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Flow invariants in a channel 
obstructed by a line of inclined rods
V. A. Herrero1, H. Ferrari1,4, R. Marino2 & A. Clausse3,4*

An experiment is conducted in a rectangular channel obstructed by a transverse line of four inclined 
cylindrical rods. The pressure on the surface of a central rod and the pressure drop through the 
channel are measured varying the inclination angle of the rods. Three assemblies of rods with different 
diameters are tested. The measurements were analyzed applying momentum conservation principles 
and semi-empirical considerations. Several invariant dimensionless groups of parameters relating the 
pressure at key locations of the system with characteristic dimensions of the rods are produced. It was 
found that the independence principle holds for most of the Euler numbers characterizing the pressure 
at different locations, that is, the group is independent of the inclination angle provided that the inlet 
velocity projection normal to the rods is used to non-dimensionalize the pressure. The resulting semi-
empirical correlations can be useful for designing similar hydraulic units.

Many heat and mass transfer devices are composed by sets of modules, channels or cells through which a fluid 
passes amid more or less complex internal structures, like rods, buffers, inserts, etc. Recently there has been 
a renewed interest for a deeper understanding of the mechanisms relating the internal pressure distribution 
and forces on complex internals with the overall pressure drop of the modules. This interest is brought about, 
amongst others, by innovations in material science, expansion of computational capacity for numerical simula-
tions, and the increasing miniaturization of devices. Recent experimental studies of pressure internal distribu-
tions and losses include channels roughened by variously shaped ribs1, electrochemical reactors cells2, capillary 
contractions3 and lattice-frame materials4.

The most common internal structures are arguably cylindrical rods passing through the unit module, either 
as bundles or isolated. In heat exchangers this configuration is typical on the shell side. Shell-side pressure drops 
are relevant in the design of heat exchangers such as steam generators, condensers and evaporators. In a recent 
study, Wang et al.5 found reattachment and co-shedding flow regimes in tandem configuration of rods. Liu et al.6 
measured the pressure drop in a rectangular channel with a built-in double-U-shaped tube bundle with different 
inclinations and calibrate a numerical model emulating the rod bundle with a porous medium.

As expected, there are numerous configuration factors that influence the hydraulic performance of cylinder 
banks: type of arrangement (e.g., staggered or in-line arrays), relative dimensions (e.g., spacing, diameter, length), 
and inclination angle, among others. Several authors focused their efforts in finding dimensionless criteria to 
guide the design capturing the combining effects of the geometric parameters. Among the more recent experi-
mental studies, Kim et al.7 proposed a model of effective porosity taking the length of the unit cell as the control 
parameter using in-line and staggered arrays and Reynolds numbers between 103 and 104. Snarski8 studied how 
the power spectra from accelerometers and hydrophones attached to cylinders in a water tunnel varied with the 
inclination respect to the flow direction. Marino et al.9 studied the wall pressure profile around cylindrical rods in 
yawed gas flow. Mityakov et al.10 mapped the velocity field in the wake of a yawed cylinder using stereo-PIV. Alam 
et al.11 presented a comprehensive study of tandem cylinders, focusing on the effects of the Reynolds number and 
geometric ratios on vortex shedding. They were able to identify five regimes, namely lock-in, intermittent lock-
in, no lock-in, subharmonic lock-in and shear-layer reattachment regimes. Recent numerical studies remarked 
the formation of vortex structures in a flow passing confined yawed cylinders12.

Generally, the hydraulic performance of unit cells is expected to depend on the configuration and geometry 
of the internal structures, often quantified through empirical correlations that spring from specific experimental 
measurements. In many of these devices consisting of periodic assemblies, the flow patterns repeat in each unit 
cell, hence, the information related to a representative unit cell can be utilized to express the overall hydraulic 
behavior of the structures by means of multiscale models1314. In these symmetric cases, it is often possible to 
reduce the degree of specificity applying general conservation principles. A typical example is the discharge 
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equation of orifice plates15. In the particular case of inclined rods, either in confined or open flows, there is an 
interesting criterion often cited in the literature and used by designers, which associates the main hydraulic 
magnitudes (e.g., pressure drops, forces, vortex shedding frequency, etc.) to the component of the flow perpen-
dicular to the axis of the cylinders. This is often referred to as the independence principle and assumes that the 
flow dynamics is mostly driven by the inflow normal component, and that the axial component aligned with the 
cylinder axis has a negligible impact. Although no consensus exists in the literature regarding the range of valid-
ity of this criterion, in many cases it provides useful estimations within the experimental uncertainties typical 
of empirical correlations. Recent studies of the validity of the independence principle include vortex-induced 
vibrations16 and single and two-phase average drag417.

In the present work, the results of a study of the internal pressures and the pressure drop in a channel with a 
transverse line of four inclined cylindrical rods are presented. Three rod assemblies having different diameters 
are measured, varying the inclination angle. The general goal is to study the mechanisms relating the pressure 
distribution on the rods surface with the overall pressure drop of the channel. The experimental data is analyzed 
applying the Bernoulli equation and momentum conservation principles, to assess the validity of the independ-
ence principle. Finally, dimensionless semi-empirical correlations are produced that can be useful for designing 
similar hydraulic units.

Experimental setup and method
The experimental setup consists of a rectangular test section that receives an air flow provided by an axial blower. 
The test section hosts a cell composed of two parallel central rods and two half rods embedded in the channel 
walls as shown in Fig. 1e, all of them having the same diameter. Figure 1a–e show the detailed geometry and 
dimensions of each part of the experimental setup. Figure 3 shows the flow setup.

Three sets of rods with different diameters are tested. Table 1 lists the geometric characteristics of each case. 
The rods are mounted on a protractor so that their angle respect to the flow direction can be varied between 
90° and 30° (Figs. 1b and 3). All rods are made of stainless steel, and they are centered keeping the same gap 
distance between them. The relative position of the rods is fixed by two spacers located outside the test section.

The inlet flow rate to the test section is measured by means of a calibrated Venturi Tube, shown in Fig. 2, which 
is monitored with a DP Cell Honeywell SCX. The fluid temperature at the exit of the test section is measured with 
a PT100 thermometer, and it is controlled at 45 ± 1 C°. To ensure a planar velocity profile and reduce turbulence 
levels at the channel inlet, the incoming flow is forced through three metallic screens. A settling distance of 
approximately 4 hydraulic diameters was taken between the last screen and the rods, whereas the outlet has a 
length of 11 hydraulic diameters.

The pressure on the surface of one of the central rods is monitored through a 0.5-mm pressure tap at the 
middle plane of the test section. The pressure tap diameter corresponds to 5° angular span; hence the angular 
precision is approximately 2°. The monitored rod can be rotated around its axis, as can be seen in Fig. 3. The 
difference between the rod surface pressure and the pressure at the inlet of the test section was measured with a 
differential DP Cell Honeywell SCX Series. This pressure difference was measured for each arrangement of bars, 
varying the flow rate, the inclination angle, α , and the azimuthal angle, θ.

Results
The goal of the experiment is measuring and interpreting the pressure drop between the channel inlet and the 
pressure on the surface of the central bar, for different azimuthal and inclination angles, θ and α . In order to 
generalize the results, the pressure difference will be presented in dimensionless form as the Euler number:

where ρ is the fluid density, ui is the average inlet velocity, pi is the inlet pressure and and pw is the pressure at a 
given point of the rod wall. The inlet velocity was fixed within three different range levels determined by the open-
ing of the inlet valve. The resulting velocities range between 6 and 10 m/s, corresponding to channel Reynolds 
numbers, Re ≡ uiH/ν (where H is the height of the channel and ν is the kinematic viscosity) between 40,000 
and 67,000. The rod Reynolds numbers ( Re ≡ uid/ν ) range between 2500 and 6500. The turbulent intensities 
estimated through the relative standard deviation of the signal recorded in the Venturi tube averages 5%.

Figure 4 shows the dependence of Euw with the azimuthal angle θ , parametrized by three inclinations, α = 
30°, 50° and 70°. The measurements are separated in three graphics according to the diameter of the rods. It can 
be seen that the resulting Euler numbers, within the experimental uncertainties, are independent of the flow 
rate. The general dependence with θ follows the usual trend of the wall pressure about the perimeter of a round 
obstacle. At angles facing the flow, i.e. θ from 0 to 90°, the rod wall pressure decreases reaching a minimum 
value at 90°, corresponding to the gap between bars where the velocity is maximum due to the restriction of the 
flow area. Following, there is a pressure recovery for θ from 90° to 100°, and afterwards the pressure remains 
uniform due to the separation of the boundary layer at the back the rod wall. Notice that there is no shift of the 
angle of minimum pressure, indicating that possible interference from adjacent shear layers, like Coanda effect, 
are of secondary nature.

In what follows, we present an analysis of the results based on the hypothesis that the Euler number can 
be estimated solely by geometric parameters, namely, the characteristic length-ratios d/g and d/H (where H 
is the height of the channel), and the inclination angle α . A popular practical rule of thumb states that the 
fluid–structure forces on yawed rods are determined by the projection of the inlet velocity normal to the rods axis, 

Euw ≡
pw − pi
1

2
ρu2i

(1)
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Figure 1.   a Inlet section (lengths in mm). Created with Openscad 2021.01, openscad.org b. Main test section 
(lengths in mm). Created with Openscad 2021.01, openscad.org c Cross view of the main test section (lengths in 
mm). Created with Openscad 2021.01, openscad.org d Outlet section (lengths in mm). Created with Openscad 
2021.01, openscad.org e Exploded view of the test section. Created with Openscad 2021.01, openscad.org.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6170  | https://doi.org/10.1038/s41598-022-10204-0

www.nature.com/scientificreports/

Table 1.   Rods’ diameter (d), gap between rods (g) for each arrangement. The tolerance is 0.05 mm.

d (mm) g (mm) d/g

10.86 1.99 5.45

8.30 4.55 1.82

6.50 6.35 1.02

Figure 2.   Diagram of the Venturi tube used to measure the inlet flow rate (lengths in mm). Created with 
Openscad 2021.01, openscad.org.

Figure 3.   Flow setup. The channel walls are shown in grey. The flow goes from left to right and is obstructed by the 
rods. Note that the view “A” is normal to the rods axis. The external rods are semi-embedded in the lateral channel 
walls. The protractor is used to measure inclination angle α . Created with Openscad 2021.01, openscad.org.
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un = uisinα . This is sometimes referred as the independence principle. One of the goals of the following analysis 
is to check whether this principle holds in our case, where flow and obstacles are confined inside a closed channel.

Let us consider the pressure measured at the front of the surface of the middle rod, i.e., θ = 0. According to 
the Bernoulli equation, the pressure at that position, po , satisfies:

where uo is the fluid velocity adjacent to the rod wall at θ = 0, and we are assuming that the irreversible losses are 
relatively small. Notice that the dynamic pressure is cast independently in the kinetic energy terms. If uo were 
null (i.e., stagnation conditions) the Euler number should be unity. However, it can be observed in Fig. 4 that 
at θ = 0 the resulting Euw are close but not exactly equal to that value, particularly for larger inclinations. This 
suggests that the velocity on the rod surface at  θ = 0 does not vanish, which can be chocked up to the upward 
deflection of the current lines produced by the inclination of the rods. Since the flow is confined at the top and 
the bottom of the test section, such deflection should generate a secondary recirculation that increases the axial 
velocity at the bottom and reduced the velocity at the top. Assuming that the magnitude of the mentioned deflec-
tion is the projection of the inlet velocity over the axis rod (i.e., uicosα ), the corresponding Euler number results:

Figure 5 compares Eq. (3) with the corresponding experimental data, showing good agreement. The average 
deviation is 25% with 95% confidence level. Notice that Eq. (3) is in agreement with the independence principle. 
Likewise, Fig. 6 shows that the Euler numbers corresponding to the pressure on the surface at the back of the rod, 
p180 , and at the exit of the test section, pe , also follows a trend proportional to sin2α . However, in both cases, the 
coefficient depends on the rods diameter, which is reasonable since the latter determines the obstructed area. 
This feature is similar to the pressure drop across an orifice plate, where the flow passage is partially reduced at 
a certain location. In the present test section, the role of the orifice is played by the gap between bars. In such 
cases, the pressure experiences a substantial drop at the restriction and is partially recovered in the backward 
expansion. Viewing the restriction as a blockage in the direction normal to the rods axis, the pressure drop 
between the front and the back of the rods can be written as18:

(2)po − pi =
1

2
ρ
(

u2i − u2o
)

(3)Euo ≡
po − pi
1

2
ρu2i

= sin
2α

Figure 4.   Variation of the wall Euler number around the rod for different inclinations angles and rod diameter. 
Created with Gnuplot 5.4, www.​gnupl​ot.​info.

http://www.gnuplot.info
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Figure 5.   Variation of the wall Euler number at θ = 0 with the inclination angle. The curve corresponds to 
Eq. (3). Created with Gnuplot 5.4, www.​gnupl​ot.​info.

Figure 6.   Variation of the wall Euler number, at θ = 180
o (full symbols) and the exit, (empty symbols) with the 

inclination angle. The curves corresponds to the independence principle, i.e., Eu ∝ sin
2α . Created with Gnuplot 

5.4, www.​gnupl​ot.​info.

http://www.gnuplot.info
http://www.gnuplot.info
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where cd is a drag coefficient accounting for the partial pressure recovery between θ = 90° and θ = 180°, and Am 
and Af  are the minimum and free cross section per unit length normal to the rod axis, which are related to the 
rod diameter by Af /Am =

(

g + d
)

/g . The corresponding Euler number is:

Figure 7 shows the dependence of Eu0−180/sin
2α with d/g showing excellent agreement with Eq. (5). The 

resulting drag coefficient is cd = 1.28± 0.02 with 67% confidence. Likewise, the same graphic also shows that 
the total pressure drop between the inlet and the outlet of the test section follows a similar trend, but with a dif-
ferent coefficient accounting for the pressure recovery in the backspace between the bars and the channel exit. 
The corresponding drag coefficient is cd = 1.00± 0.05 with 67% confidence.

Pressure on  the  rod surface at θ = 90
o.  The minimum pressure on the rod surface, p90 , at θ = 90°, 

requires a special treatment. According to the Bernoulli equation along a current line passing through the gap 
between bars, the pressure, pg , and the velocity,ug , at the center of the gap between bars (which coincides with 
the middle point of the channel) are related by:

The pressure pg can be related to the rod surface pressure at θ = 90° by integrating the pressure profile across 
gap separating the central rods between the middle point and the wall (see Fig. 8). The balance of forces gives19:

where y is a coordinate that goes from the center point of the gap between the central rods perpendicularly to 
the rod surface, and  K is the curvature of the current line at position y . To produce an analytical assessment of 
the pressure on the rod surface, let us assume that ug is uniform and that K

(

y
)

 is linear. These assumptions were 
verified with numerical calculations. At the rod wall the curvature is determined by the ellipsoidal section of the 
bar at angle α , namely, K

(

g/2
)

= (2/d)sin2α (see Fig. 8). Then, regarding that due to the symmetry the curvature 
of the stream lines vanishes at y = 0 , the curvature at a generic coordinate y is given by:

Integrating Eq. (7) gives:

(4)po − p180 = cd

(

A2

f

A2
m

− 1

)

1

2
ρu2n

(5)Eu0−180 ≡
po − p180

1

2
ρu2i

= cd

(

d

g
+ 2

)

d

g
sin

2α

(6)pi − pg =
1

2
ρ

(

u2g − u2i

)

(7)
dp

dy
= ρK

(

y
)

u2g

(8)K = −
4sin

2α

gd
y

Figure 7.   Dependence of the drag coefficient with d/g for the pressure drop between the front and the back of 
the rod (Eu0−180) and the total pressure drop between the channel inlet and outlet. The grey zones are the 67% 
confidence bands of the correlations. Created with Gnuplot 5.4, www.​gnupl​ot.​info.

http://www.gnuplot.info
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Combining Eqs. (6) and (9), ug can be calculated as:

where

On the other hand, by mass conservation, the average velocity 〈ug 〉 over the plane perpendicular to the flow 
at the measurement position is related to the inlet velocity as:

where Ai is the cross-section flow area at the channel inlet, and Ag is the cross-section flow area at the measure-
ment position (see Fig. 8) given respectively by:

It should be noticed that ug is not equal to 〈ug 〉 . In effect, Fig. 9 depicts the velocity ratio ug/〈ug 〉 , calculated 
from Eqs. (10)–(14), plotted against the ratio d/g . Although there is some dispersion, it is possible to identify a 
trend, which was approximated by a second order polynomial:

(9)p90 − pg = −
1

2
ρ

( g

d
sin

2α

)

u2g

(10)ug = ui

√

1− Eu90

1+
g
d sin

2α

(11)Eu90 ≡
p90 − pi
1

2
ρu2i

(12)�ug � = ui
Ai

Ag

(13)Ai = 3H
(

d + g
)

(14)Ag = Ai −
3π

4

d2

cosα

Figure 8.   Diagram of the characteristic cross sections, frontal (left) and from above (below). Created with 
Microsoft Word 2019,
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Combining Eqs. (10) and (15) yields:

where

Figure 10 compares the experimental results for Eu90 with Eq. (16). The average relative deviation is 25% 
with a confidence level of 95%.

(15)
ug

�ug �
∼= 1+ 0.41

d

g
+ 0.05

(

d

g

)2

(16)Eu90 = 1− Ŵ2

(17)Ŵ =







1+ 0.41
d
g + 0.05

�

d
g

�2

1− π
4

d
H

1

(1+
g
d )cosα







�

1+
g

d
sin2α

Figure 9.   Ratio between the maximum ug and the average 〈ug 〉 velocities at the central cross section of 
the channel . The solid and dashed curves corresponds to Eq. (5) and the bounds varying ±25% of the 
corresponding coefficients. Created with Gnuplot 5.4, www.​gnupl​ot.​info.

Figure 10.   Wall Euler number at θ = 90
o . The curve corresponds to Eq. (16). Created with Gnuplot 5.4, www.​

gnupl​ot.​info.

http://www.gnuplot.info
http://www.gnuplot.info
http://www.gnuplot.info
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Net force acting on the rods.  The net force, fn , acting on the central rod perpendicular to its axis can be 
calculated by integrating the pressure over the rod surface, as:

where the first coefficient is the rod length inside the channel and the integral is performed between 0 and 2π.
The projection of fn on the stream direction should match the pressure force between the channel inlet and 

outlet, barring friction forces parallel to the rods and minor momentum flux imbalances due to incomplete 
profile development at the back. Accordingly,

The coefficient 3 in Eq. (19) accounts for the three rods.
In dimensionless form, we can then write:

where

and

Figure 11 shows the plot of Eq. (20) for all the experimental conditions, showing good agreement. There is 
however a slight 8% bias to the right, which can be ascribed and used as an estimation of the momentum imbal-
ance between the channel inlet and the outlet.

Conclusions
The pressure at the rod surface wall and the pressure drop in a channel with a transverse line of four inclined 
cylindrical rods were measured varying the inclination angle of the rods. Three assemblies of rods with differ-
ent diameters were tested. Within the range of Reynolds numbers of the test, between 2500 and 6500, the Euler 
numbers are independent of the flow rate. The pressure on the surface of the central rod follows the usual trend 
observed in cylinders, with the maximum at the front, the minimum at the lateral gap between bars, and the 
partial recovery at the back due to the detachment of the boundary layer.

The experimental data were analyzed using momentum conservation considerations and semi-empirical 
assessments, searching for invariant dimensionless numbers that relate the Euler numbers with the characteristic 
dimensions of the channel and rods. All the geometrical characteristics of the blockage are fully represented by 
the ratios between the rods diameter and the gap between rods (in the lateral direction) and the channel height 
(in the vertical direction).

(18)fn =
H

sinα

d

2

∮

pw cos θdθ

(19)3fnsinα = 3H
(

d + g
)(

pi − pe
)

(20)Eu∮ = 2

(

1+
g

d

)

Eue

(21)Eu∮ ≡

∮

pw cos θdθ
1

2
ρu2i

(22)Eue ≡
pi − pe
1

2
ρu2i

Figure 11.   Balance of forces of the channel. The line corresponds to Eq. (20). The Pearson correlation 
coefficient is 0.97. Created with Gnuplot 5.4, www.​gnupl​ot.​info.

http://www.gnuplot.info
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It was found that the independence principle holds for most of the Euler numbers characterizing the pressure 
at different locations, that is, the group is independent of the inclination angle provided that the inlet velocity 
projection normal to the rods is used to non-dimensionalize the pressure. Moreover, it was shown that this feature 
is consistent with the mass and momentum conservation equations of the flow, which supports the mentioned 
empirical principle. Only the pressure on the rod surface at the gap between rods presents a slight deviation 
from this principle. Dimensionless semi-empirical correlations were produced that can be useful for designing 
similar hydraulic units. This classical methodology is in line with similar recently reported applications of the 
Bernoulli equation in hydraulics and hemodynamics20,21,22,23,24.

A particularly interesting result stems from the analysis of the pressure drop between the inlet and outlet of 
the test section. Within the experimental uncertainties, the resulting drag coefficient equals unity, which suggests 
the existence of the following invariant parameter:

Notice that the magnitude 
(

d/g + 2
)

d/g in the denominator of Eq. (23) is the magnitude within the paren-
thesis in Eq. (4), which otherwise can be calculated with the minimum and free cross section normal to the rods, 
Am and Af  . This suggests the conjecture that this invariant parameter might hold generally in channels obstructed 
by other yawed obstacles, like non-circular rods or grids, provided that the Reynolds number remains within 
the range of the current study (40,000–67,000 for the channel and 2500–6500 for the rods). It should be noted 
that if there are temperature differences inside the channel, the fluid density might be affected. In such cases, 
the relative variation of the Euler number can be assessed by the thermal expansion coefficient multiplied by the 
maximum expected temperature difference. 

Data availability
All data generated or analyzed during this study are included in this published article.
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