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Rapid, automated nerve 
histomorphometry 
through open‑source artificial 
intelligence
Simeon Christian Daeschler1,8*, Marie‑Hélène Bourget2,8, Dorsa Derakhshan3, 
Vasudev Sharma2,3, Stoyan Ivaylov Asenov2, Tessa Gordon1,4, Julien Cohen‑Adad2,5,6 & 
Gregory Howard Borschel1,3,4,7

We aimed to develop and validate a deep learning model for automated segmentation and 
histomorphometry of myelinated peripheral nerve fibers from light microscopic images. A 
convolutional neural network integrated in the AxonDeepSeg framework was trained for automated 
axon/myelin segmentation using a dataset of light‑microscopic cross‑sectional images of osmium 
tetroxide‑stained rat nerves including various axonal regeneration stages. In a second dataset, 
accuracy of automated segmentation was determined against manual axon/myelin labels. Automated 
morphometry results, including axon diameter, myelin sheath thickness and g‑ratio were compared 
against manual straight‑line measurements and morphometrics extracted from manual labels with 
AxonDeepSeg as a reference standard. The neural network achieved high pixel‑wise accuracy for 
nerve fiber segmentations with a mean (± standard deviation) ground truth overlap of 0.93 (± 0.03) for 
axons and 0.99 (± 0.01) for myelin sheaths, respectively. Nerve fibers were identified with a sensitivity 
of 0.99 and a precision of 0.97. For each nerve fiber, the myelin thickness, axon diameter, g‑ratio, 
solidity, eccentricity, orientation, and individual x ‑and y‑coordinates were determined automatically. 
Compared to manual morphometry, automated histomorphometry showed superior agreement 
with the reference standard while reducing the analysis time to below 2.5% of the time needed for 
manual morphometry. This open‑source convolutional neural network provides rapid and accurate 
morphometry of entire peripheral nerve cross‑sections. Given its easy applicability, it could contribute 
to significant time savings in biomedical research while extracting unprecedented amounts of 
objective morphologic information from large image datasets.

Abbreviations
CP  Common peroneal nerve
TB  Toluidine blue staining
ROI  Region of interest
CACC   Canadian Council on Animal Care
S  Source image
T  Target image
ANOVA  One-way analysis of variance

Although peripheral nerve histomorphometry aims to quantify nerve fiber morphology precisely in research 
and clinical routine, commonly applied techniques require sampling and thereby fail to fully extract the rich, 
morphologic information included within the often thousands of nerve fibers per image.
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Axon diameter, myelin sheath thickness and g-ratio are key metrics for clinicians and researchers alike. They 
are frequently used for diagnosis and staging of neuropathic  diseases1–3 and are commonly accepted outcome 
measures in nerve regeneration  studies4–6. However, extremity nerves in common experimental rodent models 
include thousands of nerve fibers. Therefore, time consuming manual morphometry, although still frequently 
applied to this day, is usually limited to selected regions of interest (ROIs) and requires subsequent extrapola-
tion. Due to the heterogenous distribution of morphologically and functionally distinct nerve fiber populations 
within peripheral  nerves7 (Fig. 1A), the number of analyzed fibers and the size, number and location of selected 

Figure 1.  Pixelwise accuracy of automated axon/myelin segmentation. (A) Cross-section of a normal rat 
median nerve from the evaluation dataset. Myelinated axons are shown as black circles. Osmium tetroxide 
postfixed, epoxy embedded, 1 µm thickness. (B) Automated axon/myelin segmentation of the cross-section 
shown in A. (C) Magnified region of interest (ROI) from A. (D) Manual segmentation of myelin sheaths 
and axons of the ROI shown in C. (E) Automated segmentation of the ROI shown in C. Myelin sheaths are 
shown in red and axons are shown in blue in D and E. White arrows indicate segmentation inaccuracies due 
to processing artifacts of the myelin sheath (arrowhead) and irregularly shaped nerve fibers (white arrow). 
Scale bar represents 10 µm. (F) ROI from a rat common peroneal nerve in an early regeneration state, 3 weeks 
following nerve transection and epineural repair, 10 mm distal to the nerve repair site. (G) Manual and (H) 
automated segmentation of myelin sheaths and axons of the ROI shown in F. (I) ROI from a rat median nerve 
in a later regeneration state, 7 weeks following nerve transection and epineural repair, 10 mm distal to the nerve 
repair site. (J) Manual and (K) automated segmentation of myelin sheaths and axons of the ROI shown in I. 
White arrows indicate areas of over segmentation (arrowhead) and segmentation inaccuracies of singular nerve 
fibers with a complex shape (white arrow). (L) Pixelwise false positive and negative error for the automated 
axon and myelin segmentation compared to the ground truth. (M) Pixelwise overlap of the automated axon/
myelin segmentations with the ground truth. (N) The Jaccard similarity index and (O) DICE coefficient indicate 
excellent similarity of the automated and manual axon and myelin segmentations. (own illustration created with 
AxonDeepSeg).
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ROIs may introduce considerable  bias8–10. Even though methods for standardization such as systematic random 
sampling, have been  proposed11, they too, are laborious, and their application has been reported inconsistently.

In recent years, a growing number of reports have aimed at developing computational methods for semiauto-
mated and automated nerve fiber segmentation, in light- and electron-microscopy images of the central nervous 
 system12–15 and peripheral nerve cross sections 16–21. However, the different size and shape of nerve fibers render 
their accurate automated detection and segmentation challenging. Following nerve injury regenerating axons 
are small, thinly myelinated, and thereby provide a low signal to noise ratio amongst intraneural debris. As a 
result, many laboratories have established custom-made methods for morphometry (personal communication), 
leading to poor methodological standardization among national and international research groups.

Neural networks offer the advantage of capable machine learning algorithms for pattern recognition in 
biomedical imaging  data22,23. These models can be trained specifically for standardized and automated segmen-
tation of large datasets and therefore, may be suitable for nerve fiber histomorphometry. AxonDeepSeg, is an 
open-source software library for axon/myelin segmentation across various microscopy modalities (https:// axond 
eepseg. readt hedocs. io/)24. Previous models were trained specifically for electron microscopic  images24. Notably, 
their applicability was demonstrated in cross-sectional transmission electron microscopy images of the mouse 
 striatum25 and tested in light microscopic images of peripheral  nerves26. We aimed to extend the AxonDeepSeg 
framework by adding a model specifically trained for axon/myelin segmentation in light microscopic images of 
osmium tetroxide-stained rat peripheral nerve cross-sections. Here, we demonstrate its performance for nerve 
fiber segmentation and validate the automated histomorphometry in AxonDeepSeg against manual reference 
standards.

Methods
This study is reported in accordance with the ARRIVE 2.0 guidelines (Animal Research: Reporting of In Vivo 
Experiments)27.

Experimental animals. Tissue samples from 27 adult (200–300  g), female rats with a genetic Sprague 
Dawley background were included in this study. All animals were housed in a central animal care facility with 
fresh water and pellet food ad libitum. A constant room temperature (22 °C) and a circadian rhythm of 12 h per 
24 h illumination were automatically maintained. All procedures were performed in strict accordance with the 
National Institute of Health guidelines, the Canadian Council on Animal Care (CCAC) and were approved by 
the Hospital for Sick Children’s Laboratory Animal Services Committee.

Nerve samples. For this study, a total of 27 nerves from adult rats were used, all derived from previous and 
ongoing experimental nerve repair studies. Of these, 4 were tibial, 6 were median, and 17 were common peroneal 
nerves (Table 1). Surgical nerve harvesting procedures were performed under aseptic conditions and inhalation 
anesthesia with an Isoflurane (Baxter, Illinois, USA), oxygen mixture (3%, flow: 2 l/min). For analgesia, 4 mg/kg 
body weight extended-release Meloxicam (Metacam, Boehringer Ingelheim, Ingelheim, Germany) was injected 
subcutaneously. Nerves were harvested with a minimal touch technique from anesthetized animals. Regenerat-
ing nerves were harvested 7 to 10 mm distal to the nerve repair site (epineural repair with 10–0 non-absorbable 
monofilament suture). Samples were fixed in 4 °C precooled 2.5% glutaraldehyde (G6257, Sigma Aldrich) in pH 
7.4 that was adjusted 0.1 M sodium cacodylate trihydrate buffer (C0250, Sigma Aldrich) overnight, followed by 
two 10 min washing steps in 0.1 M sodium cacodylate trihydrate buffer and, finally post-fixed in 2% osmium 
tetroxide (75,632, Sigma Aldrich) for 2 h at room temperature. The samples were dehydrated in ascending etha-
nol series, embedded in epoxy (45,345, Sigma Aldrich), sectioned into 1-μm cross-sections (ultramicrotome EM 
UC7, Leica Microsystems) and imaged (Axiovert 200 M, Carl Zeiss Microscopy GmbH, Jena, Germany) using 
a 63x/1.4 oil objective.

Software and training process. AxonDeepSeg (version 3.2.0) was used for training the model. The 
AxonDeepSeg framework uses a four-step pipeline composed of data preparation, learning, evaluation, and 
prediction as previously  described24. Briefly, for the data preparation step, light microscopy images and the cor-
responding manually segmented axon/myelin ground-truth masks were resampled to a common resolution of 
0.1 μm/pixel and divided into patches of 512 × 512 pixels. For learning (training and testing), a dataset (Table 1) 
was used that included 8 images and ground-truth masks of entire rat nerve cross-sections (e.g. Fig.  5B) of 
various nerve regeneration stages. The manual ground-truth labelling process is described in the Manual Seg-
mentations section. For the training, we used a U-net  architecture28 with 3 convolutions per layer as previously 
 described24. The model was trained for 400 epochs with a batch size of 7 and a learning rate of 0.005, using a Dice 
loss  function29. To reduce overfitting, a dropout  rate30 of 0.25 was used in convolutional layers, and a data aug-
mentation strategy including random shifting, rotation, flipping and elastic deformation, was used on the input 
patches, and the masks as previously  described24. The training was done on a GeForce GTX TITAN X GPU and 
took 9 h. The trained model was then used for inference on new microscopy images (prediction). Images were 
resampled, divided into patches, segmented, stitched to the native size, and resampled to the native resolution. 
Resampling was done using bilinear interpolation. For histomorphometry, AxonDeepSeg calculates the axon 
diameter from the cross-sectional area (A) of each axon assuming an ideal circular shape using the following 
equation:

Axon diameter = 2 ∗

√

A

π

https://axondeepseg.readthedocs.io/)
https://axondeepseg.readthedocs.io/)
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Prediction. Dataset. Performance of the trained model for prediction on new images was evaluated using 
a separate dataset (Table 1) including a total of 9 light microscopic cross-sectional images of healthy and regen-
erating rat nerves. Image pixel size was 0.1 µm. In each image, a region of interest (1008 × 1008 pixels = 1 016 064 
pixels) was randomly selected and analyzed using automated segmentation in AxonDeepSeg, manual segmenta-
tion, and manual straight-line measurements to enable comparison between the three methods. Cropped nerve 
fibers at the edges of the ROIs, were excluded from the analysis.

Automated segmentations. The randomly selected ROIs were segmented automatically in axon/myelin mask 
using the “model_seg_pns_bf ” in the AxonDeepSeg software. Depending on the brightness, raw images were 
preadjusted using the auto contrast function in Photoshop 2019 (version 20.0.0, Adobe, Mountain View, CA, 
USA). Regenerating nerves were segmented using a 1 × zoom with a 10-to-25-pixel overlap. Healthy control 
nerves were segmented with a 0.55 × zoom and a 10-pixel overlap to avoid over segmentation. Results of the 
subsequent automated histomorphometry were exported as Excel files. The analysis time was measured for each 
image from the start of the segmentation process until the segmentation overlay was completed.

Manual segmentations. GIMP (version 2.10) was used for manual segmentations. The inner and outer con-
tours of the myelin sheath were carefully traced using the free select tool to obtain myelin labels. The region 
enclosed by the inner ring was subsequently filled to obtain axon labels. Histomorphometry of the manually 

Myelin thickness =

(

2 ∗

√

Aaxon+Amyelin

π

)

− Axon diameter

2

Table 1.  Datasets for training and evaluation. Training was performed on 6 light-microscopic cross-sectional 
images of osmium tetroxide stained, epoxy embedded rat nerves at various nerve regeneration stages. Another 
12 images were used for testing and quality assessments. Performance of the trained model was evaluated 
using a separate image set including a total of 9 light-microscopic cross-sectional images of osmium tetroxide-
stained epoxy embedded healthy and regenerating rat nerves. CP common peroneal nerve, Tibial tibial nerve, 
Median median nerve, Early Reg. early nerve regeneration stage, Late Reg. late nerve regeneration stage,  OsO4 
osmium tetroxide, TB toluidine blue staining.

Species Nerve Condition Time post -repair (weeks)
Distance to nerve repair site 
(mm) Tissue preparation Embedding Pixel size (µm)

Training

Rat Tibial Late Reg 12 7 2%  OsO4 + TB Epoxy 0.1

Rat Tibial Late Reg 12 7 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Testing
Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Late Reg 7 10 2%  OsO4 Epoxy 0.1

Quality assessment

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Late Reg 7 10 2%  OsO4 Epoxy 0.1

Rat CP Late Reg 7 10 2%  OsO4 Epoxy 0.1

Rat CP Late Reg 12 10 2%  OsO4 Epoxy 0.1

Rat CP Late Reg 12 10 2%  OsO4 Epoxy 0.1

Rat CP Late Reg 12 10 2%  OsO4 Epoxy 0.1

Rat Tibial Early Reg 3 7 2%  OsO4 + TB Epoxy 0.1

Rat Tibial Early Reg 3 7 2%  OsO4 Epoxy 0.1

Rat CP Healthy – – 2%  OsO4 Epoxy 0.1

Evaluation

Rat Median Healthy – – 2%  OsO4 Epoxy 0.1

Rat Median Healthy – – 2%  OsO4 Epoxy 0.1

Rat Median Healthy – – 2%  OsO4 Epoxy 0.1

Rat Median Late Reg 7 10 2%  OsO4 Epoxy 0.1

Rat Median Late Reg 7 10 2%  OsO4 Epoxy 0.1

Rat Median Late Reg 7 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1

Rat CP Early Reg 3 10 2%  OsO4 Epoxy 0.1
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created axon/myelin masks was conducted using the AxonDeepSeg algorithm. Analysis time was measured for 
each image from the start of the manual segmentation process until the segmentation overlay was completed.

Manual histomorphometry. The open-source platform ImageJ v 2.0.031 was used for manual morphometry. 
Following scale setting, nerve fibers were counted and annotated using the multi-point tool. Axon diameters 
and myelin sheath thickness were measured for each individual nerve fiber using the straight-line tool. In non-
circular shaped axons, the experimenter was instructed to measure a representative diameter that reflects the size 
of a circular nerve fiber. The results tab was exported to Excel. Analysis time was measured for each image from 
the start to completion of the annotation process.

Metrics. For determining the performance of automated segmentations created with AxonDeepSeg, the manu-
ally created axon/myelin labels were considered as ground truth. The pixelwise ground truth overlap, pixelwise 
false positive and negative error, and the DICE and Jaccard similarity indices were computed for axon and 
myelin masks respectively, using a MorphoLibJ  plugin32 for ImageJ. For two binary images, a source image (auto-
mated segmentation) and a target image (ground truth mask), metrics were defined as follows:

The performance of the automated nerve fiber detection in AxonDeepSeg was determined using precision, 
sensitivity, and F-Score. Precision, or the positive predictive value, determines the proportion of detected nerve 
fibers that was correct. Sensitivity (Recall) determines what proportion of nerve fibers present in the raw image 
was identified correctly. The F-score captures both precision and recall in a single metric. True positives were 
defined as axons present in both the automated segmentation and the ground truth mask. False positives were 
defined as axons present in the automated segmentation but absent in the ground truth mask. False negatives 
axons were defined as present in the ground truth mask but absent in the automated segmentation.

Statistical analysis. We used GraphPad Prism 9 (GraphPad Software, San Diego, California, USA) for 
statistical analysis. Descriptive statistics were calculated, and means are expressed with standard deviations 
(± SD). To test for normality of continuous variables, we used normal quantile plots and Shapiro–Wilk tests. 
For between group comparisons, one-way analysis of variance (ANOVA) was conducted with Tukey multiple 
comparison tests. Bland–Altman plots were used to plot agreement of automated histomorphometry (A) with 
morphometry obtained from ground truth labels (B) using a difference (B–A) vs average approach. A signifi-
cance level of 5% was used (p < 0.05).

Ethical approval. All procedures were performed in strict accordance with the National Institutes of Health 
guidelines, the Canadian Council on Animal Care (CCAC) and were approved by the Hospital for Sick Chil-
dren’s Laboratory Animal Services Committee.

Results
Accuracy of automated axon/myelin segmentations with AxonDeepSeg. We determined the 
accuracy of automated segmentations in healthy (Fig. 1A–E) and regenerating nerves of early (Fig. 1F–H) and 
late regeneration stages (Fig. 1I–K) and compared them against manual axon/myelin labels (ground truths). 

Pixelwise ground truth overlap =
|S ∩ T|

|T|

Jaccard index =
|S ∩ T|

|S ∪ T|

DICE coefficient = 2
|S ∩ T|

|S| + |T|

False negative error =
|T/S|

|T|

False positive error =
|S/T|

|S|

Precision =
true positives

true positives + false positives

Sensitivity =
true positives

true positives + false negatives

F Score =

(

2 ∗ Precision ∗ Sensitivity
)

(

Precision+ Sensitivity
)
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Automated axon/myelin segmentations achieved pixelwise false negative and false positive errors below 0.1 
respectively (Fig. 1L) and a mean pixelwise ground truth overlap of 0.93 ± 0.03 for axons and 0.99 ± 0.01 for 
myelin sheaths, respectively (Fig. 1M). Similarly, automated segmentations featured high similarity indices for 
axons and myelin sheaths of greater than 0.92 when compared to the ground truth (Fig. 1N and O). Subgroup 
analysis indicated comparable performance in early and late nerve regeneration stages and healthy nerves.

Validation of automated nerve fiber histomorphometry with AxonDeepSeg. The AxonDeep-
Seg framework offers an integrated tool for automated nerve fiber histomorphometry based on axon/myelin 
segmentations. The morphometry results were created as an Excel file and include the total number of myeli-
nated nerve fibers, their individual myelin sheath area and thickness, their axon area and diameter, the g-ratio, 
as well as metrics describing the nerve fiber’s shape. The latter includes solidity, eccentricity, orientation and their 
individual x and y coordinates. An image overlay is automatically created, enumerating all detected nerve fibers 
individually according to their number in the Excel sheet to facilitate manual correction of false negative and 
false positive nerve fibers. We validated the automated AxonDeepSeg histomorphometry by comparing against 
morphometry from manual ground truth labels (reference standard) and manual straight-line measurements 
with ImageJ.

Nerve fiber count. AxonDeepSeg detected a total of 1252 nerve fibers of which 1218 were true, achiev-
ing an overall precision of 0.97. The lowest precision of 0.96 was achieved in late nerve regeneration stages 
where 22 out of 665 detected nerve fibers were classified as false positives. These false positive nerve fibers were 
often attributable to either a misclassification of myelin split artifacts as separate axons (Fig. 2A,B, and C, white 
arrowhead), or to prominent unmyelinated nerve fibers that were misclassified as thinly myelinated nerve fib-
ers (Fig. 2C, white arrows). Such misclassifications can be identified post hoc either by manual screening of the 
segmentation mask or by using the thresholding function in the Excel file containing the histomorphometry 
results. Misclassified myelin split artifacts usually feature very low “axon diameter” values combined with often 
very low “g-ratios”, whereas unmyelinated axons misclassified as myelinated axons are listed with atypically thin 
“myelin sheaths” and therefore unphysiologically high “g-ratios”.

Sensitivity analysis further revealed that AxonDeepSeg identified 99.4% of all myelinated nerve fibers present 
in the raw images. The highest sensitivity was achieved in early nerve regeneration stages with no false nega-
tive annotations. In late nerve regeneration stages, however, the automated segmentation missed 5 out of 648 
nerve fibers (Table 2), leading to a slightly lower, though still excellent, sensitivity of 99.2% for this subgroup. To 

Figure 2.  Automated axon identification. (A) Part of a cross-section of a rat tibial nerve in a late regeneration 
stage, 12 weeks post-surgery, 7 mm distal to the nerve coaptation. Myelinated axons are shown as black 
circles. Osmium tetroxide postfixed, epoxy embedded, 1 µm thickness. A myelin split artifact and prominent 
unmyelinated axons are present in this section. (B) Manual segmentation of the image in A by a blinded 
investigator. Myelin split artifacts and unmyelinated axons are correctly classified. Although an irregularly 
shaped, compressed nerve fiber is correctly identified as such, its myelin sheath is not fully segmented (dashed 
circle). (C) Automated segmentation of the image in A using AxonDeepSeg. The myelin split artifact (white 
arrowhead) as well as prominent unmyelinated axons (white arrows) have been misinterpreted as myelinated 
axons. Myelin sheaths are shown in red and axons are shown in blue. Scale bar represents 5 µm. (Own 
illustration created with AxonDeepSeg).

Table 2.  The accuracy of automated axon segmentations using AxonDeepSeg in different nerve regeneration 
stages.

Group Axons present
Axons 
detected True positives

False 
positives

False 
negatives

Precision 
(POS. 
predictive 
value)

Sensitive 
(Recall) F Score

Early Reg 154 157 154 3 0 0.98 1.0 0.99

Late Reg 648 665 643 22 5 0.96 0.99 0.97

Healthy 423 430 421 9 2 0.97 1.0 0.98

Overall 1225 1252 1218 34 7 0.97 0.99 0.98
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further quantify the performance of nerve fiber detection, we calculated the F-Score, representing the harmonic 
mean of precision and sensitivity. AxonDeepSeg achieved an overall F-score of 0.98 ranging from 0.97 in late 
regeneration stages to 0.99 in early regeneration stages, indicating excellent nerve fiber identification in healthy 
and regenerating nerves.

Axon diameter. In experimental nerve repair studies, axon diameter measurements are critical to classify 
axons and to determine their maturity in regenerating nerves. To promote consistency among irregular nerve 
fiber shapes (Fig. 3A and B), AxonDeepSeg calculates the axon diameter from the cross-sectional area of each 
axon (Fig. 3C and D) assuming an ideal circular shape. When manually measured by an experimenter using a 
straight-line tool, the axon diameters were significantly larger compared to the ground truth histomorphometry, 
with mean difference of + 0.89 µm (Fig. 3E–K). This suggests an observer bias towards selecting diameters in 
often-non-circular axons that overestimate the axonal dimensions compared to the reference standard. Among 
all analyzed samples, the axon diameter calculated from automated segmentations were comparable to the diam-
eter calculated from the ground truth with no significant differences between both methods (p > 0.05; Fig. 3K 
and L). Accordingly, Bland–Altman plots confirmed a high level of agreement for both methods (Fig. 3J). In 
healthy control nerves, however, subgroup analysis revealed a tendency of AxonDeepSeg to underestimate the 
axon diameter by 0.45 µm on average (p = 0.013, Fig. 3E and H). This was attributable mainly to misclassified 
myelin split artifacts as small axons as indicated by data points representing axons with a diameter close to zero 
in the blue scatter plot in Fig. 3H. In contrast, excellent agreement with the ground truth was achieved in early 
and late regenerating nerves (Fig. 3 F,G,I, and J).

Myelin sheath thickness and g‑ratio. Similar to the axon diameter, the myelin sheath thickness calcu-
lated in AxonDeepSeg is based on the cross-sectional area of each individual nerve fiber (myelin + axon) and the 
corresponding axon, both derived from automated segmentations (Fig. 3D). On average, the automated histo-
morphometry showed good agreement with the ground truth (Fig. 4A–E). However, we observed a tendency 
of AxonDeepSeg to overestimate the myelin thickness by 0.06 ± 0.15 µm on average compared to the reference 
standard (Fig. 4E). This phenomenon was particularly evident in healthy control nerves and is likely caused by 
the initial down-sampling of the raw image in this subgroup. Down-sampling aims at preventing over-segmenta-
tion by reducing image resolution. This may cause overestimation of the myelin thickness of small, thinly myeli-
nated nerve fibers when the myelin sheath thickness comes close to, or even falls below the respective pixel size. 
This can be seen in the scatter plot in Fig. 4A when comparing the data points in green (ground truth) and blue 
(automated segmentation). Whereas the ground truth shows a distinct nerve fiber population featuring myelin 
sheaths below 0.8 µm, almost no nerve fibers with a corresponding myelin sheath thickness were detected by the 
automated algorithm. For regenerating nerves however, down-sampling was not required. Accordingly, for these 
subgroups we observed superior results of automated myelin sheath thickness measurements being closer to the 
ground truth when compared to manual morphometry (Fig. 4B and C).

As a result of the overestimated axon diameter and underestimated myelin sheath thickness obtained by 
manual straight-line measurements, the g-ratios calculated from these metrics deviated drastically from the 
ground truth (Fig. 4F–I, grey data). In contrast, g-ratios derived from automated histomorphometry showed a 
good agreement with the ground truth (Fig. 4J). However, misclassified false positive axons were identified again 
as a source of bias in automated segmentations as shown in Fig. 4F,H and I as a tail of data points corresponding 
to nerve fibers with untypically low g-ratios (< 0.35, blue data). Using manual post-hoc screening, experimenters 
can easily identify these outliers and thereby further improve the accuracy of automated histomorphometry.

Analysis time. Peripheral nerves often contain thousands of nerve fibers. Measuring all nerve fibers manually 
would require hours of work. Therefore, morphometry in large scale experiments is usually limited to selected 
regions of interest (ROI) and subsequent extrapolation. However, even for small ROIs manual morphometry 
is time- and resource-consuming. As shown in Fig. 5A, manual morphometry for a single 100 × 100 µm ROI 
required between 12 and 29 min of analysis time on average, depending on the regeneration stage and the num-
ber of axons present. Though highly accurate, manual segmentations, obtained by tracing the inner and outer 
contours of each myelin sheath, are even more time consuming (Fig. 5A) to a level that renders them obsolete for 
most large-scale research projects. In contrast, automated segmentation with AxonDeepSeg drastically reduced 
analysis time to between 13 and 18 s per ROI depending on the number of pixels (image resolution). This allows 
for morphometry of entire nerve cross-sections and thereby, overcomes the need for extrapolation and the asso-
ciated risk of bias. In order to demonstrate the capabilities of the automated segmentation and morphometry we 
segmented an entire nerve cross-section of a rat median nerve 50 days after epineural nerve repair and 5 mm 
distal to the nerve repair site (Fig. 5B; CSA 0.4  mm2). Based on our results, we calculated that the manual mor-
phometry of images in this regeneration stage would require approximately 8 s per nerve fiber. With a total of 
5894 myelinated nerve fibers, complete manual morphometry of this nerve cross-section would have required 
786 min of analysis time. In contrast, automated segmentation and morphometry took 6 min and 11 s (Fig. 5C; 
analysis was performed on a 2020 MacBook pro with a 10th gen. 2.0 GHz Quad-Core Intel Core i5).

Discussion
High resolution light microscopic images of nerve cross-sections often contain thousands of nerve fibers, 
each offering valuable morphologic information. However, effective approaches to fully extract this informa-
tion for researchers and clinicians are presently unavailable because commonly applied methods often involve 
 sampling6,9–11. Here we introduced and validated an open-source deep learning model that enables rapid 
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automated nerve fiber segmentation and comprehensive morphometry in light-microscopic cross-sectional 
images of rat peripheral nerves.

Figure 3.  Automated axon diameter measurements. (A) Part of a cross-section of a normal rat median nerve. 
Myelinated axons are shown as black circles. Osmium tetroxide postfixed, epoxy embedded, 1 µm thickness, 
scale bar represents 10 µm. (B) Irregularly shaped nerve fiber. Axon diameter measurements using a straight-
line technique can be unreliable as demonstrated for two different ways of measurements (orange = 1.43 µm; 
white = 2.44 µm) showing a 40% discrepancy. (C) Automated segmentation of A using AxonDeepSeg. (D) 
Automated segmentation of B. Myelin sheaths are shown in red and axons are shown in blue. To standardize 
axon diameter measurements, AxonDeepSeg calculates the axon diameter (d) from the cross-sectional area 
(A) of each axon assuming an ideal circular shape. (E) Histogram of the frequency distribution of nerve fibers 
according to their axon diameter in healthy nerves, (F) in early nerve regeneration stages 3 weeks post repair, 
and (G) in late nerve regeneration stages 7 weeks post repair. (H) Comparison of axon diameters obtained 
from automated segmentations (blue), ground truth labels (green) and manual morphometry (grey) for healthy 
nerves, (I) early nerve regeneration stages, (J) late regeneration stages and (K) all samples combined. When 
manually measured by an experimenter, the axon diameters were significantly larger compared to the ground 
truth histomorphometry, suggesting an observer bias towards selecting diameters that overestimate the axonal 
dimensions. (L) Nerve fiber specific comparison in a bland–Altman plot showing a good agreement of the 
AxonDeepSeg automated histomorphometry (auto.), with axon diameter ground truth measurements (man.). 
The bias represents the average of the differences and the 95% limits of agreement (LoA) comprise 95% of the 
differences between the two methods. (Own illustration created with AxonDeepSeg).
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The value and applicability of automated computational image analysis in research and clinical routine is 
defined by the ability to offer a close to human performance for a specific task. Neural networks are loosely 
inspired by the human brain and can learn to discriminate features from image data automatically in a process 
termed deep  learning33. While early neural networks mostly offered subhuman performance, presently available 
algorithms are much more capable and may even surpass human performance in selected  tasks34,35. As a result, 
imaging-intensive medical fields such as  Radiology23,  Ophthalmology36 and  Dermatology37 have already started 
to implement artificial intelligence for clinical decision making with encouraging results. The histopathological 
analysis of peripheral nerves, although providing some of the most commonly reported metrics for experimental 
nerve studies, still relies on manual or semi-automated techniques that are time consuming, lack standardization 
and suffer from sampling  bias9–11,16,17,20.

With this new model, we aimed at introducing a neural network to automatically segment axon/myelin and 
extract comprehensive morphologic information from light-microscopic cross-sectional images of peripheral 
nerves using AxonDeepSeg. Our results demonstrate that the model identified 99.4% of all myelinated nerve fib-
ers with a positive predictive value of 0.97 in regenerating and normal nerves. Accurate extraction of morphologic 
information from each identified nerve fiber, such as myelin sheath thickness and axon diameter, then relies on 
precise delineation of the axon and its myelin sheath from the surrounding background. The model achieved 
pixelwise false negative and false positive errors below 0.1, with a pixelwise ground truth overlap of 0.93 for axons 
and 0.99 for myelin sheaths, respectively. Accurate axon/myelin segmentations were further corroborated by the 
results of the automated histomorphometry performed with AxonDeepSeg. In regenerating nerves, we compared 
the axon diameters of 822 axons from 9 different samples and found no significant difference between the auto-
matic segmentations and the reference standard. We observed a minor tendency of the model to underestimate 
the axon diameter by 0.1 µm on average, mainly due to misclassified myelin split artifacts in healthy control 
nerves. Interestingly, this is in stark contrast to the results obtained with manual measurements of axon and 
myelin sheath thickness using a simple straight-line tool. Even though this method may be considered a historic 
gold standard for nerve fiber morphometry, we observed that this technique significantly overestimated the 
axon diameter by 0.89 µm on average. This highlights that often-non-circular nerve fibers cannot be accurately 
reflected by simple straight-line measurements (Fig. 3B) and suggests that observers may be inclined towards 

Figure 4.  Automated myelin sheath thickness measurements and g-ratio calculations. (A) Comparison of 
myelin sheath thickness results obtained from automated segmentations (blue), ground truth labels (green) 
and manual morphometry (grey) for healthy nerves, (B) early nerve regeneration stages, (C) late regeneration 
stages and (D) all samples combined. (E) Nerve fiber specific comparison in a bland–Altman plot showing good 
agreement of the AxonDeepSeg automated histomorphometry (auto.), with myelin thickness measurements 
in the ground truth (man.). We observed a tendency of AxonDeepSeg to overestimate the myelin thickness 
by 0.06 ± 0.15 µm on average (bias) with the 95% limits of agreement (LoA) being -0.1 µm to 0.17 µm. (F) 
Comparison of the g-ratio calculations obtained from automated segmentations (blue), ground truth labels 
(green) and manual morphometry (grey) for healthy nerves, (G) early nerve regeneration stages, (H) late 
regeneration stages and (I) all samples combined. As a result of the axon diameter overestimation and 
underestimated myelin sheath thickness in manual measurements (grey), the g-ratios calculated from these 
metrics deviated drastically from the ground truth. (J) Nerve fiber specific comparison of the g-ratios in a 
bland–Altman plot showing an acceptable agreement of the automated histomorphometry via AxonDeepSeg 
(auto.) with the ground truth measurements (man).
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selecting diameters that overestimate the axonal dimensions compared to the reference standard. To account for 
irregular nerve fiber shapes and promote consistency, AxonDeepSeg standardizes these measurements by using 
the cross-sectional area of each nerve fiber to calculate axon diameter and myelin sheath thickness.

In addition to axon diameter, myelin thickness and g-ratio, AxonDeepSeg also extracts spatial information for 
each individual nerve fiber. This includes metrics describing the nerve fiber shape, such as solidity, eccentricity, 
and orientation as well as the individual x and y coordinates of each nerve fiber within a nerve cross section. By 
providing this comprehensive set of morphologic data on single-axon-resolution, AxonDeepSeg has the potential 
to amplify the amount of histological information extracted from each individual experimental unit. It further 
allows for precise spatial analysis of nerve fiber distributions within the nerve. For example, comparing nerve 
fiber populations from different regions of the nerve cross section may be valuable when assessing the penetra-
tion depth of locally delivered bioactive agents, identifying mechanical nerve entrapment, or characterizing 
neuropathic diseases.

Beyond performance, time and resource-efficiency is key for analysis methods applied in clinical routine and 
biomedical research. Although many laboratories still use manual analysis for critical samples, this simplified, 
almost technology-free approach to histomorphology is extremely time consuming, laborious, and inevitably 
fails in extracting most of the morphological information present in each slide. This is because a single nerve 
cross section requires hours of analysis time for an experienced analyst. As a result, analysis is often limited to a 
small sample of nerve fibers. Sampling comes with an inherent risk of  bias9. For example, larger axons are more 
likely to be cropped at the edges of the sampling area which skews the results towards smaller  fibers8. Further, 
differently sized axons are often distributed in clusters, with some areas of the nerve cross section having a higher 
percentage of large axons and other areas having a higher percentage of small  axons7,10,38. Our results illustrate 
that the utilization of automated image analysis with AxonDeepSeg in biomedical research projects can drastically 
reduce the analysis time compared to manual measurements. This enables rapid analysis of larger datasets such 
as entire nerve cross-sections and thereby overcomes the need for sampling and the associated risk of sampling 
 bias3,9,10. In conjunction with high-throughput whole-slide scanning technologies, tools such as AxonDeepSeg 
further allow for analysis of almost unlimited numbers of slides per nerve in experimental animals and human 
patients and therefore, may help to transform histomorphometric analysis from a laborious manual task to a 
component of big data precision  medicine39,40.

Nowadays, capable commercial image analysis software often comes at high costs, thereby restricting access 
for many research laboratories. AxonDeepSeg can be downloaded free of charge and is compatible with most 

Figure 5.  Analysis time. (A) Mean (± SEM) analysis times for a 100 × 100 µm region of interest in healthy 
nerves (green), early regeneration stages (orange) and late regeneration stages (blue) using automated 
segmentation with AxonDeepSeg, manual measurements with a straight-line tool in ImageJ or manual 
segmentations in GIMP. (B) To demonstrate the capabilities of AxonDeepSeg, we segmented an entire nerve 
cross-section of a rat median nerve 50 days after epineural nerve repair and 5 mm distal to the nerve repair site. 
Osmium tetroxide postfixed, epoxy embedded, 1 µm thickness. (C) The result of the segmentation included 
a total of 5894 myelinated nerve fibers after a computation time of 6 min and 11 s. The scale bars in B and C 
represents 100 µm. (Own illustration created with AxonDeepSeg).
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Mac, Linux, and Windows operating systems. Further, its open-source nature ensures full transparency and 
enables continuous performance enhancements and software extensions.

Although AxonDeepSeg is an improvement over existing methods for histomorphometry, it is not without 
limitations. Tissue processing artifacts such as myelin splitting, can cause misclassification as false positive 
axons. However, our results indicate that such misclassified axons usually feature a very small diameter close to 
zero and are therefore easily discernible from true positives with thresholding in the Excel sheet that contains 
the morphometry results. Further, we observed a tendency of AxonDeepSeg to slightly overestimate the myelin 
thickness in healthy control nerves. This phenomenon is likely caused by the required down-sampling of the 
raw image in this subgroup and may be a consequence of our training dataset that comprised regenerating 
nerves with thinly myelinated axons. Future work may therefore focus on further optimizing the performance of 
AxonDeepSeg’s models. This can be achieved by a continuous retraining of the neural network with an extended 
image dataset that includes samples from multiple laboratories to account for variability in sample processing, 
as well as samples from different species and neural pathologies. With increasing numbers of annotated training 
images, subtle features and differences between groups can be extracted by a neural network that may not even 
be apparent to the experimenter’s eye. We would therefore like to encourage colleagues from around the world 
to collaborate and participate in our efforts for the standardization of peripheral nerve histomorphometry in 
biomedical research by creating a capable freeware that truly achieves or even surpasses human performance. 
Another mitigation strategy against the reduced accuracy caused by down-sampling is to estimate the partial 
volume information in the output segmentation. This can be done using the SoftSeg algorithm which outputs a 
calibrated “soft” mask instead of a binary  mask41.

In conclusion, the proposed AxonDeepSeg model enables rapid and automated axon/myelin segmentation 
and morphometry from light-microscopic images of peripheral nerve cross-sections with excellent precision 
and accuracy. Therefore, this open-source platform could contribute to significant time savings in experimental 
nerve research while extracting unprecedented amounts of quantitative, multiparametric morphologic infor-
mation. Thus, although still in its infancy, neural network-based biomedical image analysis is likely to be a key 
technology for next-generation neuropathology.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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