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Reservoir computing with dielectric 
relaxation at an electrode–ionic 
liquid interface
Sang‑Gyu Koh1,2, Hisashi Shima2*, Yasuhisa Naitoh2, Hiroyuki Akinaga2 & 
Kentaro Kinoshita1*

A physical reservoir device with tunable transient dynamics is strongly required to process time‑
series data with various timescales generated in the edge region. In this study, we proposed using 
the dielectric relaxation at an electrode–ionic liquid (IL) interface as the physical reservoir by 
making the most of designable physicochemical properties of ILs. The transient dynamics of a Au/
IL/Au reservoir device were characterized as a function of the alkyl chain length of cations in the IL 
(1‑alkyl‑3‑methylimidazolium bis(trifluoromethane sulfonyl)imide). By considering a weighted sum 
of exponentials expressing a superposition of Debye‑type relaxations, the transient dynamics were 
well reconstructed. Although such complex dynamics governed by multiple relaxation processes 
were observed, each extracted relaxation time scales with a power law as a function of IL’s viscosity 
determined by the alkyl chain length of cations. This indicates that the relaxation processes are 
characterized by bulk properties of the ILs that obey the widely received Vogel‑Fulcher‑Tammann law. 
We demonstrated that the 4‑bit time‑series signals were transformed into the 16 classifiable data, and 
the data transformation, which enables to achieve higher accuracy in an image classification task, can 
be easily optimized according to the features of the input signals by controlling the IL’s viscosity.

Edge artificial intelligence (AI) technology, which dispersively executes data processing in the peripheral domain 
of distributed ambient devices, is desirable for further implementing AI into our  society1. Edge AI requires 
low-power and high-speed data  processing2,3. These characteristics are indispensable, especially when process-
ing environmentally generated time-series data in real  time4,5. Under these circumstances, physical reservoir 
computing (PRC), which simplifies the computing paradigm of AI by utilizing the transient dynamics of physical 
systems, has recently attracted considerable attention for edge AI  technology6–10. The PRC system is mainly com-
posed of three layers: input, physical reservoir, and readout, as shown in Supplementary Fig. S1 online. The input 
time-series signals are transformed into easily classifiable spatiotemporal patterns through the physical reservoir 
that has fading memory and nonlinear properties. The physical reservoir plays the same role as the recurrent/
coupling network with nonlinear nodes in conventional RC models, represented by the echo state networks or 
liquid state  machines11. In the learning process, the weights on the connections are optimized only in the readout 
with a simple learning algorithm such that the data processing cost and computational time can be significantly 
reduced compared with conventional methods such as a recurrent neural  network12. Until now, PRC based on 
various kinds of physical systems, such as volatile  memristors13,14, quantum  bits15, magnetic tunnel  junctions16, 
spin torque  oscillators17, mechanical  oscillators18, opto-electronic  architectures19, and processing-in-memory 
chip  platforms20 has been proposed and demonstrated experimentally or computationally. This has successfully 
opened a paradigm of next-generation information processing powered by physical systems. However, the use 
of these physical reservoirs is still limited to applications with particular timescales because the controllability 
of their transient dynamics is not sufficient in terms of material engineering. It is important that the transient 
response attenuates with a relaxation time that is properly matched with the timescale of input signals to optimize 
the performance of the PRC. Therefore, a physical reservoir with tunable transient characteristics is required 
when extensive applications are assumed in the edge region.

To solve this problem, we focused on a dielectric relaxation at an electrode–ionic liquid (IL) interface. ILs 
are special salts that are in the liquid phase over a wide temperature range, typically from below room tem-
perature to above 200 °C, and they have many attractive characteristics, including high ionic conductivity, 
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negligible vapor pressure, non-flammability, and stability against external stimuli such as voltage, temperature, 
and  pressure21–23. In addition, most ILs consist of organic ions; thus, their physicochemical properties are highly 
tunable by designing the molecular structure. Tokuda et al. reported that the viscosity of IL (1-alkyl-3-meth-
ylimidazolium bis(trifluoromethane sulfonyl)imide), which directly affects the ease of ion migration, can be 
systematically controlled by varying the alkyl chain length of  cations24. Furthermore, it has been reported that 
the ILs can be handled as a solid electrolyte for device applications by loading the ILs into nanoporous materials 
or by incorporating the ILs into polymer gels, while keeping their superior  characteristics25,26. Supplementary 
Fig. S2 online shows a schematic of the electrical double layers (EDLs) formed at the interface between the ILs 
and electrodes by applying a voltage. An ion rearrangement occurs to cancel out an external electric field shortly 
after the application of a voltage. As the cations and anions can move independently within ILs, the electric field 
is screened out completely from the bulk IL, and thereby confined in an extremely thin region on the electrodes. 
The region is reported to be nm scale and to be tuned by the surface potential and the IL ion  structure27,28. This 
produces an enormous capacitance that cannot be achieved with conventional dielectrics such as  SiO2

29,30.
In this study, we proposed a physical reservoir device with tunable transient dynamics brought about by 

the dielectric relaxation at the electrode–IL interface. The transient current response of dielectric relaxation to 
input time-series signals was characterized by 2-terminal electrical measurement with a series of ILs, and a key 
parameter related to the transient characteristics was determined. Finally, an image classification task, in which 
the image data was converted into the pseudo time-series signals, was demonstrated using the proposed reservoir 
device to simply assess how varying the transient dynamics influences the classification accuracy.

Results and discussion
Characterization for transient response of dielectric relaxation at electrode–ionic liquid inter‑
face. We fabricated Au/IL/Au reservoir devices by dropping ILs onto Au gap electrode patterned on the 
 SiO2 surface layer of Si substrate, as shown in Fig.  1a. A series of ILs, which are composed of a fixed cati-
onic backbone and anionic structure with various alkyl chain lengths, that is, 1-alkyl-3-methylimidazolium 
bis(trifluoromethane sulfonyl)imide  ([Rmim+][TFSI−], R = ethyl (e), butyl (b), hexyl (h), and octyl (o)), were 
used in this study. The structural formulas of the  Rmim+ cations, of which the alkyl chain length increases in 
the order of  [emim+] <  [bmim+] <  [hmim+] <  [omim+], and  TFSI− anion are shown in Fig. 1b. The Au/[emim+]
[TFSI−]/Au, Au/[bmim+][TFSI−]/Au, Au/[hmim+][TFSI−]/Au, and Au/[omim+][TFSI−]/Au reservoir devices 
were defined as emim_device—omim_device, respectively. The devices were characterized by 2-terminal elec-
trical measurements where a bias voltage was applied to one of two electrodes whereas the other electrode was 
grounded. Figure 2a and b show two measured dynamical current responses of the bmim_device to input voltage 
pulse trains with encoded 4-bit patterns, corresponding to “1001” and “1011,” respectively. The pulse amplitude, 
pulse width, interval time between pulses, and leading/trailing edge times were 1.2 V, 1 µs, 100 ns, and 50/50 ns, 
respectively. We presumed that there was no oxidation or reduction of ILs used in this study and no electrolysis 
of adsorbed water under the bias voltage of 1.2 V. This is because the voltage applied to the interface is within 
the electrochemical window of the ILs and water, even though in an extreme situation where all the 1.2 V is 
applied to one side of interfaces  only31,32. It was observed that the current decayed non-linearly with time during 
the duration of the voltage  pulse33,34, and it behaved in the same manner with a negative sign inverted when the 
voltage was changed to 0 V. The input square-wave pulse is composed of the Fourier components below 5 MHz, 
and thereby we assume that the electrode polarization, which corresponds to the charging and discharging pro-
cesses of the EDLs formed at the interface between  [bmim+][TFSI−] and Au, is dominant relaxation mode in the 
observed dielectric  relaxation35,36. Here, we define the current that was measured at a readout point of 300 ns 
after applying the 4-bit pulse trains as Iout. The Iout corresponding to the input patterns of “1001” and “1011” 
indicated different current values, − 32.8 µA and − 44.5 µA, respectively, although both of the 4th pulses were “1,” 
meaning that the Iout contained the time-series information on whether the 3rd applied pulses were “0” or “1.” 
The dynamic current responses to all the combinations of 4-bit pulse patterns for emim_device—omim_device 
are also shown in Supplementary Fig. S3a–d online, respectively.

Reservoir devices are required to always return a certain response to the same input  signal7. We then assessed 
the endurance characteristics of bmim_device with respect to the repetitive voltage pulse application, as shown 

Figure 1.  (a) Optical micrograph of Au/IL/Au reservoir device fabricated by dropping ILs onto Au gap 
electrode patterned on the  SiO2 surface layer of Si substrate. (b) Structural formulas of  emim+,  bmim+,  hmim+, 
and  omim+ cations (left-hand side) and  TFSI− anion (right-hand side) in  [Rmim+][TFSI−].
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in Supplementary Fig. S4 online. It was indicated that there was no degradation for at least  106 cycles, ensuring 
that the transient dynamics of the proposed reservoir device are inherently reversible and reproducible, and have 
no electrochemical reactions leading to corrosion of electrodes or decomposition of ILs. In addition, we con-
firmed that almost the same current responses can be obtained between five different bmim_devices by precisely 
controlling the amount of ILs when dropping onto the gap electrode, as shown in Supplementary Fig. S5 online.

The Iout values extracted from the data in Supplementary Fig. S3a–d online are plotted in Fig. 3. It was 
confirmed that the extracted Iout values for each Rmim_divice were divided into 16 current values in a differ-
ent manner as a function of 4-bit pulse patterns. Here, the order of 4-bit pulse patterns on the horizontal axis 
was arranged such that the absolute values of Iout (< 0) for emim_device and bmim_device were in ascending 
order. As the shorter alkyl chain length of cations leads to the lower viscosity of  [Rmim+][TFSI−], which shows 
higher ionic conductivity, we observed that the shorter the alkyl chain length of cations in  [Rmim+][TFSI−] was, 
the higher the absolute value of Iout measured with the pulse pattern of “1111” was. To make the increase and 
decrease in Iout as a function of 4-bit pulse patterns more visible, we normalized Iout for each Rmim_divice with 
the maximum absolute value of Iout, as shown in the inset of Fig. 3. The normalized Iout for Rmim_device with 
a shorter alkyl chain length of cations increased primarily depending on the order of applied pulses rather than 
the number because a later pulse contributes more effectively to the increase in Iout, owing to the faster relaxa-
tion of the transient response derived from the low viscosity. For example, the normalized Iout corresponding to 
“1110” was much lower than that corresponding to “0001” for emim_device and bmim_device. In contrast, the 
increase in the normalized Iout for Rmim_device with a longer alkyl chain length of cations primarily depends 

Figure 2.  Dynamic current responses of Au/[bmim+][TFSI−]/Au to input voltage pulse trains with encoded 
4-bit patterns, corresponding to (a) “1001” and (b) “1011.” Red dashed lines indicate applied voltage and blue 
circles indicate measured current. Output current (Iout) is defined as current that is measured at readout point of 
300 ns after applying the 4-bit pulse trains.

Figure 3.  Output current (Iout) extracted from dynamic current responses of Au/[emim+][TFSI−]/Au, Au/
[bmim+][TFSI−]/Au, Au/[hmim+][TFSI−]/Au, and Au/[omim+][TFSI−]/Au, shown in Fig. S3a–d, as a function 
of 4-bit pulse patterns. The inset indicates Iout normalized with their maximum absolute value of Iout (< 0).
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on the number of applied pulses because of the slower relaxation of the transient response derived from the high 
viscosity. For example, the normalized Iout corresponding to “1110” was much higher than that corresponding to 
“0001” for hmim_device and omim_device. Further, the normalized Iout values shown in the inset of Fig. 3 were 
rearranged in ascending order, to compare the dependence of normalized Iout on the pattern of 4-bit pulses for 
each Rmim_divice, as shown in Supplementary Fig. S6 online. The normalized Iout shows mostly linear depend-
ency on the pattern of 4-bit pulses over all 16 patterns for bmim_device, hmim_device, and omim_device. In 
other words, the normalized Iout increases almost uniformly with changing the pattern of 4-bit pulses from “0000” 
through “1000,” “0100,” …, “0111,” to “1111.” In contrast, the one for emim_device was mainly divided into two 
regions depending on whether the 4th applied pulses were “0” or “1;” therefore, the margins to discern Iout were 
substantially restricted to approximately 40%. The pattern dependence of normalized Iout for emim_device has the 
smallest slope among all the emim_device—omim_device, except for the steep slope between 4-bit pulse patterns 
of “1110” and “0001.” Based on the above results, it is suggested that the proposed reservoir device, Au/[Rmim+]
[TFSI−]/Au, enables the transformation of the 4-bit time-series data into the 16 classifiable data by utilizing the 
transient dynamics brought about by the dielectric relaxation at the electrode–IL interface. The results of data 
transformation are determined by the relation between the input signal’s timescale and the relaxation time which 
can be tuned by controlling the viscosity of  [Rmim+][TFSI−] as a function of the alkyl chain length of the cations.

Relation between relaxation time of dielectric relaxation and viscosity of  [Rmim+][TFSI−]. Fig-
ure 4a shows the transient current responses of emim_device—omim_device which were measured under a bias 
voltage of 1.2 V for 10 µs. To ensure a measurable current, a bias voltage of − 1.2 V was applied until the meas-
urement started at 1.2 V, as shown in the inset of Fig. 4a. The current decay became modest with an increase in 
the alkyl chain length of cations in  [Rmim+][TFSI−], as well as the current decays observed in Supplementary 
Fig. S3a–d online. To extract the relaxation times ( τi s), we fitted the transient current responses based on least-
square method considering Eq.  (1) which has a weighted sum of exponentials expressing a superposition of 
Debye-type  relaxations37,38.

where t  and A i indicate time and the weight of each Debye-type relaxation. As a reference, the fitted curve along 
with the transient current response for bmim_device is shown in Fig. 4b. The fitted curves for emim_device, 
hmim_device and omim_device, and the extracted parameters ( τi s and A is) are provided in Supplementary 
Fig. S7a–c and Table S1 online, respectively. The transient current responses were fitted well with Eq. (1), con-
sidering three types of relaxation processes for emim_device and bmim_device, and two types of relaxation 
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Figure 4.  (a) Transient current responses measured with Au/[Rmim+][TFSI−]/Au as a function of alkyl chain 
length of cations in  [Rmim+][TFSI−]. The inset indicates timing of current measurement during duration of 
voltage pulse. (b) Transient current response for Au/[bmim+][TFSI−]/Au with fitted curve simulated based 
on Eq. (1). Three types of Debye-type relaxations that constitute the fitted curve are shown by solid lines with 
shades. (c) Relaxation times as a function of the viscosity of  [Rmim+][TFSI−]. Dashed lines represent results of 
fitting based on least-square method considering Eq. (2). (d) Ratios of weight for each viscosity as a function of 
viscosity of  [Rmim+][TFSI−]. Plots for (c) and (d) indicate the average of 7 different devices and each error bar 
shows their minimum and maximum values.
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processes for hmim_device and omim_device. Note that the third relaxation processes for hmim_device and 
omim_device are thought to be unmeasurable in the current measurement timescale. Figure 4c shows the 
extracted τi s as a function of viscosity ( η ) of  [Rmim+][TFSI−] at 25 °C39–42. The plots indicate the average of τ i s 
obtained from 7 different devices and each error bar shows their minimum and maximum values. We observed 
that each τ i scales with a power law as a function of η , and the relation can be represented as follows,

where Bi and Ci are constants that may be affected by the device structure and/or relaxation mechanism. The 
relation represented by Eq. (2) can be derived by presuming that τi and η follow Vogel-Fulcher-Tammann (VFT) 
relation, which is often used to describe bulk properties of  ILs43,44,

where T is absolute temperature and τ0i , η0 , Tτ i , Tη , Di and E are constants. Combining these VFT relations of 
Eq. (3) and Eq. (4), Eq. (2) is derived assuming that Tτ i is equal to Tη , as follows:

Based on the above discussion, we concluded that there exist three different types of relaxation processes in 
the dielectric relaxation of Au/[Rmim+][TFSI−]/Au reservoir devices. Nevertheless, these relaxation processes 
are characterized by bulk properties of ILs that obey the widely received VFT law. In addition, the ratios of weight, 

Ai/

(

n
∑

i=1

Ai

)

 for each η , as a function of η were almost invariant with varying η , as shown in Fig. 4d. This indicates 

that the contribution ratios of each relaxation mechanism, which gives each τi , to the total current ( Itransient ) are 
almost the same regardless of η.

The ILs consist only of cations and anions without any solvent, and these features make ILs fundamentally 
different from the conventional electrolyte solution, especially at the electrode–IL interface. Using various tech-
niques, such as X-ray reflectivity, frequency-modulation atomic force microscopy, and molecular dynamics 
simulation, several researchers have proved that the extremely high ion concentration of IL leads to the forma-
tion of a cation − anion layered structure at the electrode–IL  interface45–47. Uysal et al. reported that the anions 
 ([TFSI−]) may have several different orientations in the first adsorbed layer under a bias voltage with a graphene 
electrode, and it causes multiple sharp peaks in the electron density profile obtained by the X-ray  reflectivity48. In 
addition, Perkin pointed out that the ion diffusion and structural relaxation within each layer involves different 
molecular interactions and energy barriers compared to diffusion between layers, based on the experiments for 
IL confined to thin films using a Surface Force  Apparatus49. Based on these previous studies, the three types of 
relaxation processes observed in this study may be related to the complex cation–anion layered structure at the 
interface. At such an extraordinary interface, it is surprising that the relaxation time of the dielectric relaxation 
can be estimated by the parameter that characterizes the bulk properties of ILs, as indicated by Eq. (2). This 
suggests that the IL near the interface not only exhibits solid-like properties as already reported but also retains 
a correlation with the bulk IL. Meanwhile, it provides us a useful guideline for device engineering based only 
on bulk IL parameters, such as the viscosity as shown in the present work, without using information near the 
interfaces that are difficult to access. Further investigation is necessary because the origin of each relaxation 
process is still unclear.

Demonstration of image classification task using proposed reservoir device. We then demon-
strated an image classification task on the Modified National Institute of Standards and Technology (MNIST) 
dataset, where the image data were converted into pseudo time-series  signals13,14,50, to simply assess how varying 
the transient dynamics influences the classification accuracy. Figure 5 shows a schematic of the data processing 
sequence for the image classification task in this study. The original 28 × 28-pixel images were cropped to 20 × 20 
pixels to reduce the computational complexity by cutting down the part unrelated to the character. The images 
were then divided into five columns and sequentially joined with each other to shape 100 × 4-pixel images. Sub-
sequently, the processed images were binarized and converted to pulse trains with encoded 4-bit patterns. The 
yellow and dark purple pixels were represented by a voltage pulse of 1.2 V and no voltage pulse (0 V), respec-
tively. Each pulse train was then sent to the reservoir device and the Iout was recorded. The Iout was normalized 
with the maximum absolute value of Iout which corresponds to the input patterns of “1111”, and the vector of 
all 100 normalized Iout was used as the input to the readout layer, which is a single layer perceptron with 100 
input nodes and 10 output nodes. Each output node corresponds to the label number from 0 to 9. Note that no 
device-to-device information mixing was included when obtaining the vector of 100 normalized Iout. A super-
vised learning was executed in the readout layer, which had a softmax function in the output nodes, based on 
the error backpropagation that uses the RMSprop method to minimize the cross-entropy loss by updating each 
weight between the input and output. A similar approach was taken in many previous studies for the perfor-
mance assessment of physical reservoir by the MNIST image classification  task13,14,50. This process was repeated 
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for 12 epochs using a batch size of 128 with 60,000 handwritten images from the MNIST training dataset, and it 
was then tested with 10,000 handwritten images from the MNIST test dataset. The entire learning process was 
executed 10 times, and the estimated classification accuracies were averaged to cancel the variability for each 
learning process.

Figure 6a shows the estimated accuracies of the image classification using the emim_device—omim_device for 
12 epochs as a function of the alkyl chain length of cations in  [Rmim+][TFSI−]. It was confirmed that the accuracy 
improved with an increasing number of epochs, and 90.2%, 89.6%, 89.0%, and 87.3% accuracy was achieved 
at 12 epochs for omim_device, hmim_device, bmim_device, and emim_device, respectively. As expected from 
the dependence of the normalized Iout on the pattern of 4-bit pulses shown in Supplementary Fig. S6 online, the 
accuracies of omim_device, hmim_device, and bmim_device, whose normalized Iout almost linearly depends 
on the pattern of 4-bit pulses, was significantly higher than that of emim_device with the smallest slope of the 

Figure 5.  Schematic of the data-processing sequence for the image classification task in this study.

Figure 6.  (a) Estimated accuracies of image classification using Au/[Rmim+][TFSI−]/Au until 12 epochs as a 
function of alkyl chain length of cations in  [Rmim+][TFSI−]. Baseline performance of readout layer without 
physical reservoir is shown as comparison, where the number of weights which can be optimized increases by 
four times compared to when using the physical reservoir. (b) Occupancy ratios of each 4-bit pulse pattern for 6 
×  106 pulse trains (100 pulse trains × 60,000 training images) used in this study.
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dependence leading to smaller margins to discern the Iout. Figure 6b shows the occupancy ratios of each pulse 
pattern in the 6 ×  106 pulse trains (100 pulse trains × 60,000 training images) used in this study. It was confirmed 
that the “0000” and “1111,” which correspond to the cases where four adjacent pixels are all blank and all filled, 
respectively, were dominant in the occupancy ratios of each pulse pattern. Accordingly, it is advantageous to 
use omim_device, whose Iout corresponding to the input patterns of “0000” and “1111” are distinctively divided 
from other Iout values, owing to the steep slopes of the pattern dependence of normalized Iout at both ends of 
Supplementary Fig. S6 online (“0000” and “1111” for omim_device). The order of achieved accuracies for other 
hmim_device and bmim_device can also be understood in the same way. These results indicate that the transient 
characteristics of the proposed reservoir device can be easily optimized according to the features of the input 
signals, and this leads to higher classification accuracy. For comparison, the baseline performance of readout 
layer was also estimated by directly sending the binarized 400 × 1-pixel images to the input of readout layer 
consisting of a single layer perceptron with 400 input nodes and 10 output nodes. It was indicated that the clas-
sification accuracy obtained with the physical reservoir was estimated to be lower than the baseline performance 
of readout layer. Here, the number of weights which can be optimized in the readout layer without physical res-
ervoir increases by four times compared to when using the physical reservoir which plays a role to consolidate 
the 100 × 4-pixel data to 100 × 1 reservoir output. Therefore, this result can be understood by considering the 
fundamental concept of reservoir computing in the sense that the computing can be performed on low power 
owing to a small number of parameters (weighs) at the expense of some  programmability6.

Conclusions
We proposed the physical reservoir device, Au/[Rmim+][TFSI−]/Au, with tunable transient dynamics brought 
about by the dielectric relaxation at the electrode–IL interface. The characterization of the dielectric relaxation 
as a function of the alkyl chain length of cations for  [Rmim+][TFSI−] revealed that the transient dynamics were 
well reconstructed by considering a weighted sum of exponentials expressing a superposition of Debye-type 
relaxations. Although such complex dynamics governed by multiple relaxation processes were observed, each 
extracted relaxation time scales with a power law as a function of IL’s viscosity which was determined by the alkyl 
chain length of cations. This indicates that the relaxation processes are characterized by bulk properties of the ILs 
that obey the widely received Vogel-Fulcher-Tammann law. The 4-bit time-series signals were transformed into 
the 16 classifiable data using the proposed reservoir device, and the data transformation can be easily optimized 
according to the features of the input signals by controlling the viscosity of  [Rmim+][TFSI−]. This was suggested 
to be possible because the dielectric relaxation at the electrode–IL interface was corelated with parameters char-
acterizing bulk physicochemical properties of the ILs. Finally, the image classification task on the MNIST dataset 
was demonstrated to simply assess how varying the transient dynamics influences the classification accuracy. The 
highest accuracy was achieved with omim_device because its transient dynamics attenuates with a relaxation 
time that is properly matched with the timescale of input signals used in the demonstration. The highly tunable 
transient dynamics brought about by the dielectric relaxation at the electrode–IL interface provide a suitable 
reservoir device for PRC systems assuming edge AI applications.

Method
A Au film with a thickness of 60 nm was deposited on a 500-nm-thick thermally oxidized surface layer of a Si sub-
strate by thermal evaporation through a shadow mask to construct planar gap electrodes. Subsequently, the ILs 
were dropped onto the gap electrode to form the Au/IL/Au reservoir device, as shown in Fig. 1a. Planar electrodes 
with dimensions of 200 µm-length × 10 µm-width × 60 nm-thickness, separated by a 10 mm-gap, were used in 
this study (see Supplementary Fig. S7 online). A series of ILs, 1-alkyl-3-methylimidazolium bis(trifluoromethane 
sulfonyl)imide  ([Rmim+][TFSI−], R = ethyl (e), butyl (b), hexyl (h), and octyl (o)), were purchased from Tokyo 
Chemical Industry Co., Ltd. and used without further purification. The transient current response of dielectric 
relaxation to input time-series signals was characterized by 2-terminal electrical measurement using a semi-
conductor device analyzer with a waveform generator/fast measurement unit (Keysight Technologies, B1500A 
WGFMU). To extract an accurate relaxation time in the transient response, a setup involving a waveform genera-
tor (Keysight Technologies, 33522B) and a digital storage oscilloscope (Keysight Technologies, DSO-X 3054A) 
were also used. All the electrical measurements were conducted at around 24–25 °C in ambient air. To demon-
strate the image classification task on handwritten images from the MNIST dataset, we used an open-source 
neural network library (Keras) for the supervised learning in the readout layer of our PRC system. A softmax 
function which is a kind of nonlinear functions was employed in output nodes of the readout layer. The use of 
such a nonlinear function requires the gradient-based learning such as the RMSprop method used in this study 
and can contributes the performance of the readout layer in exchange for increasing in some computational 
complexity. Although using purely linear output nodes would be sufficient to demonstrate the  task51, we chose 
using the softmax function to enable comparison with the previous studies which took a similar approach for 
the performance assessment of physical reservoir by the MNIST image classification  task13,14,50.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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