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Evaluating the job shop scheduling 
problem on a D‑wave quantum 
annealer
Costantino Carugno1,2*, Maurizio Ferrari Dacrema1 & Paolo Cremonesi1

Job Shop Scheduling is a combinatorial optimization problem of particular importance for production 
environments where the goal is to complete a production task in the shortest possible time given 
limitations in the resources available. Due to its computational complexity it quickly becomes 
intractable for problems of interesting size. The emerging technology of Quantum Annealing provides 
an alternative computational architecture that promises improved scalability and solution quality. 
However, several limitations as well as open research questions exist in this relatively new and rapidly 
developing technology. This paper studies the application of quantum annealing to solve the job 
shop scheduling problem, describing each step required from the problem formulation to the fine‑
tuning of the quantum annealer and compares the solution quality with various classical solvers. 
Particular attention is devoted to aspects that are often overlooked, such as the computational cost 
of representing the problem in the formulation required by the quantum annealer, the relative qubits 
requirements and how to mitigate chain breaks. Furthermore, the impact of advanced tools such as 
reverse annealing is presented and its effectiveness discussed. The results indicate several challenges 
emerging at various stages of the experimental pipeline which bring forward important research 
questions and directions of improvement.

Quantum computing is a computational architecture that uses quantum phenomena to offer a new paradigm that 
promises to revolutionize several scientific fields due to its superior computational power. Several algorithms have 
been developed for quantum computers that promise to pave the way for innovations in  chemistry1,  finance2, 
machine  learning3 etc. The practical applicability of these algorithms is however limited by the constraints of the 
current gate-based quantum computers, which are noisy and have an insufficient number of qubits.

Another paradigm is Quantum Annealing (QA), which uses special purpose devices able to rapidly sample 
optimal solutions of optimization problems with a certain structure. As opposed to gate-based quantum com-
puters, quantum annealers have a limited application scope but are both available with a much higher number 
of qubits and are more robust to noise. This has fuelled significant research from both industry and academia to 
explore the potential of this technology. Several formulations for important problems have been developed such 
as graph  partitioning4,5, feature  selection6, Support Vector  Machines7 and Restricted Boltzmann  Machines8,9. 
A number of important research questions remain open on how to successfully solve a problem on a quantum 
annealer, due to a multitude of factors: problem formulation, qubit connectivity, annealing schedule etc. These 
factors, however, are rarely discussed in papers that instead often focus on small proof-of-concept experiments.

This work studies a well-known problem in operation research: the Job Shop Scheduling Problem (JSSP). This 
problem has been selected for several reasons: (i) it is particularly difficult to treat for classical  solvers10; (ii) it 
has a broad applicability and an important impact in cost mitigation for production chains; (iii) the formulation 
required to solve it on a quantum annealer is not trivial and has a computational cost that cannot be ignored; 
(iv) the problem requires a large number of qubits even for small instances.

The application of Quantum Annealing to the JSSP is not new, Venturelli et al.11 benchmarked the JSSP on a 
D-Wave Two quantum annealer, although the small number of qubits available—512 qubits—only allowed for 
a limited analysis. More recently, a heuristic procedure to split JSSP instances into smaller ones was proposed 
and tested on a D-Wave 2000Q quantum  annealer12, which holds 2048 qubits. Lastly, several problems were 
successfully evaluated on a classical digital annealer that could handle up to 8192 variables, using the same JSSP 
formulation developed for quantum annealers, showing improved solution quality on some  instances13.

This work aims to provide a balanced discussion of the potential as well as limitations of currently available 
Quantum Annealing technology applied to selected instances of the JSSP, and reports a step-by-step analysis of 
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how to solve it on the new D-Wave Advantage quantum annealer, which possesses 5640 qubits. First, the prob-
lem formulation suitable for this device is presented and its computational cost discussed. Second, the impact 
of the embedding process of the problem into the quantum annealer is analyzed. Then, the paper reports an 
experimental analysis of the solution quality comparing both quantum and classical solvers on 116 problems of 
different sort. The paper also discusses the impact of several factors that can affect the solution quality, such as the 
number of solution sampled, the annealing duration, the chain strength, and the use of advanced controls such 
as Reverse Annealing. Overall, this work highlights both the prospects and the challenges of current available 
quantum technology applied to solving the JSSP, and puts forward several open research questions to highlight 
where further work is needed.

Quantum annealing on a D‑wave annealer
The term Quantum Annealing14 refers to a meta-heuristic that was proposed to minimize an objective function by 
leveraging quantum tunneling, i.e., the process that allows a particle to traverse a high energy barrier. Quantum 
Annealing shares a strong similarity with Simulated  Annealing15, which instead is limited to the simulation of 
thermal fluctuations and, as such, is more susceptible to being trapped into local optima surrounded by high 
“thermal jumps”. In Quantum Annealing there is a certain probability to tunnel through the energy barrier 
escaping the local optima. Quantum Annealing leverages well known physics and has been successfully applied 
to several tasks by simulating the process on classical systems. The key idea of a quantum annealer is to build a 
special-purpose physical device that naturally exhibits quantum tunneling to find low-energy states.

Solving an optimization problem on a quantum annealer requires to represent its objective function in terms 
of the energy landscape of the quantum device, i.e., the problem Hamiltonian. The quantum annealer works by 
starting from an initial default configuration and then slowly evolving the physical system introducing the energy 
components of the desired problem. The total Hamiltonian of the system is represented as an Ising model, which 
allows to encode the energy as a function of the qubit states by setting the interactions among them. D-Wave 
quantum annealers use an Ising that represents interactions of at most two qubits:

where σx and σz are matrices that represent the state of the system, i.e., the Pauli matrices, while h and J are 
parameters of the problem and allow to represent the desired energy function. The qubits are represented as 
spins, with eigenvalues {−1,+1} . The first term of the summation represents the initial state of the system, i.e., 
the tunneling Hamiltonian, where all qubits are in an equal superposition of both states. The second term is the 
final state of the system, the problem Hamiltonian, its lowest energy eigenvalue is the solution to the problem. The 
annealing process is controlled by functions A(s) and B(s), with s ∈ [0, 1] representing the stage of the annealing 
process, so that the problem Hamiltonian is introduced progressively. Note that on D-Wave quantum annealers 
the evolution schedule can be controlled by changing s. Under the ideal conditions of the adiabatic theorem16, if 
the annealing is slow enough the system remains in its lowest energy state throughout the process and reaches 
the ground state, i.e., the optimal solution, of the desired problem. Under a proper annealing  schedule17, Quan-
tum Annealing has been shown to be more effective than Simulated Annealing on problems such as Ising spin 
 glasses18, the traveling salesman  problem19, and some classes of non-convex  problems20.

The Ising notation derives from statistical mechanics. An alternative formulation, closer to operations 
research, is called Quadratic Unconstrained Binary Optimization (QUBO), where the spins are replaced with 
binary variables {0, 1} via a simple substitution and the energy landscape is represented as a square matrix Q:

 The problem matrix Q can be visualized with the corresponding problem graph, where each variable represents 
a node associated to its linear term, the bias, and the quadratic terms between them are edges, associated to a 
weight called coupling.

The analysis reported in this paper are based on the following three steps:

Embedding a QUBO problem on a quantum annealer In order to solve a problem on a quantum annealer, 
or Quantum Processing Unit (QPU) the problem graph must be mapped into the physical hardware, which 
has a limited number of qubits and connections between them. Therefore, it may be necessary to change the 
structure of the QUBO problem in such a way that it can be represented within the constrained topology of 
the quantum annealer. This process is called minor embedding and is computationally expensive, i.e., generally 
NP-hard, although polynomial-time heuristics exist. Improving the embedding algorithm is an important and 
active research  topic21,22. A specific example is that the topology of the D-Wave 2000Q QPU, called Chimera, 
an earlier version of the more modern Advantage, does not have triangular connections (see Fig. 1). In this 
case, a logical variable is represented with multiple physical qubits, also known as a chain, that will split the 
needed physical connections. Clearly, for a solution to be consistent, all physical qubits in a chain must have 
the same value. To achieve that, new energy components are added to the problem ensuring a strong correla-
tion between them. A chain is broken if at the end of the annealing process the qubits have different values. 
The strength of the correlation is a parameter that can be set according to a trade-off, if chosen too low many 
chains may break, if chosen too high it will hamper the ability of the qubits to change their state; both effects 
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can lower the solution quality. The number of qubits needed for a given QUBO problem depends on several 
factors: the QPU topology, the QUBO connectivity and ultimately the embedding algorithm.
Sampling solutions Given the embedding graph, the QPU can be programmed with the problem parameters 
(biases and couplers) and then the annealing process is performed. Although the adiabatic theorem requires 
a potentially very long annealing time to ensure the system remains in the ground state, this is not possible 
in practice as noise will push the state to higher energies. Therefore, a short annealing is performed which is 
repeated several times, in a stochastic process that samples from the energy distribution of the problem. In 
practice, finding the appropriate annealing time and number of samples depends on the problem itself and 
on the energy distribution, typical values are 10−100 µs and 10−104 samples.
Reverse annealing While the traditional Quantum Annealing starts from an initial superposition and then 
evolves towards the desired problem, it is also possible to use more advanced strategies. In Reverse Annealing 
(RA) the process begins from an already available solution and the evolution is run backwards, reintroducing 
part of the tunneling Hamiltonian and therefore re-establishing a partial quantum superposition, in order to 
further refine the initial solution. In practice, the s term that controls functions A(s) and B(s) starts from 1, 
is reduced to a desired value, e.g., 0.45, and then is increased to 1 again. Although RA has been successfully 
applied in several  tasks23–29, it is a substantially heuristic procedure, which depends on two critical param-
eters: the lowest value of the s parameter and the duration of the RA cycle. RA implements a local  search27 
in solution space that is governed by such parameters, which need to be chosen in a proper range in order 
to provide an improvement to the starting solution, i.e., high s values tend to conserve the initial solution, 
while lower s values explore a larger subspace but with a higher probability of obtaining a worse solution. The 
choice of optimal parameters was only recently explored with a machine learning approach using a Bayesian 
 optimizer28, but in previous cases simpler approaches, such as trial-and-error26 and grid  search27 have deliv-
ered practical improvements. Furthermore, RA refinements can be applied in succession, as a solution of a RA 
optimization can be used again in a new RA cycle, effectively implementing an Iterative Reverse Annealing 
(IRA) algorithm. In our work, in order to provide a simple and reproducible refinement component, we evalu-
ate both a regular RA with different annealing time and also a simple two-step IRA with decreasing s terms.

Job shop scheduling
This section introduces the Job Shop Scheduling Problem (JSSP) and its QUBO formulation.

Classical job shop scheduling. A job shop is an abstract model of a working location that is equipped with 
certain number of available machines. Each of these machines has a specific function in the productive chain of 
a job, which consists of an ordered series of operations. The machines can handle only one operation at a time 
and are able to work in parallel. The operations are executed on the machines according to a schedule. The aim 
of the optimization problem is to find the optimal schedule that minimizes the time required to complete all the 
jobs, i.e., the makespan. More formally, consider a problem instance that is made of a set of jobs J = {j1, . . . , jn} 
and a set of available machines M = {m1, . . . ,mk} . Each job consists of an ordered list of operations, oi , each 
with its own time-to-completion, pi : j1 = {(o1, p1) → (o2, p2) → . . . → (os , ps)} . Both operations and time-to-
completion use a single global index. In a general setting, different jobs might have a different number of opera-
tions each with its own time-to-completion. In order to be executed, each operation needs to be assigned to one 
of the available machines, {o1, . . . , oi} → {(o1,m1), . . . , (oi ,mk)} . A solution of the problem is feasible when no 
operations are superimposed on the same machine and the order of the operations within each job is preserved. 
A solution is a schedule that associates the operations to their starting time and machine:

where the index i represents the global operation index, k is the index of the machine and ti is the starting time of 
the operation as provided by the solver. The JSSP can be formulated as a general optimization problem: “find the 
schedule with the minimum total time to complete all operations”, i.e., the makespan, or as a decision problem: 
“is there a valid schedule with time less or equal to a certain given timespan?”.

S : {(o1,m1), . . . , (oi ,mk)} → {(o1,m1, t1), . . . , (oi ,mk , ti)},

A

B

C

(a) An example of problem graph with a triangular
structure, each variable is connected to both others.

A2 C - -

A1 B - -

(b) A possible embedding into a Chimera cell.

Figure 1.  Example of how a problem graph, (a) is embedded in the Chimera annealer topology, (b) an earlier 
version of Pegasus. Each node represents a qubit and each edge a connection. Each qubit is connected to 4 
others of the same cell and to others in different cells. The triangular problem graph cannot fit directly into the 
Chimera cell topology therefore the problem variable A becomes a logical variable represented by two different 
qubits A1 and A2 that will belong to a chain.
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This study focuses on the decision version of a selected cases of JSSP. First, jobs have fixed number of opera-
tions, equal to the number of jobs, i.e., |jn| = |J| , where || represents the cardinality of a set. Furthermore, each 
operation can be executed only on a specific machine which is chosen when the problem instance is created 
(differently from the flexible  JSSP13). This version of the JSSP therefore has as only degree of freedom choosing 
when each operation will start, taking into account the ordering of operations within a job and that there cannot 
be more operation running simultaneously on a machine.

Quantum job shop scheduling. This study focuses on the decision version of the JSSP and uses the for-
mulation introduced by Venturelli et al.11. The first step consists in formulating the decision problem as a Con-
strained Satisfaction Problem (CSP), asking whether there is a schedule that is shorter that a certain amount of 
time, i.e., the timespan. The QUBO model is composed of binary variables, each of which represents one opera-
tion per unit time, up to the timespan:

Due to this encoding, the total number of variables is Nx = No · timespan , where No is the total number 
of operations which in this special case of JSSP corresponds to |J|2 . The CSP needs to satisfy three constraints. 
Since QUBO problems do not allow hard constraints, soft constraints are used by introducing a penalty for 
solutions that violate them and the QUBO is then constructed using penalty functions h associated to each of 
these constraints:

One start constraint—An operation must start once and only once: 

Share machine constraint—There can only be one job running on each machine at any given point in time: 

 where pi is the time-to-completion of operation oi , Im is the set of all operations that are to be executed on 
machine, Am is used to enforce that the operations cannot start on the same machine when another one has 
already started on the same machine, and Bm is used to ensure that two operations do not begin at the same 
time on the same machine.
Precedence constraint—The constraint is based on the number of precedence violations between consecutive 
operations belonging to the same job. Given sn−1 and sn the last operations of job n− 1 and n: 

Finally, in order to penalize the solutions with larger makespan, a linear penalty h4(x) is added to the variable 
corresponding to the last starting time of the last operation of each job. This term is a diagonal and sparse 
contribution to the QUBO matrix. The resulting QUBO problem is then comprised of four terms, the con-
straints are each weighed with a penalty constant:

Experimental methodology
The experimental analyses reported in this study rely upon the D-Wave cloud interface that provides access to 
different QPUs as well as various software tools and classical solvers. The results include two different QPUs: the 
D-Wave Advantage (5640 qubits with a mean 15 connections per qubit) and to a lesser extent the older D-Wave 
2000Q (2048 qubits with a mean 6 connections per qubit). The minor embedding of the problem on the QPU is 
found with the minor-miner D-Wave  library30. As classical solvers are reported a steepest descent greedy solver, 
Tabu Search and Simulated Annealing. It is also included a D-Wave proprietary hybrid quantum-classical solver 
that was developed for problems that do not fit on the QPU directly.

In order to represent the decision version of the JSSP with the QUBO formulation described in “Quantum 
job shop scheduling” section the JSSP is first represented as a binary Constraint Satisfaction Problem, which is 
then transformed into the QUBO form. This operation requires three steps. First, all the constraint inequalities 
are converted into equalities in a process called binary expansion, that might require the introduction of new 
auxiliary variables. Second, the final energy function is created combining all constraints as penalties. The weights 
of each constraint, i.e., α , β and γ , are selected according to a penalty model16 in order to ensure that unfeasible 
solutions, i.e., solution violating constraints, will always have a worse energy compared to optimal solutions that 
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do not violate any constraint. In these experiments the penalties are chosen in such a way that each constraint 
violation increases the solution energy by 2. Finally, the QUBO problem is simplified by pruning variables associ-
ated to unfeasible solutions. Considering that within each job an operation cannot start until the previous ones 
are completed, for each operation i all variables xit with a t lower than the sum of the time-to-completion of all 
previous operations in the job are removed. The same is applied backwards by starting from the last operation 
of the job and assuming its starting time is the QUBO timespan.

In the experiments, QA is run for 20 µs with 103 samples, except for two experiments in “Instances with an 
unknown optimal solution” section using 100 µs or 104 samples. Reverse Annealing is benchmarked with 103 
samples from the best QA solution found, on two different time duration, 80 µs or 160 µs , and two different 
annealing parameter threshold: the first iteration starts from the best QA solution and uses an intermediate 
tunneling field (i.e., s is brought to 0.55), then a second step with a higher field (i.e., s = 0.30 ) is applied on the 
best RA solution.

Results
Results are reported on two different categories of JSSP instances: (i) instances with a known optimal solutions; 
(ii) instances without a known optimal solution. The first group is designed to study the computational cost of 
the QUBO generation and the impact of the timespan, while the second to evaluate the solution quality in a 
more realistic setting and compare various solvers.

Square instances with a known optimal solution. The first set of JSSP instances is constituted by toy 
models aimed at evaluating the resource scaling of the quantum JSSP. The JSSP instances are designed to have 
a specific optimal solution, in which all machines are employed at the same time on an operation pertaining to 
consecutive jobs. In these JSSP instances the number of jobs |J|, of machines |M| and of operations per job |O| is 
such that |J| = |M| = |O| = size with size a parameter used to define the instance. The instances are defined with 
a specific relation between the operations of the job and the machine they require. The first operation of each job 
requires a different machine, e.g., operation 1 of job 2 requires machine 2, operation 1 of job 5 requires machine 
5. The pattern repeats in a cycle, i.e., operation i of job n is assigned to machine (i + n− 1) rem |M| , where |M| 
is the number of available machines and rem is the remainder operation. Furthermore, all operations are set with 
time-to-completion equal to 1 time unit, in order to minimize the number of variables needed to represent the 
time dimension. The solution of the problem instance can be visualized in Fig. 2 as a Gannt chart, a special bar 
chart that illustrates the schedule, as provided by a solver.

These instances are designed in such a way that the optimal makespan is known a-priori and is equal to the 
size parameter. As described in “Quantum job shop scheduling” section the JSSP formulation as decision problem 
requires to set a certain timespan. In the QUBO formulation, if the problem has a solution with makespan lower 
than the timespan set, then a solution with energy equal to zero is sure to exist. Note that if the timespan is equal 
to the optimal makespan the resulting QUBO matrix will simply be diagonal and the solution of the instance is 
trivial. This experiment studies how changing the timespan with respect to a fixed makespan affects the size of 
the instance and the solution quality. Problem instances are generated with size of 2 up to 26 and then their qubit 
requirements and solution quality is evaluated at increasing timespans, i.e., size + 1 to size + 6.

Figure 2.  Solution schedules represented as a Gannt diagram for an instance of size 15 with a timespan set 
to 16. Each square represents an operation, the number inside indicates the job it belongs to. (Left) Quantum 
Annealing reaches the optimal solution. (Right) Simulated Annealing reaches an unfeasible solution. The 
operations that violate the share machine constraint by running simultaneously on the same machine are 
highlighted in red. Other operations violate the one start constraint and have not been scheduled.
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QUBO generation. The first observation concerns the high computational cost of the QUBO generation. Even 
though the number of constraints grows quadratically with respect to the size parameter, the subsequent pro-
cessing steps to combine the constraints and generate the penalty model result in an exponential time increase. 
This high computational cost is due to the penalty model which, given the CSP problem, combines all constraints 
and iteratively chooses the corresponding penalties, as described in “Experimental methodology” section. In 
particular, for instances larger than size 15 the most computationally intensive part is the selection of the pen-
alty for the one start constraint, i.e., h1. Due to this, the maximum instance size that was generated is 26, which 
requires more than 8 h to be represented as QUBO. Lastly, although the combination of initial size and timespan 
would correspond to 150 QUBO instances, the analysis only includes the 85 that fit on the QPU. It should also 
be noted how the publicly available penaltymodels library used to generate the QUBO model tend to fail for more 
general problem instances, e.g., models that have operations with highly varying time-to-completion, models 
with a larger timespan etc.

Solution quality.  The analysis focuses first on instances with timespan = size + 1 (see Fig. 3). Among the clas-
sical solvers Simulated Annealing is the best one, able to reach the optimal solution for instances up to size 14, 
while Tabu Search and greedy have poor solution quality. The greedy solver never reaches the optimal solution, 
for instances of size 2 the energy is 4, thus violating two constraints, while for size 26 the energy is 314. The Tabu 
Search performs slightly better and is able to reach the optimal solution up to size 10, but struggles on bigger 
instances, e.g., at size 26 the energy is 245.

Regarding the quantum solvers, QA on the Advantage QPU performs always on par or better than SA in all 
cases, reaching the optimal solution in instances where SA is not able to (i.e., size = 15, 17, 18, 21 ). Concerning 
RA, increasing the RA duration generally improves the solution quality, which reaches optimality in several 
instances where QA alone is unable to (i.e., size = 16, 20, 22 ). As can be seen in the right part of Fig. 3, the sam-
ples obtained with QA and RA have a different distribution, in particular, QA produces samples that have longer 
tails while RA consistently produces a more peaked distribution that is shifted towards lower energies. Note that 
sometimes a longer RA duration produces a distribution peaking at higher energies.

The effects of the improvement in quantum annealer technology can be observed comparing the results of 
the more recent D-Wave Advantage with the previous generation 2000Q. The older QPU has lower qubit con-
nectivity, which causes the formation of longer qubit chains requiring more qubits to represent the same instance 
and saturating the QPU much earlier, at instance size 15 (1173 qubits). It can be noted that the 2000Q solver is 
able to reach optimality up to instances with size 13. The new Advantage QPU can find the optimal solution of 
much bigger instances, up to size 21.

The left diagram in Fig. 4 compares the best solution energy of SA and QA as a function of the timespan, 
in the range size + 1 . . . size + 6 . While for problem instances of timespan equal to size + 1 QA prove to be a 
competitive strategy compared to SA, this rapidly changes as the timespan increases. The results indicate that 
Quantum Annealing is not able reach the quality of Simulated Annealing for instances with a large number of 
variables. The right diagram in Fig. 4 plots the number of variables and the number of qubits required to embed 
the QUBO problem as a function of the timespan. It can be seen that the number of qubits required to embed the 
instance increases substantially as the timespan increases and that there is a correlation between the increasing 
qubit requirements and the increasing energy of the best solution found. Also note that as the timespan becomes 
larger so does the gap between the number of qubits and the number of variables, up to a factor of 10. Note that 
for larger timespan values there is also a higher number of auxiliary variables, created to transform the inequality 

Figure 3.  Solutions obtained with Simulated Annealing (SA), Quantum Annealing (QA) and Reverse 
Annealing (RA) on instances of increasing size, with timespan equal to size + 1 . Greedy and Tabu solutions were 
excluded from the plot due to their high energy. (Left) Comparison of the best solutions for each solver, i.e., 
those with the lowest energy. (Right) Distribution of all solutions sampled for selected cases, to compare their 
energy and the number of occurrences.
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constraints into equality ones as described in “Experimental methodology” section. The number of auxiliary 
variables varies considerably: there are none in size + 1 instances, while they reach 22% of the overall variables 
for size + 6 instances. These results indicate several important limitations and challenges: (i) the need to use a 
large number auxiliary variables to represent inequalities, (ii) high qubit requirements for larger instances, (iii) 
the need to choose a timespan that should be close to the optimal makespan, which would be very challenging 
to select in a real case. Results also indicate that RA is a promising strategy.

Due to the low solution quality reached in bigger instances, the rest of the analysis will focus on the applica-
tion of advanced techniques such as Reverse Annealing and chain break mitigation in smaller instances that 
better fit the quantum annealer.

Chains and chain breaks.  As described in “Quantum annealing on a D-wave annealer” section, the minor 
embedding process to represent a QUBO problem on the QPU may create chains of physical qubits that repre-
sent the same logical variable. In a valid solution all physical qubits should have the same value but this may not 
happen in practice. If a chain is broken, the solution quality may quickly deteriorate. Regarding the instances 
with a known solution the chain break fraction is low for timespan equal to size + 1 ( < 1% ) and progressively 
increases as size and timespan grow. For the largest embeddable instance of timespan equal to size + 6 the chain 
break fraction has a mean of 37% , indicating that a substantial number of chains are broken. To address this, 
in order to improve the solution quality, a higher chain strength could be used as will be discussed in “Square 
instances with a known optimal solution” section.

Instances with an unknown optimal solution. The instances with a known solution provide a simple 
set to benchmark the JSSP algorithm and investigate the solution space, but are unrelated to real-world prob-
lems. In order to analyze the JSSP performance on a quantum annealer in a more realistic scenario a second set 
of instances with an unknown optimal solution is introduced. The set is made of 31 square problem instances 
that are constituted of 4 jobs with 4 operations for each job, which are executed on 4 machines. As in the previous 
set of instances, each operation of a job requires a different machine, but in this case the assignment does not fol-
low a precise cyclic pattern: the operations are assigned randomly among the machines, although enforcing that 
there will be one and one only operation per job scheduled on each machine, so they are still evenly distributed. 
Also, the time-to-completion of each operation is not fixed to 1 time unit anymore, rather it can be either 1 or 2 
time units with equal probability.

Changing the operation time-to-completion and the assignment to a machine has an impact in both the 
QUBO generation and the solution space. Above all, the optimal makespan is unknown, and there is no direct 
way of choosing an appropriate timespan to be used in the formulation of the QUBO problem. As discussed 
in “Square instances with a known optimal solution” section, choosing a timespan higher than the optimal 
makespan causes the number of variables required to grow rapidly and the solution to degrade. On the other 
hand, a timespan set too low might make it impossible to generate the QUBO problem. In order to address this 
issue, in this experiment each JSSP instance is first solved with the open-source optimization library OR-tools31, 
which provides a valid solution to the JSSP minimizing its makespan, although it may not be the optimum one. 
This makespan is then used as the timespan to construct the decision version of the JSSP as QUBO problem as 
described in “Quantum job shop scheduling” section. Since all instances in this group are known to be solvable 
within the given timespan, by construction, the evaluation of the QUBO problem will be based on whether the 
solution found has energy zero.

Figure 4.  Visualization of the solution energy as well as the and number of variables and qubits required for 
JSSP instances with known solution of increasing size and timespan window, from size + 1 to size + 6 . Results 
refer to the Advantage QPU, missing values indicate the instance did not fit on the QPU. (Left) Best solution 
obtained with Simulated Annealing (SA) and Quantum Annealing (QA). (Right) Semi-logarithmic plot of the 
QUBO variables and the qubits needed to embed them.
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QUBO generation. Due to the different setup, the generated set results in more heterogeneous problems, with a 
significant difference in variable number (i.e., 44–120) and qubit number (i.e., 65–505). Transforming inequali-
ties into equalities requires a highly varying number of auxiliary variables: although none are present in 13 prob-
lem instances, the remaining ones require 4−20 auxiliary variables, up to 16% of the total variables. Figure 5 
shows the QUBO formulation and the schedule of an instance of this problem set. The QUBO matrix, on the left, 
is represented as a heatmap which allows to visualize the effects of three different constraints in the QUBO gen-
eration: the one-start constraint causes the bias (the diagonal term, in blue) to be always of opposite sign com-
pared to the coupling (off-diagonal terms, in red), the precedence constraint is enforced with a slight negative 
coupling among operations of the same job (in light red) and the share-machine constraint can be seen as the 
coupling of operations pertaining to different jobs, when present (in a darker red). The low number of the share-
machine related couplings leads the matrix to be considerably sparse with a connectivity ≈ 12% . Moreover, the 
effects of variable pruning can be seen by comparing the QUBO heatmap with the sampled solution on the right. 
In particular, the first job needs the largest number of variables and further 4 auxiliary variables, connected only 
to other variables of the job itself. The last job needs much fewer variables since its operations last longer and 
their ordering allow less freedom in their allocation. The right part of Fig. 5 shows that by randomizing both the 
assignment of the operations to the machines and the operations time-to-completion the final schedule contains 
several gaps, where the machine is kept on hold. Due to this, the makespan depends on the arrangement of the 
operations in a non-predictable way.

The time required to generate the QUBO problems is generally in between 1 and 2 s for most instances under 
a 100 variables, although for the 4 largest problems the time requirement increases considerably to 20–260 s. This 
unexpected and abrupt increase is attributable to inefficient handling of the constraints in the penalty model 
library, which should be a focus of improvements for further works.

Solution quality. The left panel of Fig. 6 compares the solution quality of several solvers: two quantum solvers 
(Quantum Annealing and Reverse Annealing); three classical solvers (greedy strategy, Tabu Search and Simu-
lated Annealing) and one hybrid quantum-classical solver. The greedy solver is the least effective, returning 
always the worst solution except for two instances. Tabu Search was effective when applied to small instances 
with a known solution described in “Square instances with a known optimal solution” section, and it also pro-
vides very good results in this new set of instances. Both Simulated Annealing and the hybrid solver produce 
results close to satisfy all the contraints (energy equal to zero) but are unable to full reach a satisfiable solution.

The quantum solvers generally provide a worse solution quality compared to the best classical ones. In par-
ticular, QA alone often struggles and is not able to reach the best solution. Increasing the number of annealing 
samples from 103 to 104 does not prove beneficial in this case and neither does increasing the annealing dura-
tion to 100 µs . In this experiment, Reverse Annealing is employed with a time duration of 80 µs and the results 
indicate that it can provide a significant improvement to the solution quality compared to QA: for instances with 
a lower number of variables a limited transverse field is effective while a higher transverse field is preferable as 
the number of variables increases It is interesting to observe that increasing the QA duration to 100 µs does 
not provide improved solution quality, while the same amount of time but in a combination of 20 µs QA and 
80 µs RA provides much better results. This indicates the importance of considering advanced tools like Reverse 
Annealing not simply as a possible fine-tuning step but rather as an integral part of the solution pipeline. Study-
ing how to effectively leverage RA is an open and complex research direction.

Figure 5.  Visualization of a JSSP instance with unknown optimal solution. (Left), the QUBO matrix 
represented as heatmap, where each square represents a variable (operation per unit time). The color scale 
follows the bias and variance of each variable coupling. (Right) a Gannt diagram of a possible schedule obtained 
with OR-tools.
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Chains and chain breaks. As shown in “Square instances with a known optimal solution” section, the number 
of qubits necessary to embed the JSSP instances on a QPU differs considerably from the number of variables of 
the QUBO model. The embedding procedure maps each variable to one or more qubits, by forming chains. The 
length and the number of chains depend on the specific QPU topology, thus the same problem instance has dif-
ferent chain distributions for different QPUs.

The right panel of Fig. 7 shows, for each instance, the distribution of the chain break fraction and we observe 
a typical Gaussian profile, with a considerable high mean (always greater than 5% and averaging around 15% , 
among all instances) and a consistent standard deviation. The left panel shows the relationship between the 
mean chain break fraction and the mean energy of the solutions; there is a visible and almost linear correlation 
indicating that as the chain break fraction increases the solution quality worsens. The chain break fraction can 
be mitigated by adjusting the chain strength when the minor embedding is performed. The default chain strength 
is 2, but other heuristic strategies can be adopted. Scaled, in which the chain strength is scaled to the problem 
bias range, returns a chain strength = 8 ; uniform torque compensation, which attempts to compensate for random 
torque of neighboring qubits that would break the chain, results in a chain strength in the range of 15–22; max 
energy delta, which is based on the maximum increase in energy that is due to flipping a single variable and the 
obtained chain strength varies in the range 42–90.

Figure 6.  Energy plot of the best solution obtained with different methods: Simulated Annealing (SA), 
Quantum Annealing (QA) with a time durations of 20 µs and 103 samples, Reverse Annealing at different 
tunneling field level (RA), classical (greedy and Tabu Search) and hybrid solvers. The instances on the x-axis 
are indexed by increasing number of variables. (Left) Solutions obtained for different problem instances. Note 
that Tabu Search, SA and Hybrid often overlap for small problem indexes. (Right) Solution obtained with QA by 
adopting different chain break mitigation strategies.

Figure 7.  Chain break analysis of the 31 problems with unknown solutions, each problem is represented with a 
different red-yellow shade. (Left) Mean of the best solution energy of the 103 samples of QA for each problem for 
a selected chain break fraction. (Right) Distribution of the chain break fraction in each problem, the occurrence 
counts the number of sampled solutions that shows a given fraction.
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The right panel of Fig. 6 shows the best solution found when applying each of the heuristic strategies to select 
the chain strength. As can be seen, the solution quality worsens when using uniform torque compensation and 
the max energy delta strategies. Both strategies are effectively able to reduce the number of chain breaks by a 
large margin, from 20–30% to 1–2%, despite this the best solution quality is reduced. This effect is due to the 
combination of two phenomena. First, qubits in strongly coupled chains tend to change their value less easily, 
making the system more rigid and less able to explore the solution space. Second, the energy component of the 
chain strength may become the dominant term in the problem overwhelming the other. Finding the appropriate 
chain strength is therefore a delicate task that requires a balanced trade-off.

Conclusions
In this work we presented a step-by-step discussion on the practical implementation of the Job Shop Schedul-
ing Problem and its evaluation using D-Wave quantum annealers, as a study on potential industry-relevant 
applications on currently available quantum devices. The benchmarks have been carried out on two different 
categories of problem instances, in order to highlight different challenges of a reliable and balanced evaluation. 
Firstly the apparently advantageous polynomial scaling in computational cost of the JSSP QUBO generation is 
hindered by the necessity of formulating a working cost function, i.e., choosing appropriate penalty terms for each 
constraint. A proper handling of the inequality constraints also produces additional auxiliary variables, which 
contribute to saturate the QPU resources, already limited by the process of qubit chaining. Secondly we note that 
in terms of solution quality, the quantum annealer is considerably effective compared to classical approaches on 
very constrained problem instances, while somewhat closely competitive on more realistic problem instances. 
Advanced techniques such as Reverse Annealing consistently alter the distribution of the solutions and prove 
particularly beneficial in more complex problems, although further research would be needed to assess how to 
leverage more effectively advanced controls of the quantum annealer. We acknowledge that the burden of the 
generation of a medium sized QUBO can be partially mitigated by using a specialized  middleware32,33 or an 
improved penalty model. Relatively small instances were analyzed in this study, which already present several 
challenges, alongside encouraging prospects. A promising technique that could allow to evalute larger QUBOs 
proficiently, consists in splitting a large instance into several smaller sub-QUBOs and solve these smaller pieces 
separately, merging together the different results to obtain the full instance  solution34. Although such evaluations 
would carry additional research questions, we hope that this work could be a good starting point for further 
benchmarks towards a real-world advantage in operations research applications.

Code availability
The code necessary to replicate this work is available on GitHub, at https:// github. com/ qcpol imi/ JobSh opSch 
eduli ng. The public repository also includes further visualizations from this study.
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