates28. By contrast, we can see from 
Fig. 3b that an SIR model that does not take into account mobility cannot explain the infection trend.

Forecasting. We also masked the last three weeks of data and trained our model without this period. First, 
we do a parameter sweep to find the values of the parameters that best fit the training data. Next, we use the end 
of the training period, inewdata(ttrain) (where ttrain , is the last day of the training data) as the initial condition for the 
testing period. However, we cannot directly use the number of daily new cases as the initial condition. Instead, 
the model requires knowledge of the active infected and total recovered cases, i(ttrain) and r(ttrain) , at the end of 
the training period as the initial conditions for the testing period. This was not a concern when we were fitting 
our model for the training period since we assumed that i(0) = 1/N and r(0) = 0 . In order to predict the spread 
of the disease in the testing period, however, we need to know these quantities to serve as the initial conditions 
for our model. While data are available for the number of active and recovered cases for New York state, they are 
not available for New York City. We estimate the total recovered population by dividing the cumulative deaths 
reported in New York City by the state-wide case mortality  rate29

where rest(t) is the estimated total recovered population (which includes both individuals who have died as well 
as those who have recovered from the disease) expressed as a fraction of the total population of New York City. 
We also need to know iest(t) , the estimated total active number of infected cases. Specifically, we only need to 
estimate iest(ttrain) , the total number of active cases on the last day of the training data. We do this by searching 
for a value of iest(ttrain − 1) such that using iest(ttrain − 1) and rest(ttrain − 1) as the initial condition for our model 
and predicting the daily number of cases for the next day gives us

where inew(ttrain) are the daily number of new cases output by our model on the last day of the training data. The 
corresponding values of iest(ttrain) and rest(ttrain) become the initial conditions for the model at the start of the 
testing period. The model’s prediction is shown in Fig. 4a. Table 2 shows the parameters that minimize the MSE 
with and without a testing period.

Discussion
Figure 1a shows that the total number of cases in NYC rapidly increased after the discovery of the first recorded 
case, followed by a decline and then a second rise. This trend seems to follow the usage of the subway: initially, 
the usage of the subway declines precipitously and then it slowly and partially recovers to about 2/3 of the previ-
ous usage.

(30)rest(t)=
Cumulative deaths reported in NYC on day t

N ∗ Case mortality rate on day t
,

(31)inew(ttrain)= inewdata(ttrain),

Figure 3.  (a) The best-fit model output of the daily number of new cases in NYC. The black line shows the 
model’s output. The red line is the 7-day running average of the total daily reported cases in NYC as a fraction of 
the total population of the city. The dotted line indicates the start of the NYC Pause Program. (b) Fitting results 
for the model without the mobility-dependent infection rate given by Eq. 29. As the plot demonstrates, we 
cannot fit NYC’s COVID-19 spread without modifying the infection rate by the mobility term.
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By scaling our infection parameter with subway usage, we are simultaneously capturing two effects. The first 
is the rise in infections directly due to the use of the subway, either through higher infection rate or through 
case importation between regions. The second is taking subway usage as a proxy for broader mobility trends, 
which in turn depend upon public policy that governs the infection rate. As more people went back to work and 
as restrictions on public gatherings, schools etc. were eased, we assume that there was a corresponding increase 
in human mobility proportional to the increase in subway usage, even though this usage is just one form of the 
total population mobility in the city.

The fact that our model is able to accurately capture both the first wave of infections as well as the second 
one indicates that our assumption that subway usage is an indicator for broader human mobility trends (and for 
public policies regarding restrictions more generally) within the city is correct. While our model does predict a 
higher infection rate for the subway than for the boroughs, infection trends are much less sensitive to inter-region 
mobility compared to intra-region mobility.

If we set βj(t) = βp(t) and the dependence on mj(t) is removed, the reduced model is unable to capture the 
second wave of infections towards the end of the year as shown in Fig. 3b.

Limitations. The turnstile data that we use imposes some limitations on our model. The most crucial 
assumption in our work is that subway usage is correlated to all mobility within the city and can therefore be 
used as a proxy for all mobility. This assumption is supported by the fact that the usage of both bikeshares and 

Figure 4.  (a) The predicted number of daily cases in NYC normalized by the total population of the city. The 
red line is the 7-day running average of the total daily reported cases in NYC as a fraction of the total population 
of the city. The dashed black line shows the best-fit output of the model in the training period, and the solid 
black line shows the model’s prediction for the testing period. The vertical dotted line marks the beginning 
of the three-week testing period. The inset figure shows the testing period in more detail. (b) The ratio of the 
average infection rate, βavg(t) =

∑

j pjβj(t) , over the recovery rate, γ as a function of time. The second axis 
shows the average mobility parameter, mavg(t) =

∑

j pjmj(t).

Table 2.  The results from fitting the data with and without the last three weeks masked. Ein refers to the MSE 
of fitting the data, while Eout shows the MSE of the model’s prediction during the testing period. While we 
minimize the MSE during the fitting process, the table also reports the in-sample and out of sample R2 score of 
the best fit. We use �t = 10−2 for all our simulations.

Parameter values Data fitting without testing period Data fitting with three-week testing period

βh 1.55 1.59

β l 0.55 0.53

βh
T

4 4

β l
T

4 4

γ 0.04 0.04

tD 21 days 21 days

Ein 4.46× 10−9 2.98× 10−9

Eout – 2.44× 10−10

R
2
in

0.82 0.88

R
2
out

– 0.43
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taxis dropped at the same time as that of the  subway19, 20, and bikeshare usage increased in the same period as 
subway usage, although at a much faster  rate18. Additional data on other forms of mobility, specially in the latter 
half of 2020, would allow us to construct the mobility parameter that encapsulates multiple modes of transport.

We also assume that the residents of a borough that leave it using the subway return to the home borough 
using the subway on the same day. This assumption impacts our inter-region mixing parameter through the 
calculation �τj , the average time spent away from the home borough.

Finally, we assume that the fraction of cases that were reported remained constant throughout 2020. While 
we have adjusted for the drop in reporting on the weekends by taking a 7-day moving average, the fraction 
of cases that were reported may have changed over the course of the year due to other factors as well. A pos-
sible effect of this variation in the reporting rate is the very high ratio of the average infection rate, defined as 
βavg(t) =

∑

j pjβj(t) , to the recovery rate, γ , that our model predicts during the beginning of the infection, shown 
in Fig. 4b. The precipitous rise in cases at the start of the pandemic may represent a slew of people getting tested 
in a short amount of time as awareness of the epidemic spread and widespread testing became available, rather 
than accurately representing the true spread of the disease. After this initial period our βavg(t)/γ ratio has a 
minimum of 1.43 and a maximum of 5.25. While an initial estimate for the reproduction number was reported 
to be 2.2 in  Wuhan30, other studies using SIR models have reported a much higher reproduction number ranging 
from a global estimate of 4.531 to some regions having a value as high as 7.832. While the ratio βavg(t)/γ is not 
equivalent to the reproduction number (due to the connectivity of the different compartments in our model) 
and should be seen only as a crude estimate, it is encouraging that the ratio predicted by our model falls within 
the range of estimates reported in the literature.

Conclusion
The main contribution of this paper is an introduction of a mobility-based model of epidemic spread that uses 
a mobility-dependent infection rate. Based only on fitting the data, our model confirms that subway usage is 
correlated with the usage of other forms of public transportation because using it as a proxy for the short-range 
mobility parameter allows us to predict the two peaks in the NYC infection rate in 2020. Using this model and 
the turnstile data from the NYC subway, we predict the trend of daily infections in NYC for a three-week period. 
Our model accounts for inter-region mixing of populations, and uses an infection rate that is dependent on the 
short-range mobility within a region.

While we have used NYC as a test case, it would be interesting to verify the model with data from other cities. 
We believe that by incorporating data from other public transportation services, such as taxis, ride- and bike-
sharing services etc., our model can offer more accurate predictions about the spread of an epidemic disease. 
Thus, it can be a useful tool in guiding public policies to tame the spread of pandemics.
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