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Revisiting the standard 
for modeling the spread 
of infectious diseases
Michael Nikolaou 

The COVID-19 epidemic brought to the forefront the value of mathematical modelling for infectious 
diseases as a guide to help manage a formidable challenge for human health. A standard dynamic 
model widely used for a spreading epidemic separates a population into compartments—each 
comprising individuals at a similar stage before, during, or after infection—and keeps track of the 
population fraction in each compartment over time, by balancing compartment loading, discharge, 
and accumulation rates. The standard model provides valuable insight into when an epidemic spreads 
or what fraction of a population will have been infected by the epidemic’s end. A subtle issue, however, 
with that model, is that it may misrepresent the peak of the infectious fraction of a population, the 
time to reach that peak, or the rate at which an epidemic spreads. This may compromise the model’s 
usability for tasks such as “Flattening the Curve” or other interventions for epidemic management. 
Here we develop an extension of the standard model’s structure, which retains the simplicity and 
insights of the standard model while avoiding the misrepresentation issues mentioned above. The 
proposed model relies on replacing a module of the standard model by a module resulting from Padé 
approximation in the Laplace domain. The Padé-approximation module would also be suitable for 
incorporation in the wide array of standard model variants used in epidemiology. This warrants a 
re-examination of the subject and could potentially impact model-based management of epidemics, 
development of software tools for practicing epidemiologists, and related educational resources.

The global epidemic of COVID-19 has brought to the forefront the importance of mathematical modelling in 
the development of strategies for managing the spread of infectious  diseases1–7. Terms such as flattening the 
curve, R0, or herd immunity, which entered public  discourse8 emerge from mathematical models that purport to 
provide useful predictions and thus to help guide effective management  strategies9. A basic class of such models 
separates a population into various compartments—each comprising individuals at a similar stage before, dur-
ing, or after infection—and keeps track of the population fraction in each compartment over time, by balancing 
loading, discharge, and accumulation rates. The archetype for this modelling approach is the celebrated SIR 
model  structure10–17 which splits a population into three compartments: susceptible (S) to the infection, infec-
tious (I), and the rest (R) being immune or removed from infectious by recovery or death. The dynamics of how 
individuals move from S to I to R was developed almost a century ago in a mathematical modelling tour-de-
force by Kermack and  McKendrick18 who derived a general, if elaborate model structure in Eqs. (11)–(15) of 
their landmark paper. In the same publication (Eq. (29) ibid.) these authors also presented a well characterized 
special case in the form of the following three simple ordinary differential equations (ODEs) comprising the 
widely used standard SIR model:

where s, i, r are the susceptible, infectious, and removed fractions of a fixed-size population, respectively;  β , γ are 
infectivity and discharge constants, respectively; and each of the Eqs. (1)–(3) can be derived from the remaining 
two using the compatibility condition

(1)s′(t) = −βs(t)i(t)

(2)i′(t) = βs(t)i(t)− γ i(t)

(3)r′(t) = γ i(t)
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The great value of the SIR model is not merely that it can fit data (as already shown by Kermack and McKend-
rick in the same publication) but that it can also provide two deep and insightful conclusions about the dynamics 
governing the course of infectious disease epidemics. The first conclusion concerns the Threshold Theorem:

…there exists a critical or threshold density of population. If the actual population density be equal to (or 
below) this threshold value the introduction of one (or more) infected person does not give rise to an epidemic, 
whereas if the population be only slightly more dense a small epidemic occurs (ibid., p. 701).

The second conclusion concerns the long-term behavior of s, i, r at the asymptotic end of an epidemic:

… the course of an epidemic is not necessarily terminated by the exhaustion of the susceptible members of the 
community. … the termination of an epidemic may result from a particular relation between the population 
density, and the infectivity, recovery, and death rates. (ibid., pp. 701, 702, and Eq. (20))

These conclusions are fairly robust, whether the general or the simplified version (Eqs. (1)–(3)) of the Ker-
mack-McKendrick model is  considered15,18. In fact, it immediately follows from stability analysis of Eqs. (1) and 
(2) that the threshold value for s implied by the SIR model is

where R0 (introduced as such  later15,19,20) is the basic reproductive ratio, widely considered “one of the most 
critical epidemiological parameters”11,21. It also  follows18 from Eqs. (1)–(3) that the total fraction of individuals 
infected throughout an epidemic, r(∞) , is the real solution of the transcendental algebraic equation

as depicted in Fig. 1. That figure shows the rapid escalation of r(∞) as R0 rises above 1, given an initially sus-
ceptible population (In fact, making time dimensionless as η def= γ t , immediately transforms Eqs. (1) and (2) to 
s′(η) = R0s(η)i(η), i

′(η) = (R0s(η)− 1)i(η) , whose only parameter is R0).
The above two quantitative predictions by Eqs. (5) and (6) lend exceptional value to the SIR model, both 

conceptually and computationally. For instance, they can be used to assess herd  immunity11 for a population, 
corresponding to an estimated value of R0 achieved by non-pharmaceutical or pharmaceutical  interventions22. 
Or, conversely, for an epidemic that ran its course or in development, data can be used to gauge an overall or 
temporary value of R021.

However, as we will substantiate in the next section, there are another two important quantitative predictions 
of the standard SIR model that, we argue, can be problematic (see Fig. 1 for visualization):

(4)s(t)+ i(t)+ r(t) = 1

(5)sthreshold =
γ

β

def=
1

R0

(6)ln
1− r(∞)

s(0)
+ (1− r(∞)− s(0))R0 = 0

Figure 1.  Top: Qualitative trends of individual (left) and stacked (right) profiles for s, i, r fractions of a 
population in a spreading epidemic, from initiation to termination. Bottom: Total fraction of a population 
infected by the end of an epidemic, r(∞) = 1− s(∞), as a function of the basic reproductive ratio R0

def= β
γ
, 

according to Eq. (6).
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(a) The peak value, i∗ , of the infectious fraction, i , which may be misrepresented by as much as a factor of about 
2, and

(b) the exponential growth rate of the infectious fraction, i , which is also misrepresented by as much as a factor 
of about 2, with corresponding misrepresentation of the time to peak, t∗.

The above two shortcomings are not confined to the standard SIR model but, as we elaborate in the next 
section, are far more pervasive and reach a wide area in compartment-based epidemiology modeling spanned 
by SIR variants.

To start with, good prediction of both the infectious peak, i∗ , and the time to that peak, t∗ , is of paramount 
importance when considering management strategies for an epidemic. This is because i∗ and t∗ significantly affect 
the resources needed for care of infectious patients. To wit, calls for Flattening the Curve22 during the COVID-19 
epidemic aimed precisely at lowering i∗ and thus averting the overwhelming of medical care  resources23.

In addition, good estimates of R0 from data of exponential growth during the spread of an epidemic are critical 
for assessing the situation and for designing effective  interventions9,21.

Furthermore, and more importantly, to the extent that predictions of the infectious peak and time-to-peak by 
the standard SIR model may be problematic, the problem is not confined to the I compartment of the standard 
SIR model. Rather, it may be endemic (no pun intended) in the numerous possible variants of compartment-
based epidemiology models with loading and discharge terms. Such variants include a variety of compartments 
with corresponding arrangements and interactions (e.g., SEIR, SI, SIS, or  similar24), multiple subpopulations (e.g., 
of different age and/or social contact  structure11,16,17,25), spatial variation in addition to temporal (entailing partial 
differential  equations11), and any combinations thereof, which collectively lead to diverse stratification  patterns26. 
In the voluminous literature dealing with such models, the discharge rate from a compartment is virtually always 
represented by a term similar to the term −γ i(t) of Eq. (2)27. In fact, this practice is so widespread in the entire 
literature of  epidemiology11,15,28–30 that it is selected, perhaps uncritically, even in advanced modeling efforts 
which employ sophisticated tools (e.g., automated algorithmic discovery31) in attempts to uncover more realistic 
expressions for infection dynamics. It is plausible, therefore, to claim that peak and time-to-peak predictions 
for a related compartment in any of these models may be as problematic as the corresponding predictions of the 
simple SIR model, with similarly adverse consequences.

Of course, for more accurate predictions, one could forego the simplifying assumptions leading to Eqs. (1)–(3) 
and its variants, in favor of the general time-varying integrodifferential equation patterns introduced by Kermack 
and  McKendrick12,29,32. This, however, would significantly increase complexity of analysis and  use32, which partly 
explains the popularity and underscores the importance of simplified models such as SIR.

Consequently, a natural question arises: Given the aforementioned shortcomings of the standard SIR model, 
is there a mathematical model of comparable simplicity to Eqs. (1)–(3) that retains the two sound conclusions 
about the epidemic threshold (Eq. (5)) and long-term epidemic course (Eq. (6)) while avoiding the two issues 
mentioned above, namely misrepresentation of the infectious peak, i∗, and time to that peak, t∗?

Here, we constructively answer this question in the positive. Using a combination of Laplace transforms and 
Padé approximations to describe compartment discharge dynamics, we develop in the “The Padé SIR model 
structure” section (Eqs. (12) and (13)) of similar simplicity to SIR. The Padé SIR structure produces the exact 
same threshold and long-term values (Eqs. (5) and (6)) as Eqs. (1)–(3), while predicting more realistic infectious 
peak and time to peak for a wide range of practically significant cases. More importantly, because the proposed 
structure relies on replacement of the discharge term −γ i(t) in the I module of the SIR Eq. (2) without increasing 
complexity, it can be used widely in the large array of compartment-based epidemiology models to realistically 
represent the dynamics of compartment discharge. This immediately prompts a re-evaluation and possible revi-
sion of the wide literature on compartment-based modeling in epidemiology inspired by the SIR model. It is 
emphasized that the preceding prompt is not motivated by a mere intent for higher accuracy; rather, the aim is 
to offer higher utility, in the spirit of George Box’s dictum “all models are wrong, but some are useful”33.

In the rest of the paper, we first present the significant merits and subtle issues of the SIR structure. Subse-
quently, we offer a remedy to these shortcomings, in the form of a new class of SIR variants (the Padé SIR model 
structure) whose properties and implications we explore for epidemiology modeling and epidemic management. 
Discussion and extensions follow, pointing to the usability of the proposed modeling approach and its applicabil-
ity to the wide class of compartment-based epidemiology models.

Methods
To provide context and intuition for the developments that follow, we will rely on the basic schematic of Fig. 2. 
Directly inspired by the original Kermack-McKendrick ideas, Fig. 2 shows how the stacked fractions s, i, r of 
a fixed-size population change during an epidemic, as individuals move from compartment S to I to R over 
time. Infectious individuals in the I compartment are discharged (to enter the R compartment) at times T ≥ 0 
after becoming infectious, where the infectious period T follows a cumulative distribution and corresponding 
 density18,29 defined in the standard way as F(θ)

def= P[T ≤ θ] and {(θ) = F ′(θ).
Simple balances around the boxed areas in Fig. 2 for a time-invariant cumulative distribution F(θ) (APPEN-

DIX A) yield the equation

(7)r(t) = r(0)+
∫

t

0
(1− r(0)− s(t − θ))F ′(θ)

︸ ︷︷ ︸

{(θ)

dθ
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which, combined with the infectivity Eq. (1) and the consistency Eq. (4) forms a general representation of the 
SIR system  dynamics29,32.

Selecting F  in Eq.  (7) to be the cumulative density function of the exponential distribution 
F(θ) = 1− exp(−γ θ)

def= F(γ θ) , one immediately gets the SIR model, Eqs. (1)–(3) (APPENDIX A). For that 
model, the parameter γ is the inverse of

the average infectious period … estimated relatively precisely from epidemiological data11.

As will be detailed in what follows, it is at this point where issues with peak and time-to-peak misrepresenta-
tions by the SIR model may originate:
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Figure 2.  Schematic of time-varying susceptible ( s, green), infectious ( i, orange), and removed ( r, blue) 
fractions of a fixed-size population after an initial infection, i0, at discretized time t0 . Each new part of the 
infectious fraction i (thick-framed orange rectangles) moves to the removed fraction, r (thick-framed blue 
rectangles) piecewise in a number of time steps following a certain distribution. The population eventually 
reaches a steady state at s∞, r∞ = 1− s∞, and i∞ = 0 . The pattern analogy with the stacked chart in Fig. 1 is 
evident.
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Heeding the above suggestion to use epidemiological data for direct estimation of the average, 1/γ , of the 
infectious period, T , is indeed sensible (in fact, necessary for a reasonable estimate). However, the associated 
distribution of T is typically far from exponential (because an exponential distribution would suggest, inter alia, 
that most infectious individuals leave the I compartment in zero time, an untenable assumption). Rather, T fol-
lows distributions with peak not near  zero34 as shown in Fig. 3 by the curves indexed by n ≫ 1 . The exact shape of 
these curves is not important; rather, these curves serve as examples of distributions f (γ θ) with peak not near 0.

The assumption of exponential distribution for the infectious period “has appeared in many epidemic models 
but has seldom been questioned”27 yet would be conveniently acceptable, if it did not lead to inadvertent out-
comes. Unfortunately it does, in the following subtle yet important way: While the same threshold and long-term 
values (Eqs. (5) and (6), respectively) would result from Eqs. (1), (7), and (4), and for practically any reasonable 
distribution of T with the same average, D def= 1/γ , (an insight already provided by Kermack and  McKendrick18) 
the estimated infectious peak and time to peak would be significantly affected by the kind of distribution consid-
ered, in an interesting fashion, as demonstrated in Fig. 4. This figure shows the profiles of the infectious fraction, 
i(t) , for the infectious period distributions in Fig. 3, with time in both dimensional and dimensionless form. The 
latter is in terms of dimensionless time t/D , because this simple transformation trivially makes the dynamics of 
all considered models dependent on R0 alone and allows for meaningful comparisons without loss of generality. 
The dimensional time is in days, to provide some context for epidemics such as COVID-19 with related  values34–36

What is remarkable in Fig. 4 is that while different distributions of T sharing the same average, D def= 1/γ , 
expectedly yield different profiles of i(t)27 these profiles quickly approach the profile corresponding to the unit-
impulse distribution shown in Fig. 3. For that distribution of T , it immediately follows from Eqs. (1), (7), and (4) 
(APPENDIX A) that the resulting dynamic model, which we will term dSIR, comprises the delay differential 
equation (DDE)

and the delay algebraic equations

with D def= 1
γ

 . Therefore, the dSIR model of Eqs. (9)–(11) constitutes a more realistic representation of spreading 
epidemic dynamics than the standard SIR model.

Delay differential equations (DDEs) such as the above have been a classic subject of study in  biology37,38). 
DDEs are generally perceived as more difficult to analyze than  ODEs32, p. 5 perhaps because of infinite spectra (for 
linear DDEs) or discontinuities in the derivatives of DDE solutions—albeit the corresponding theory for DDEs 
such as the above “does not present substantial additional difficulties” compared to  ODEs39, p]. 6. Nevertheless, 
even though Eqs. (9)–(11) have long been  known29 they are typically bypassed in favor of their ODE counterparts, 
Eqs. (1)–(3), along with their misrepresentations of the infectious peak and time to peak already discussed.

To address this issue, in the next section we derive novel approximations of the dSIR Eqs. (9)–(11) in the form 
of the Padé SIR ODEs, which have a number of advantages: While the Padé SIR model structure is as simple as 
that of the standard SIR model, Eqs. (1)–(3), and produces the same threshold and long-term values captured 

(8)
1

γ
= 8.4 days,β = γR0 days

−1

(9)s′(t) = βs(t)(s(t)− s(t − D))

(10)i(t) = s(t − D)− s(t)

(11)r(t) = 1− s(t − D)

Figure 3.  Sample cumulative distribution functions F(γ θ) (left) and corresponding probability distribution 
functions f (γ θ) = F ′(γ θ) (right) for discharge time, T , from the I compartment of a population. Curves follow 
the formulas F(γ θ) = 1− Ŵ(n,nγ θ)

Ŵ(n,0)  and f (γ θ) = F ′(γ θ), (see APPENDIX B). The exponential distribution 
with F(γ θ) = 1− e−γ θ (left) and f (γ θ) = e−γ θ (right) corresponds to n = 1 , whereas the impulse distribution 
with F(γ θ) = H(γ θ − 1) (unit step, left) and f (γ θ) = δ(γ θ − 1) (unit impulse, right) correspond to n = ∞ . 
All distributions are shown in terms of the dimensionless variable γ θ and have the same average equal to 1.
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by Eqs. (5) and (6), it produces more realistic representations for the infectious peak and time to peak than the 
standard SIR ODEs. As such, the Padé SIR model structure not only creates an alternative to the standard SIR 
model but also provides a general module that can be immediately incorporated in the wide variety of compartment-
based models used in epidemiology.

Main results
The Padé SIR model structure. Combining Laplace transforms with first-order Padé approximation (a 
popular approach for approximating transcendental transfer functions by polynomial rational fractions in auto-
matic  control40,41) one can show (APPENDIX C) that Eqs. (9)–(11) of the dSIR model can be approximated by 
the first-order Padé SIR model, comprising Eqs. (1), (4), and the novel ODE

(12)i′(t) =
2

D



 Dβ
����

R0

s(t)− 1



i(t)

Figure 4.  Response of the infectious fraction, i(t) , according to the model of Eqs. (1), (4), and (7), for 
distributions shown in Fig. 3. Note that the distribution for n = 4 is closer to the exponential distribution 
(n = 1) than to the impulse distribution (n = ∞) in Fig. 3, yet the response of i(t) for n = 4 is a lot closer to the 
response for n = ∞ rather than to that for n = 1.
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where D is the value of the infectious period, T .  Note that the only difference between the above Eq. (12) and 
its standard SIR counterpart, Eq. (2), is simply the factor 2. Yet this difference has significant implications, to 
be highlighted shortly.

For better approximation of Eqs. (9)–(11) one can use a second-order Padé approximation to obtain (APPEN-
DIX C) the second-order Padé SIR model, which comprises Eqs. (1), (4), and the second-order ODE

in place of the SIR model’s Eq. (2).

Why Padé SIR? A basic merit of the Padé SIR model is illustrated in Fig. 5, which shows that the profiles of 
i(t) obtained by numerically integrating the (first- or second-order) Padé SIR models are close to that produced 

(13)i′′(t) =
12

D2



 Dβ
����

R0

s(t)i(t)− i(t)−
D

2
i′(t)





Figure 5.  Comparison of the infectious fraction profiles, i(t) , resulting from the dSIR, Padé SIR (first- and 
second-order), and SIR models for different values of R0.  Note that for relatively moderate values of R0 both 
Padé SIR models approximate the dSIR model well, whereas for large values of R0 the Padé-2 SIR remains a 
usable approximator while the Padé-1 SIR model approaches its usefulness limits.
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by the dSIR model for a range of values of R0 , but far from the corresponding profile produced by the standard 
SIR model.

Note that the approximation in Fig. 5 depends on R0
def= βD and deteriorates as R0 takes values farther away 

from 1, as expected by the properties of Padé approximants. In fact, the first-order Padé SIR model should be 
used with caution for R0 ≥ 2 , because it would yield negative early values of r(t) , as can be immediately deduced 
by linear analysis of the corresponding third ODE, r′(t) = −s′(t)− i′(t) = −R0

D s(t)i(t)+ 2
D i(t) , which implies 

r(t)− r ≈ 2−R0
D i(t) ; and the same model, for larger R0 ≥ 2 , would produce peak values of i(t) > 1 , which is 

clearly meaningless. However, as shown in Fig. 5, the predictions of i∗ by the first-order Padé SIR remain remark-
ably close to those of the dSIR model, even for fairly large R0 well above 2. This behavior of approximation 
accentuates the value of the Padé SIR model, as values of R0 close to (or lower than) 1 would be far more desirable 
than values well above 1 (Fig. 1). Of course, one could easily extend the Padé SIR model to yield r(t) values in 
the interval [0, 1] through the simple modification r′(t) = max

(

−R0
D s(t)i(t)+ 2

D i(t), 0
)

 , as indicated for R0 = 5, 6 
in Fig. 5.

Figure 5 also shows profiles of i(t) by the second-order Padé SIR model, and indicates that Padé approxima-
tions of third or higher order could be used in an similar way, but the point of diminishing returns would be 
quickly reached, as model complexity would increase a lot more quickly than quality of approximation.

Before discussing the important consequences implied by the Padé SIR model, relevant properties of that 
model are briefly summarized next, to better support the consequences established thereafter.

Comparative summary of important properties of the Padé SIR models. The models considered 
can be analyzed using standard ODE or DDE theory, as already mentioned. Therefore, only aspects that bear 
insight or novelty will be discussed and corresponding comparisons will be made.

Instability at equilibrium and epidemic outbreak. It can be shown (APPENDIX D) that an equilibrium point, 
{ s = s̄, i = 0, r = 1− s̄ } of the dSIR or of the Padé SIR model is stable and an epidemic outbreak does not occur 
iff s is below the threshold in Eq. (5). This result is in fact anticipated by the original Kermack and McKendrick 
analysis.

Final values of {s, i, r}. It can be shown (APPENDIX E) that at the end of an epidemic that started at s(0) ≈ s, 
i(0) ≈ 0, and r(0) ≈ 1− s, the total fraction of infected throughout the epidemic is

for all four models, where R0
def= βD = β/γ and W is the Lambert function42, whose importance in epidemiol-

ogy modeling appears to have been recognized only  recently43 (note that  sβD def= sR0 > 1 is required for the 
epidemic to spread). Equation (14) is the analytical solution of Eq. (6) and is precisely what is depicted in the 
graph of Fig. 1 for s(0) ≈ 1.

Exponential rate of epidemic spread. For the early part of a spreading epidemic, it can be shown (APPENDIX 
F) that the infectious fraction, i(t) , follows the approximately exponential growth

according to the two Padé SIR models, or

according to the dSIR model, where the constants a ≪ b in Eq. (17) are in terms of R0
def= βD (APPENDIX F). 

By comparison, the early growth of i(t) according to the standard SIR model in Eqs. (1)–(3) is

(14)r(∞) = 1+
W

[
−R0s(0)exp(−R0s(0))

]

R0

(15)
i(t)

i(0)
≈ exp






2(R0s − 1)
� �� �
p0,Padé−1SIR

t

D
����
η







(16)
i(t)

i(0)
≈ exp







�
−3+

√
12R0s − 3

�

� �� �
p0,Padé−2SIR

t

D
����
η







(17)
i(t)

i(0)
≈ a+ b exp







�
sR0 +W

�
−(sR0)e

−sR0
��

� �� �
p0,dSIR

t

D
����
η







(18)
i(t)

i(0)
≈ exp



(R0s − 1)
� �� �

p0,SIR

γ t
����
η
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where R0
def= β/γ . Note that in all four Eqs. (15)–(18) the rates p0 depend on R0s alone, as is anticipated by the 

corresponding dSIR, Padé SIR, and SIR models, for which introduction of the dimensionless time η = γ t
def= t/D 

leaves R0 as the only remaining parameter in the corresponding equations. Therefore, the above exponential 
rates p0 are shown as functions of sR0 in Fig. 6. Note that s = 1 for an epidemic without prior immunity in the 
population.

It is evident in Fig. 6 that the rates (or doubling periods) corresponding to the Padé SIR and dSIR models 
differ from their SIR counterparts by a factor of about 2, for sR0 not much higher than 1. This agrees well with 
the more rapid early rise of i(t) from numerical integration of the dSIR and Padé SIR models compared to that of 
the SIR model, as shown in Fig. 5. Note again that despite these rate differences shown in Fig. 6, all four models 
considered eventually reach the same steady-state values, as captured by Eq. (14).

The importance of these discrepancies for estimation of R0 from early epidemic data will made clear shortly.

Peak of infectious fraction. While an analytical solution for i∗ according to the dSIR model is not obvious to the 
author, a good approximation can be easily obtained (APPENDIX G) through the first-order Padé SIR model, 
following the same approach taken for the SIR model, to get

The above i∗ , for the same R0 , is exactly double the i∗ of the standard SIR model, which is known to be

(APPENDIX G). This discrepancy accounts for the differences observed in Fig. 5 between the i∗ produced by 
the SIR and by the other three models considered. Obviously, this approximation breaks down for values of R0 
that yield i∗Padé−1SIR > 1 , a situation that would be expected for large values of R0 , as illustrated in the last plot 
(R0 = 6) of Fig. 5.

The discrepancy between the SIR and Padé SIR models also manifests itself in using them for model-based 
predictions that depend on parameter estimates driven by epidemiological data, as discussed in the next section.

Discussion and extensions
Model-based predictions form fitting epidemiological data. An immediate and important discrep-
ancy for the models discussed is in the estimation of R0 from epidemiological data on daily new cases during 
exponential growth, i.e. from i(t) or i′(t) , and from the average infectious period, D def= 1/γ . Figure 6 captures the 
relationship between the exponential growth rate p0 given a corresponding sR0 . Therefore, for s(t) ≈ s = 1 , it is 
standard to use a simple log-plot of daily new cases vs. time to estimate the slope p0 = ln(2)D/td of exp

(
p0t/D

)
 

(where td is the doubling period) and from that the resulting R0 . Following this procedure for s = 1 (no prior 
immunity) the two Padé SIR models, Eqs. (15) and (16), yield the novel R0 estimates

the dSIR model yields

(19)i∗Padé−1SIR = 2

(

s(0)−
ln(R0s(0))

R0
−

1

R0

)

(20)i∗SIR = s(0)−
ln(R0s(0))

R0
−

1

R0

(21)R0,Padé−1SIR =
p0

2
+ 1

(22)R0,Padé−2SIR =
(
p0 + 3

)2 + 3

12

(23)R0,dSIR =
p0

1− exp
(
−p0

)

Figure 6.  Dimensionless exponential rate,p0 , or doubling period, td/D (with respect to dimensionless time, 
η = γ t

def= t/D ) for the dSIR, Padé SIR, and SIR models, by Eqs. (17), (15), (16), and (18), respectively. The first 
three rates approach each other as sR0 approaches 1, whereas the SIR rate remains about half of the other two. 
The dashed portion of the Padé-1 SIR line is included only to indicate the trend, as the corresponding model 
would not be used in that range. Recall that p0 = ln(2)D/td and that s = 1 for an epidemic with no prior 
immunity.
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whereas the standard SIR model, Eq. (2), yields the well known  estimate9,21,44

The above Eqs. (21)–(24) can be visualized in Fig. 6 with p0 considered the independent variable. Note that 
R0,Padé−1SIR − 1 = R0,SIR−1

2  and R0,Padé−2SIR = R0,SIR−1
2

(

1+ R0,SIR−1
6

)

 and that R0,dSIR ≈ R0,Padé−1SIR for small 
p0.

The important message of Fig. 6 is that systematic error may arise in the estimation of R0 when using the 
standard SIR model. For example, taking D = 8.4days (Eq. (8) for COVID-19) and td = 2.3 days (corresponding 
to early COVID-19 spread in the  US45) yields R0,dSIR ≈ R0,Pade−2SIR = 3.2 vs. R0,SIR = 4 for tdD = 0.23 in Fig. 6. 
As td increases, the discrepancy between R0,dSIR or R0,Pade−2SIR on one hand and R0,SIR on the other becomes 
more pronounced.

Systematic errors in estimates of R0 have important implications. For example, the conceptual anticipation of 
total infected through the pandemic, as shown in Fig. 1, following Eq. (14), is going to be significantly affected. 
In addition, the infectious peak is also going to be affected in a non-trivial way, as shown in Fig. 7. In that figure, 
profiles of i∗ are plotted as functions of the exponential growth rate, p0 , through the following procedure: Given 
p0 , the corresponding values of R0 are computed according to the dSIR, Padé-1 SIR, Padé-2 SIR, and SIR models 
(Eqs. (21)–(24)) and, subsequently, values of i∗ are computed using Eq. (19) (Padé-1 SIR model) for the first 
three R0 values and Eq. (20) for the fourth value of R0 . For calibration, the dots in Fig. 7 represent calculation 
of i∗ through direct numerical integration of the dSIR Eqs. (9)–(11) for values of R0 computed using Eq. (23). 
There is remarkable closeness of i∗ values produced by the Padé SIR models to the ideal values produced by the 
dSIR model, contrasted to the distance of i∗ values produced by the standard SIR model.

The message from this exercise is that although adjusting the parameter R0 of the standard SIR model can 
fit data from exponential epidemic growth well, there will remain two significant problems, namely neither 
the estimated R0 nor the predicted i∗ will be represented well. The proposed model structures offer a better 
representation.

Analytical calculation of R
0
 to observe an upper bound on i∗. Of practical interest is the situation 

where an upper bound is placed on i∗, to avoid the overwhelming of hospitalization facilities during an epidemic. 
For that situation, Eq. (19) of the Padé-1 SIR model has an explicit analytical solution for the corresponding 
R0

def= βD as

where W−1 is the Lambert function of order −1 and typically s(0) ≈ 1 without prior immunity. By comparison, 
the standard SIR model yields

(24)R0,SIR = p0 + 1

(25)s(0)βD
def= s(0)R0 =

2W−1

(
i∗/s(0)−2

2e

)

i∗/s(0)− 2

Figure 7.  Predicted maximum infectious fraction, i∗ , based on the exponential rate, p0 , of an epidemic spread. 
The values of i∗ are calculated by (a) the analytical expression of the Pade-1 SIR model fed with estimates of R0 
from p0 according to the dSIR, Pade-1 SIR, and Pade-2 SIR models, (b) the analytical expression of the standard 
SIR model fed with an estimate of R0 from p0 according to the same model, and (c) numerically by integration of 
the dSIR model fed with an estimate of R0 from p0 according to the same model. The top graph is portion of the 
bottom graph at higher resolution.
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The values of R0 indicated by Eqs. (25) and (26), with corresponding definitions, are shown in Fig. 8. It is 
evident that the Padé SIR model places twice as tight a restriction on (R0 − 1) as the standard SIR model, if i is 
not to exceed the specified i∗ value. The implications of this result for tasks such as Flattening the Curve through 
interventions that adjust R0 are clear.

How does the Padé SIR model work? Underlying the Padé SIR model are constructs for approximating 
the unit-step cumulative distribution of the infectious time period, T , shown in Fig. 3 (n = ∞) , as explained in 
APPENDIX C. Graphs of these approximations and their corresponding formulas are presented in Fig. 9, along 
with the exponential and unit-step distributions for comparison. Note that the two Padé SIR distributions in 
Fig. 9 might appear absurd, as they involve negative values. However, this pattern turns out to yield acceptable 
values for the fractions s, i, r.

It should also be noted that Eq. (12) of the first-order Padé SIR suggests that the infectious loading rate 
remains R0D s(t)i(t) , whereas the infectious discharge rate appears as R0s(t)−2

D i(t) rather than −i(t)/D , suggested 
by Eq. (2). This is illustrated visually in Fig. 10 in two ways, both of which underscore the significant differences 
between the SIR model on one hand and dSIR and Padé SIR models on the other: First (top), a time-varying 
γ (t)

def= r′(t)/i(t) (following Eq. (3)) is shown, with the values of r′(t) and i(t) calculated by the first- or second-
order Padé SIR model with a fixed D . Note that the discrepancy between D and 1/γ (t) (shown as values of γ (t)D 
in Fig. 10) remains appreciable even for values of R0 close to 1. Second (middle and bottom), Fig. 10 shows in a 
stacked plot the differences between the fractions {s(t), i(t), r(t)} produced by the (first- or second-order) Padé 

(26)s(0)
β

γ

def= s(0)R0 =
W−1

(
i∗/s(0)−1

e

)

i∗/s(0)− 1

Figure 8.  Maximum value of R0 indicated by the Padé SIR and SIR models for i not to exceed i∗ when s(0) ≈ 1.

Figure 9.  Distributions F
(
θ
D

)
 of the dimensionless infectious period θ/D with average 1.  The curves shown 

imply that the newly infected are removed from the infectious compartment, I, according to the formulas shown 
(cf. Fig. 5). All distributions have the same average equal to 1, as also indicated by the shaded areas.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7077  | https://doi.org/10.1038/s41598-022-10185-0

www.nature.com/scientificreports/

SIR models and the SIR model. In addition to the clear difference in the time profiles and infectious fraction 
peaks, note that the horizontal slices of the orange segments, corresponding to the infectious period for each 
newly infected fraction (Fig. 2), remain constant (equal to D ) over time for the Padé SIR model, in contrast to 
the SIR model, for which the infectious period increases (Fig. 10, top).

The proposed approach in the context of Kermack and McKendrick. In the sentence right before 
they present their SIR model in Equ. (29) of their paper, Kermack and  McKendrick18 explain that this is a

special case in which φ and ψ are constants κ and l  respectively.

with (κ , l) refering to (β , γ ) of Eqs. (1)–(3), respectively. The assumption about constant φ is plausible, as it 
refers to the rate of spread of the epidemic (cf. Eq. (1)). While that parameter might change over time as a result 
of interventions taken to curb an epidemic, such changes could easily be reflected in the SIR model by a time-
varying φ (cf. β in Eqs. (1) and (2)). The assumption about constant ψ , however, as widely as it may have been 
used, is chosen for mathematical convenience rather than for reasonableness of representation:

If ψθ denotes the rate of removal, …, then the number who are removed from each θ group at the end of the 
interval t  is ψθvt,θ, (ibid., p. 703).

where

vt,θ shall denote the number of individuals in unit area at the time t  who have been infected for θ intervals 
(ibid., p. 702).

Figure 10.  Top: Comparison between the inferred time-varying γ (t) def= r′(t)/i(t) and the corresponding 
time-invariant 1/D = 0.12day−1 for various R0

def= βD in numerical integration of the first- 
(r′(t)/i(t) = βs(t)− 2/D) and second-order (r′(t)/i(t) = βs(t)− i′(t)/i(t)) Padé SIR equations. Middle and 
bottom: Stacked fractions {s, i, r} of a population through an epidemic for R0 = 1.5 according to the first- and 
second-order Padé SIR model, superimposed on the standard SIR model (cf. Figure 1). The horizontal slices 
of equal length D shown in the orange area for i(t) are the continuous counterparts of the same area in the 
discretized plot of Fig. 2.
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However, the rate of removal depends more on the duration over which individuals have remained infected 
and less on the size of that group. It is this simple fact that is critiqued here and alternatives for which are 
proposed.

Finally, it is fitting to quote Kermack and MacKendrick’s remarks on fitting field data from a plague outbreak: 
Along with using the SIR model, thereby assuming an exponential distribution of infectious time after infection, 
these authors explicitly state five additional simplifying assumptions (p. 715, ibid.) and warn that

deductions as to the actual values of the various constants should not be drawn. It may be said, however, that 
the calculated curve, …, conforms roughly to the observed figures.

Indeed, all four models considered in this study (dSIR, 1-/2- Padé SIR, and SIR) fit well the data mentioned. 
Yet, were these models to be used for fitting the early exponential spread of the epidemic, their projections would 
be quite different, as already elaborated on.

Extensions. As already mentioned, the proposed approach to compartment-based epidemiological mod-
eling is applicable to model structures with a variety of compartments and flows among them. For these struc-
tures, the corresponding ODE models resulting from compartment discharge rates proportional to the load of 
each corresponding  compartment14 can be immediately translated (a) from ODEs to DDEs with each compart-
ment delay equal to the average residence time of that compartment, and (b) from DDEs to (first- or second-
order) Padé approximations, which retain an ODE structure.

To substantiate these claims by an example, we briefly discuss next an extension of the ideas developed for the 
SIR structure to the SPIR variant that includes a compartment P between S and I (APPENDIX H). Individuals in 
the P compartment (equivalent to the E compartment in the standard SEIR  structure10,11,46,47) are asymptomatic 
infectious, that is they can transmit the disease before they enter the I compartment as symptomatic  infectious48 
a trait observed in several occasions, notably in the current COVID-19  epidemic23,49,50. Corresponding equations 
are shown in Table 1.

Figure 11 presents a comparison of profiles of i(t) which result from numerical solution of the dSPIR, Padé 
SPIR, and SPIR models. The values

relevant to COVID-1935,36 are used in all simulations with R0
def= βi

(
Di − Dp

)
+ βpDp.

Additional properties of the proposed SPIR models can be established in a similar  manner51 and will be 
explored in more detail elsewhere.

Finally, in situations where there are data to warrant it, one can relax the basic premise of the preceding dis-
cussion, namely that the dynamics of a system with S, I, R compartments will likely be close to the dynamics of a 
system with a step function as cumulative distribution F  of infectious period (Figs. 3 and 4). In such situations 
(e.g. models by Anderson et al.52) a corresponding SIR-like model structure can be developed that employs the 
ODE i′(t) = α

D (R0s(t)− 1)i(t) in place of Eq. (12), where the parameter α ( 1 ≤ α ≤ 2) is associated with the 
sigmoidicity of F . A full development of that case is presented in a separate  publication53.

(27)Dp =
1

α
= 5.1 days,Di − Dp =

1

γ
= 3.3 days

Table 1.  Equations for SPIR, dSPIR, Padé-1 SPIR and Padé-2 SPIR models. Note the correspondence 
Dp

def
= 1

α
,Di

def
= 1

α
+ 1

γ
> Dp . Also note that if βi = βp , treating p(t)+ i(t) as a single variable renders the SPIR 

structures similar to the SIR structures with similar dynamics.

s′(t) = −βi s(t)i(t)− βps(t)p(t)

p′(t) = βi s(t)i(t)+ βps(t)p(t)− αp(t)

i′(t) = αp(t)− γ i(t)

r′(t) = γ i(t)

s′(t) = −βi s(t)i(t)− βps(t)p(t)

p(t) = s
(
t−Dp

)
− s(t)

i(t) = s(t−Di)− s
(
t−Dp

)
=

= s(t−Di)− s(t)− p(t)

r(t) = 1− s(t−Di)

s′(t) = −βi s(t)i(t)− βps(t)p(t)

p′(t) = 2

(

βi s(t)i(t)+ βps(t)p(t)− p(t)
Dp

)

i′(t) = 2

((
1
Dp

− 1
Di

)

p(t)− 1
Di
i(t)

)

r(t) = 1− s(t)− p(t)− i(t)

s′(t) = −βi s(t)i(t)− βps(t)p(t)

p′′(t) = 12

D2
p




Dpβp
� �� �

R0p

s(t)i(t)− p(t)− Dp

2
p′(t)






i′′(t) = −p′′(t)+ 12

D2
i



Diβi
����

R0i

s(t)i(t)− i(t)− p(t)− Di
2

�
i′(t)+ p′(t)

�





r(t) = 1− s(t)− p(t)− i(t)
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Conclusion
We have made a case for revisiting the standard SIR model that describes the spread of infectious disease epidem-
ics. While that model features valuable insights, it also has fundamental shortcomings related to quantifying the 
spread of an epidemic, as detailed in the main text. Therefore, use of that model to manage an epidemic could 
have adverse consequences. A remedy to this problem is proposed in the form of the Padé SIR model structure, 
which retains all qualitative features of the standard SIR structure as well as its simplicity, yet mitigates its system-
atic errors. It is also noted that the remedy proposed is not confined to the standard SIR model, but is applicable 
to the numerous compartment-based epidemiological models that constitute SIR variants, a re-examination of 
which would be warranted. The tools developed here can be easily and transparently incorporated in related 
software for practitioners or  researchers44,54,55. Related formulas, derived in the main text, can be used both 
for epidemiological data processing to guide decision making as well as for theoretical analysis to advance the 
mathematical theory of epidemics.

Received: 7 January 2021; Accepted: 30 March 2022

Figure 11.  Comparison of the infectious fraction, i, produced by the dSPIR, Padé-1 SPIR, Padé-2 SPIR, and 
SPIR models for a number of values of R0 (cf. Figure 5). Note that the total infected fraction at any moment 
would comprise the sum of p and i fractions.
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