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Propagation graph estimation 
from individuals’ time series 
of observed states
Tatsuya Hayashi* & Atsuyoshi Nakamura

Various things propagate through the medium of individuals. Some individuals follow the others 
and take the states similar to their states a small number of time steps later. In this paper, we study 
the problem of estimating the state propagation order of individuals from the real-valued state 
sequences of all the individuals.We propose a method of constructing a state propagation graph 
from individuals’ time series of observed states. The propagation order estimated by our proposed 
method is demonstrated to be significantly more accurate than that by a baseline method (optimal 
constant delay model) for our synthetic datasets, and also to be consistent with visually recognizable 
propagation orders for the dataset of Japanese stock price time series and biological cell firing state 
sequences.

Sometimes, it is very important to analyze how things such as vibration, heat, cell firing, information, virus and 
etc, propagated. The objectives of such analyses are diverse from identification of the sources and the propagation 
routes to learning a propagation model for prediction. Physical propagation such as vibration and heat follows 
physical law. However, biological propagation such as cell firing has more ambiguous propagation rules, and 
propagation through the medium of human beings such as information and virus propagation is more complex.

The state propagation from one individual to another individual can be seen as a simple causal relationship 
between them. Granger causality1 and transfer entropy2 are well-known methods for investigating the causal rela-
tionship between time series, and their extensions and applications have been still energetically investigated3–5. 
In these methods, a parameterized stationary model is assumed and long time series are needed for its parameter 
estimation. Contrary to the fact that these methods can deal with various kinds of influence, the state propaga-
tion treats only the influence of taking similar states with some delay. By virtue of this simplicity, propagation 
relation estimation does not need such long time series.

In this study, we propose an alignment-based method of estimating state propagation relationship between 
a pair of individuals from their time series of observed states. There already has existed an extended Granger 
causality method into which a kind of alignment called dynamic time warping (DTW) is incorporated to deal 
with the arbitrary-time-lag influence between time series6. Different from this Granger causality extension, we 
estimate time delays of the propagations and use them to estimate direct and indirect propagations. Time delay 
estimation among signals7,8 has been studied well in the context of source localization, however, only constant 
time delays are dealt with there. We treat variable time delays and estimate time delay sum.

From the estimated state propagation relationships between all the pairs of individuals, we construct an 
estimated state propagation graph whose edges are composed of the estimated direct propagations only. As for 
propagations through networks, various information or influence propagations have been studied: word-of-
mouth marketing9–12, epidemics13–15, innovation diffusion16,17 and so on. In most of these studies, networks are 
assumed to be given and not needed to be estimated though there are studies on propagation probability estima-
tion through edges in a given network18–22. Studies on propagation through social networks are popular23–25, but 
in most social networks, relation between users are visible and not needed to be estimated. Recently, methods to 
reconstruct a complex network from binary time series have been developed26,27, but those methods require the 
sufficient length of binary time series because they use the maximum-likelihood estimation of the probabilities 
associated with presence or absence of links.

In our proposed method, for each pair of individuals (i, j), we calculate the time delay sum of individual j’s 
states from individual i’s matched states averaged over all the minimum cost alignments between their state time 
series. Then, propagation direction between i and j is estimated as i → j if such averaged time delay sum is posi-
tive, and as j → i if it is negative. From individual pairs (i, j) with non-zero average time delay sum, we construct 
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an estimated propagation graph whose vertices are individuals and whose edges are estimated direct propagation. 
In the construction, in order to exclude indirect propagation edges, we greedily remove the edge (i, j) with the 
largest average time delay sum if there is an indirect path from i to j and the delay is at least an estimated upper 
bound of direct propagation θ , and remove all the edges between vertices in the same estimated layer.

According to our experiments using real-valued and binary-valued time series synthetic datasets generated 
by stochastic delay models, the edge sets of propagation graphs estimated by our method achieved comparable 
or higher F-measure and layer accuracy than those by a baseline method (optimal constant delay model), where 
layer accuracy is the accuracy of the estimated number of steps to be taken for propagation from the source 
individuals to each individual. In order to demonstrate practical usefulness of our method, we applied our 
method to propagation analyses of stock price and biological cell firing. For both datasets, the propagation order 
estimated by our proposed method is shown to be consistent with visually recognizable propagation order. The 
propagation delay is not stable for stock price propagation, but which stocks tended to follow which stocks in a 
given period is interesting information and automatic visualization may be useful to investors. Our method is 
considered to be useful for analyses of such unstable propagation.

Methods
Problem setting.  Let I denote a set of individuals {1, . . . ,N} . We let [n] denote {1, . . . , n} for any positive 
integer n, so I = [N] . At each time step t = 1, . . . ,T , each individual i ∈ I takes state si[t] ∈ Y  , where Y = R or 
{0, 1} . Let si denote the state time series of length T whose tth value is si[t] , that is, si = si[1] · · · si[T] . We consider 
the following state propagation between individuals. Assume that there exist source individuals and the states 
propagate from individuals to individuals at each time. As for state propagation, we assume the following.

Assumption 1  Each individual i but the source individuals, follows some other individuals j, and the follower i 
takes state si[t] similar to state sj[t −�i,j[t]] with small time step delay �i,j[t] at each time step t.

Note that, in real applications, si is composed of periodically sampled values and the number and interval of 
sampling are very important issues to detect the direction of propagation. In this paper, we do not argue those 
issues and assume that appropriate number and interval of sampling are taken to construct the state time series.

The state propagation can be represented by a state propagation graph G(V, E) with vertex set V = I and 
directed edge set E = V × V  , in which directed edge (i, j) ∈ E exists if and only if individual j directly follows i. 
The problem we try to solve in this paper is formalized as follows.

Problem 1  Given a set {s1, . . . , sN } of the length-T state time series of individuals in I = [N] , estimate the state 
propagation graph with vertex set I under Assumption 1.

Note that, considering that V is fixed to I, a solution of the above problem is estimation Ê of the directed 
edge set E.

Alignment‑based direction estimation.  Let si and sj be the state time series of individuals i and j. From 
si and sj , we estimate in which direction i → j or j → i the states propagated. As an estimation method, we pro-
pose a method based on the sum of delay times at matched positions in the minimum cost alignments between 
si and sj . An alignment of two time series si and sj is a pair of two same length sequences s′i and s′j which are made 
from si and sj , respectively, by inserting some values at some positions in si and sj so as to take similar values at 
the same positions. As an inserted value, two types of values are considered: a gap  in gap-based alignment and 
the same value as the previous-position’s value in DTW(dynamic time warping)-based alignment. For example, 
one of gap-based alignments between two binary-state time series si = 001000100 and sj = 000100010 is

and one of DTW-based alignments between two real-state time series si = 2210022310 and sj = 1221022231 is

There are various alignments between a pair of time series but only the minimum cost alignments are 
considered for a given cost function w : (Y ∪ { })2 → R , where the cost of the alignment (s′i , s

′
j) is defined 

as 
∑T ′

t=1 w(s
′
i[t], s

′
j[t]) for the length T ′ of the aligned sequences s′i and s′j . As for a cost function, we use the 

absolute difference w(x, y) = |x − y| in a DTW-based alignment. In a gap-based alignment, we use a problem 
dependent cost function. For example, in the case that Y = {0, 1} and each 1-state in one sequence is strongly 

(1)

position in si 1 2 3 4 5 6 7 8 9
s
′
i 0 0 1 0 0 0 1 0 0
s
′
j 0 0 0 1 0 0 0 1 0

position in sj 1 2 3 4 5 6 7 8 9
matched position ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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preferred to be aligned to 1-state in the other sequence by shifting positions unless their position difference is 
large ( 2× (position difference) > α ) or the number of 1-states is different, the following cost function seems 
to be appropriate:

For the cost function (Eq. 2) with α = 3 , the cost of the alignment (Eq. 1) is 2, which is a minimum cost 
alignment. There are 6 minimum cost alignments between the time series si = 001000100 and sj = 000100010 
for the cost function. Let M(s′i , s

′
j) denote the set of matched position pairs in the alignment (s′i , s

′
j) . For example, 

M(s′i , s
′
j) for the alignment (Eq. 1) is {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (9, 9)} . Define the time delay of 

a matched position pair (t′i , t
′
j ) by t ′j − t ′i  , and consider the time delay sum of s′j from s′i calculated by 

∑

(t′i ,t
′
j )∈M(s′i ,s

′
j)
(t′j − t ′i ) . For example, the time delay sum of s′j from s′i for the alignment (Eq.  1) is 

1+ 1+ 1+ 1+ 1+ 1+ 1+ 0 = 7 . The time delay sums for the other 5 minimum cost alignments are 5, 6, 6, 7, 8, 
so the time delay sum averaged over all the 6 minimum cost alignments is 6.5.

Using the average time delay sum of the minimum cost alignments, we estimate the direction of state propa-
gation between individuals i and j by the following rule (E). 

(E)	 The propagation direction is estimated as i → j if the time delay sum of s′j from s′i averaged over the mini-
mum cost alignments (s′i , s

′
j) between si and sj is positive, and j → i if that is negative.

Edge set estimation.  By rule (E), directions are decided for all the individual pairs but those with zero 
average time delay sum. If we let the estimated edge set Ê be the set of all (i, j) ∈ I × I with non-zero average time 
delay sum, the following two issues arise: 

P1	 Ê contains many edges with small average time delay sum, which connects pairs of synchronized individuals.
P2	 Ê contains (i, j) for which individual i’s state not directly but indirectly affects individual j’s state through the 

medium of some other individual k.

As a countermeasure for P2, that is, in order to delete indirectly affecting edges, we define a candidate edge as 
an edge with average time delay sum larger than threshold θ and sort all the candidate edges by average time 
delay sum in descending order and greedily delete edge (i, j) one by one for which an indirect path from i to j 
exists. Threshold θ should be set to the estimated maximum average time delay sum of directly affecting edges. 
In the distribution over average time delay sum between all the individual pairs, average time delay sum between 
directly affecting pairs is considered to form the highest peak with high probability. So, we set θ to the first valley 
position larger than the highest peak position in the distribution of the average time delay sum estimated by 
kernel density estimation.

For P1, we try to partition V into layers by classifying the synchronized individuals to the same layer, and 
then delete all the edges between vertices in the same layer. For a given graph G(V, E), define the 0-layer set 
VE
0  as the set of vertices with indegree 0. If there is no vertex with indegree 0, define VE

0  as the set of vertices for 
which the maximum average time delay sum among all the incoming edges is the smallest among those for all 
the vertices. Define the i-layer set VE

i  recursively as the set of vertices that do not belong to the j-layer set VE
j  for 

any j = 0, 1, . . . , i − 1 but have an incoming edge from some vertex in the (i − 1)-layer set VE
i−1.

Given a graph G(V , Ê) with V = I and the set Ê of directed edges e whose direction is estimated by its average 
time delay sum AD(e) , and threshold θ , the whole process of edge set estimation is described as follows. 

1.	 e1, . . . , em ← sorted list of edges e ∈ Ê with AD(e) > θ in descending order of AD(e).
2.	 For e = e1, . . . , em , remove the edges e = (i, j) ∈ Ê if there exists an indirect path from i to j.
3.	 Set VÊ

0  to the set of vertices in V whose indegree is 0.
4.	 Set i to 1. Repeat the followings until V \

⋃i−1
j=0 V

Ê
j = ∅ : set VÊ

i  to the set of vertices in V \
⋃i−1

j=0 V
Ê
j  that has 

an incoming edge from a vertex in VÊ
i−1 , and then increase i by 1.

5.	 Remove all the edges (i, j) ∈ Ê whose end points i, j belong to the same layer VÊ
k  for some k ∈ [N].

Example.  Figure 1 is the summary diagram of our method with a toy example. In the example, state time 
series s1, . . . s5 for five individuals 1, . . . , 5 are assumed to be observed and the average time delay sum of every 
pair is calculated. (The number written on each edge indicates its average time delay sum.) Threshold θ is set to 
15.6 because it is the first valley position larger than the highest peak position around 10 in the distribution of 
the average time delay sum estimated from the set of the average time delay sums {1, 2, 9, 10, 10, 10, 11, 11, 20, 21} 
using kernel density estimation. In this case, the average time delay sum 20 and 21 of edges (1, 3) and (1, 4), 
respectively, are more than θ , so in descending order of average time delay sum, first, edge (1, 3) is checked if 
there exists an indirect path from vertex 1 to vertex 3 and removed because there exists, then, edge (1, 4) is 
checked similarly and removed. Finally, the five vertices are divided into three layers by their path lengths from 
vertex 1, which is the vertex with indegree 0, and the estimated edge set Ê is made by removing all the edges 
between the same layer’s vertices. In the last procedure, edges (2, 5) and (4, 3) are removed in our example.

(2)w(x, y) =











0 ((x, y) = (0, 0), (1, 1))
1 ((x, y) = (0, ), ( , 0))
α ((x, y) = (0, 1), (1, 0))
∞ ((x, y) = (1, ), ( , 1)( , )).
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Numerical simulations and application to real‑world datasets
In this section, we experimentally show effectiveness of our method using synthetic and real world datasets. 
The gap-based cost w defined by Eq. (2) with α = 3 is used by the proposed method using gap-based cost in all 
the experiments for binary state propagation. Generating graphs and plots in our experiments was executed in 
Mathematica28.

Experiments using synthetic datasets.  First, we evaluate how accurate the estimated edge set Ê by the 
proposed method is for the real-valued and binary state sequence dataset generated from a delay model with a 
given ground truth propagation graph G(V, E).

Ground truth graphs and datasets.  [Real-valued State Propagation] We generate the dataset using ground 
truth propagation graph G(V, E) shown in Fig. 2a. The length-100 time series si[1] · · · si[100] for each vertex 
(individual) i = 1, . . . , 10 are generated by the following steps. Note that in(i) denotes the set of vertices from 
which edges come to vertex i. 

Step 1	 Generate an i.i.d. sequence s1[1], . . . , s1[100] ∼ N(0, 52).
Step 2	 Generate the sequence si as follows in the order of i = 4, 9, 10, 2, 3, 5, 6, 7, 8 : 

1	 si[1], si[2] ∼ N(0, 52) , �j,i[2] ← τ1 or τ2 ( τ1, τ2 ∈ Z≥0 ) randomly for j ∈ in(i).
2	 For t = 3, 4, . . . , 100 and j ∈ in(i) , generate si[t] as 

We generated 100 datasets using this procedure in our experiment for each (τ1, τ2) = (1, 2), (0, 1) . Note that 
τ1 and τ2 are two possible time delays and �j,i[t] ∈ {τ1, τ2} holds for all i = 2, . . . , 10 , j ∈ in(i) and t = 2, . . . , 100.

[Binary state propagation] The dataset is generated by propagation model in which individuals are located 
in 2-dimensional real space and state-1 of individual j is propagated from individuals i within some distance, 
then the ground truth graph G(V, E) is generated from the dataset and individuals’ location information. Note 
that the proposed method estimates E without individuals’ location information. Given a parameter 0 < p ≤ 1 
of the state-1 propagation probability, the length-200 time series si[1] · · · si[200] for each vertex (individual) 
i = 1, . . . , 50 is generated as follows. 

Step 1	 For i = 1, . . . , 50 , the location ri of individual i is randomly selected according to uniform distribution 
over [0,M]2.

�j,i[t] ←

�

�j,i[t − 1] with prob. 3/4
τ1 + τ2 −�j,i[t − 1] with prob. 1/4

ε ←random value generated according to N(0, 1)

si[t] ←





�

j∈in(i)

sj[t −�j,i[t]]



/|in(i)| + ε.

Figure 1.   Summary diagram of our method with a toy example.
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Step 2	 For t = 1, . . . , 200 , set s1[t] = 1 if t%10 = 1 and set s1[t] = 0 otherwise, where % is modulus operator.
Step 3	 For i = 2, . . . , 50 and t = 1, . . . , 200 , set si[t] = 1 with probability p if the following two conditions 

1	 ∃j s.t. �rj − ri� ≤ 35 , sj[t − 1] = 1 (there is an individual within distance 35 that takes state 1 at just one 
step before) and

2	 si[t − k] = 0 for all k = 1, 2, . . . , min{5, t − 1} (state-1 interval of each individual is at least 5),

	    are satisfied and set si[t] = 0 otherwise.

From the dataset {s1, . . . , s50} generated above and location information {r1, . . . , r50} , edge set E of the ground 
truth propagation graph G(V, E) is created as follows. Let n(i, j) denote the number of individual j’s state 1 caused 
by individual i’s state 1, that is,

where | · | denotes the number of elements in set ‘ · ’. Then, E is defined as

A ground truth graph G(G, E) for one dataset with p = 0.95 is shown in Fig. 3a.
In the experiment, we generate 100 datasets and corresponding ground truth graphs for each 

p = 1.00, 0.95, 0.90, 0.80, 0.70, 0.60, 0.50.

n(i, j) = |{t ∈ {1, . . . , 200} | si[t − 1] = 1, sj[t] = 1, �rj − ri� < 35}|,

E = {(i, j) ∈ V × V | n(i, j) > n(j, i)}.

a b

c d

Figure 2.   (a) Ground truth graph G(V, E) in the experiment of real-valued state propagation using synthetic 
datasets. (b) The probability density of average time delay sum estimated by kernel density estimation for one 
of the synthetic datasets. The black circle ( θ = 180.7 ) indicates a threshold value adopted by our method. (c) 
The estimated graph G(V , Ê) from one of the datasets by the proposed method. In G(V , Ê) , black and magenta 
arrows are edges in E and Ê \ E , respectively. Each vertex’s color indicates its belonging layer. (d) The number of 
datasets in which parameter β of the bandwidth achieves the minimum MLD.
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Evaluation measures.  As a direct evaluation measure of delay estimations, we define mean absolute error of 
average time delay (MAEATD) as follows. For (i, j) ∈ E , define Di,j as Di,j =

∑T
t=a �i,j[t] and let D̂i,j denote its 

estimation, where a is the maximum possible time delay in the ground truth model. Then, MAEATD for estima-
tions is defined as MAEATD = 1

|E|(T−a)

∑

(i,j)∈E |D̂i,j − Di,j|.
Using directed edge set E of the ground truth propagation graph, we evaluate an estimated directed edge set 

Ê in terms of precision (Prec), recall (Rec) and F-measure (FM) defined as

Note that our method cannot rank the edges, so evaluation using precision-recall or ROC curve is difficult. 
How to balance precision and recall depending on applications is one of our future research issues.

In our setting, time series of vertices in the same layer are similar to each other even if their incoming edges 
are different. In that sense, it is impossible to correctly guess incoming edges, that is, from which vertices in the 
previous layer the states were propagated directly. Thus, we also evaluate Ê in terms of looser measures. We can 
also consider layer partition VÊ

0 ,V
Ê
1 , · · · for G(V , Ê) like layer partition VE

0 ,V
E
1 , · · · that is defined in the section 

titled “Edge Set Estimation” for the ground truth propagation graph G(V, E). Then, we define layer accuracy (LA) 
and Mean layer difference (MLD) of Ê as

Prec =
|E ∩ Ê|

|Ê|
, Rec =

|E ∩ Ê|

|E|
and FM =

2 Prec · Rec

Prec+ Rec
.

a b

c d

Figure 3.   (a) The ground truth graph G(V, E) in the experiment of binary state propagation using one of the 
synthetic datasets with p = 0.95 . (b) The probability density of average time delay sum estimated by kernel 
density estimation for the dataset. The black circle ( θ = 287.2 ) indicates a threshold value adopted by our 
method. (c) The estimated graph G(V , Ê) by the proposed method for the dataset. Each individual i is located at 
ri . In G(V , Ê) , black arrows are edges in E and magenta arrows are edges in Ê \ E . Note that Ê includes E (recall 
1.0) for this dataset. Each individual’s color indicates its belonging layer: blue, green, yellow, orange and red 
individuals belong to VÊ

0  , VÊ
1  , VÊ

2  , VÊ
3  , and VÊ

4  , respectively. (d) The number of datasets in which parameter β of 
the bandwidth achieves the minimum MLD.
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where ℓE(i) denote the individual i’s belonging layer in G(V, E), that is, ℓE(i) = j
def
⇔i ∈ VE

j .
As a baseline method, we consider a method outputs Minimum Mean Squared Error (MMSE) constant time 

delay D̂i,j of individual j’s states from individual i’s states29, which is defined as

where % is modulus operator. If there are multiple candidates for D̂i,j , we adopt D̂i,j with the smallest absolute 
value. Using D̂i,j , propagation direction is estimated as i → j if D̂i,j > 0 and j → i if D̂i,j < 0 . We construct 
estimated edge set Ê of the baseline method by applying the procedure proposed in the section titled “Edge Set 
Estimation” using D̂i,j instead of the average time delay sum of sj from si.

Parameters of kernel density estimators.  In all the experiments, we use Gaussian kernel in the kernel density 
estimation. The results of all the simulations were almost the same for other kernels: Biweight, Cosine, Epanech-
nikov and Triangular. As for the bandwidth h, we use the following rule of thumb:

where β is a positive constant, σ̂ is the standard deviation of the samples, Q1 and Q3 are the lower and upper 
quartiles, respectively, and n is the sample size. Constant β is set to 0.9 in Silverman’s rule of thumb30. In the 
experiments using synthetic datasets, β is set to the value with the minimum MLD that is found by a grid search 
in {0.01, 0.02, 0.03, . . . , 1.99, 2.00}.

Results.  [Real-valued state propagation] Performance comparison with the baseline method by the evalua-
tion measures is shown in Table 1.

Note that the values in the table are averaged over 100 datasets and the parenthesized values are their 
95% confidence intervals. Our method significantly outperforms the baseline method in all the measures for 
(τ1, τ2) = (0, 1) and have comparable performance to it for (τ1, τ2) = (1, 2) . The reason for performance degrade 
of the baseline method in the case with (τ1, τ2) = (0, 1) is guessed to be its coarse estimation; it can distinguish 
one-layer (direct) and two-layer (indirect) propagation differences for (τ1, τ2) = (1, 2) because their expected 
average delay times are 1.5 and 3 whose nearest integer sets are {1, 2} and {3} , respectively, so no intersection 
exists between them, but for (τ1, τ2) = (0, 1) , it cannot distinguish their differences because their expected aver-
age delay times are 0.5 and 1 whose nearest integer sets are {0, 1} and {1} , respectively, so 1 is a common value. 
The estimation of our proposed method is fine enough for distinguishing such differences.

The estimated propagation graph G(V , Ê) by the proposed method for one of the synthetic datasets is shown 
in Fig. 2c. Parameter θ is set to 180.7 from the estimated distribution (Fig. 2b). For this dataset, there are some 
falsely detected edges but all the edges in E are correctly detected and all the falsely detected edges keep the 
correct layer structure. (Fig. 2c). The frequencies of the best grid values β for the bandwidth of kernel density 
estimation are shown in Fig. 2d, which says that β = 0.15 ∼ 0.30 are appropriate for these datasets.

[Binary state propagation]
Performance comparison with the baseline method by our evaluation measures is shown in Table 2. The 

proposed method outperformed the baseline method in all the measures except precision and for all the p values 
except 0.5. Precisions of both the methods are low compared to their recalls, that is due to correct edge (directly 
affecting edge) definition: location information is used to define the ground truth graph edges but such informa-
tion is not used in this experimental setting. Our method successfully estimates each individual’s belonging layer 
with high LA and low MLD when p is around 1 and keeps LA about 0.8 even for p = 0.6.

The estimated graph G(V , Ê) by the proposed method for one of the datasets with p = 0.95 is shown in Fig. 3c. 
For the dataset, parameter θ is set to 287.2 from the estimated distribution (Fig. 3b). There are many falsely 
detected edges but all the edges in E are correctly detected and all the falsely detected edges keep the correct layer 
structure. The frequencies of the best grid values β for the bandwidth of kernel density estimation are shown in 
Fig. 3d, which says that β = 0.2 ∼ 0.9 are appropriate for these datasets.

LA =

∑N
i=0 |V

E
i ∩ VÊ

i |

|V |
and MLD =

∑N
i=1 |ℓ

E(i)− ℓÊ(i)|

N
,

D̂i,j = arg min
−T/2<�≤T/2

T
∑

t=1

(sj[t] − si[(t + (T − 1)−�)%T + 1])2,

h = βmin

(

σ̂ ,
Q3 − Q1

1.34

)

n−
1
5 ,

Table 1.   Estimation performance of the baseline method and our proposed method using warping-based cost 
averaged over 100 datasets. We used Gaussian kernel with a bandwidth with the best β.

(τ1, τ2) Method MAEATD Prec Rec FM LA MLD

(1, 2) Baseline 1.487 ( ±0.004) 0.629 ( ±0.015) 0.889 ( ±0.037) 0.733 ( ±0.023) 0.929 ( ±0.033) 0.081 ( ±0.040)

(1, 2) Proposed 0.289 ( ±0.013) 0.624 ( ±0.011) 0.836 ( ±0.029) 0.711 ( ±0.017) 0.941 ( ±0.015) 0.060 ( ±0.016)

(0, 1) Baseline 0.498 ( ±0.004) 0.394 ( ±0.026) 0.357 ( ±0.026) 0.371 ( ±0.025) 0.360 ( ±0.043) 0.719 ( ±0.053)

(0, 1) Proposed 0.191 ( ±0.012) 0.515 ( ±0.024) 0.620 ( ±0.035) 0.560 ( ±0.028) 0.796 ( ±0.034) 0.225 ( ±0.043)
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Application to real‑world datasets.  For real-world datasets, there is no ground truth graph so the meas-
ures adopted for synthetic datasets cannot be used to evaluate performance. Thus, only what we can do is to 
visually check the consistency of the estimated propagation graphs with given datasets. As for parameters of 
kernel density estimation, we use Gaussian kernel and set the bandwidth-related parameter β to 0.25 because 
β = 0.2 ∼ 0.3 are appropriate values for both the real-valued and binary state propagations in the experiments 
using synthetic datasets.

Stock price analysis.  We report our analysis of stock price propagation by the proposed method. Stock price 
fluctuates greatly and its propagation is ambiguous and the propagation direction often changes. In that sense, it 
does not seem to satisfy Assumption 1, but our method can be used to extract a trend such as which stock price 
tends to follow which stock price during the period in total. Here, we show the result of such trend analysis using 
opening stock price time series for one year period. We used the datasets of stock price time series of 2145 com-
panies listed on the first section of the Tokyo Stock Exchange for the period from 4th January to 30th December 
in 2019. The set of the listed companies is partitioned into 17 sectors by TOPIX-17 series31. The given time series 
pj[t] ( t = 0, . . . , 240 ) is the sequence of the opening stock price of company j on tth day for j = 1, . . . , 2145 . We 
standardized each time series pj to p′j so that p′j[t] ( t = 0, . . . , 240 ) have mean zero and standard deviation one. 
The time series s′i[t] ( t = 0, . . . , 240 ) is the standardized sequence of the opening stock price on tth day averaged 
over companies in sector i for i = 1, . . . , 17 . Then, si[t] ( t = 1, . . . , 239 , i = 1, . . . , 17 ), which is an estimated 
derivative of s′i at time t, is calculated by equation si[t] =

(s′i[t]−s′i[t−1])+(s′i[t+1]−s′i[t−1])/2
2  . Figure 4b shows the esti-

mated propagation graph with the vertices of 17 sectors by the proposed method for threshold θ = 26.6 , which 
is determined from estimated distribution of average time delay sum (Fig. 4a). Figure 4c shows the minimum 
cost path between the time series s9 and s17 in the dynamic programming table for calculating the minimum 
cost, which is composed of the optimally matched positions between the two time series. The horizontal and 
vertical axes are positions of s9 and s17 , respectively, and the points above the diagonal line (black points) mean 
that s9 is delayed from s17 at those positions and the points below the diagonal line (light blue points) means that 
s17 is delayed from s9 at those positions. The average time delay sum of s9 from s17 is 22.0, which means that s9 
tends to follow s17 in total. In fact, comparing to the diagonal line, there are more above points than the below 
points. Figure 4d shows the line graph of time series s′9 and s′17 with gray and light blue lines connecting their 
corresponding matched positions in the alignment. You can see that s9 (derivative of s′9 ) follows s17 during two 
long time periods [59, 77] and [193, 208] with small time delays.

Among the set of pairs of individual stocks, stock pairs that have clearer leader-follower relationship can 
be found. Figure 4e shows the standardized sequences of the opening price for one of those pairs (“NAGAWA”, 
“KYOKUTO BOEKI KAISHA”) with the lines connecting corresponding points between them. In the figure, 
you can see that black stock (NAGAWA) follows blue stock (KYOKUTO BOEKI KAISHA) with large time delay 
during period between 60 and 190.

Cell’s firing analysis.  We applied our method to estimating firing state propagation order of biological cells. 
The dataset is composed of 250-frame {0, 1}-state and 2D-location sequences of 172 cells, where states 1 and 0 
represent firing and not firing, respectively. Our method uses state sequences alone and location sequences are 
used only for result visualization.

We used the data of 144 cells except for 28 cells which could not be measured properly due to noise. From the 
set of 144 binary sequences with length 250, we extracted 4 datasets I1, I2, I3 and I4 , each of which is composed 

Table 2.   Estimation performance of the baseline method and our proposed method using gap-based cost 
averaged over 100 datasets for 7 values of parameter p:0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 1.00. We used Gaussian 
kernel with a bandwidth with the best β .

p Method Prec Rec FM LA MLD

1.00 Baseline 0.296 ( ±0.020) 0.960 ( ±0.034) 0.431 ( ±0.015) 0.940 ( ±0.047) 0.122 ( ±0.097)

1.00 Proposed 0.291 ( ±0.009) 1.000 ( ±0.000) 0.449 ( ±0.010) 1.000 ( ±0.000) 0.000 ( ±0.000)

0.95 Baseline 0.298 ( ±0.011) 0.643 ( ±0.023) 0.404 ( ±0.013) 0.938 ( ±0.046) 0.109 ( ±0.083)

0.95 Proposed 0.315 ( ±0.011) 0.991 ( ±0.017) 0.476 ( ±0.013) 0.990 ( ±0.020) 0.020 ( ±0.040)

0.90 Baseline 0.324 ( ±0.013) 0.427 ( ±0.021) 0.363 ( ±0.015) 0.915 ( ±0.047) 0.141 ( ±0.084)

0.90 Proposed 0.314 ( ±0.011) 0.998 ( ±0.002) 0.475 ( ±0.013) 0.990 ( ±0.020) 0.017 ( ±0.033)

0.80 Baseline 0.347 ( ±0.018) 0.308 ( ±0.016) 0.320 ( ±0.015) 0.862 ( ±0.048) 0.217 ( ±0.085)

0.80 Proposed 0.310 ( ±0.012) 0.966 ( ±0.022) 0.466 ( ±0.015) 0.949 ( ±0.040) 0.084 ( ±0.068)

0.70 Baseline 0.353 ( ±0.021) 0.282 ( ±0.017) 0.300 ( ±0.017) 0.771 ( ±0.052) 0.329 ( ±0.083)

0.70 Proposed 0.306 ( ±0.014) 0.906 ( ±0.027) 0.453 ( ±0.017) 0.927 ( ±0.042) 0.103 ( ±0.066)

0.60 Baseline 0.337 ( ±0.025) 0.296 ( ±0.018) 0.298 ( ±0.019) 0.729 ( ±0.058) 0.396 ( ±0.094)

0.60 Proposed 0.279 ( ±0.016) 0.731 ( ±0.043) 0.397 ( ±0.022) 0.803 ( ±0.049) 0.259 ( ±0.081)

0.50 Baseline 0.321 ( ±0.028) 0.299 ( ±0.017) 0.292 ( ±0.021) 0.693 ( ±0.060) 0.445 ( ±0.094)

0.50 Proposed 0.267 ( ±0.014) 0.609 ( ±0.040) 0.355 ( ±0.019) 0.619 ( ±0.060) 0.503 ( ±0.099)
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of 144 length-100 consecutive subsequences starting at frame t = 1, 51, 101 and 151, respectively, of the original 
length-250 sequences.

The layer partitions of the estimated graphs by the proposed method for thresholds 
θ = 67.1(I1), 52.9(I2), 11.4(I3), 10.5(I4) are shown in Fig. 5a, where θ s are determined from estimated distri-
butions of average time delay sum (Fig. 5b). For datasets I2, I3 and I4 , the first layer’s cells look located around 
the lower right and the last layer’s cells look located around the upper left, and the locational direction of layer 
sequence VÊ

0 ,V
Ê
1 , · · · looks from the lower right to the upper left. Figure 6a shows {0, 1}-state sequences in dataset 

I4 . We can see that cells with similar sequences are classified into the same layer. Appropriateness of the estimated 
layer order can be also confirmed by Layer-consensus state sequences shown in Fig. 6b.

Concluding remarks
We proposed the way of constructing a state propagation graph that visualizes the estimated state propagation 
order of individuals. According to our experiments using real-valued and symbolic time series synthetic datasets 
generated by stochastic delay models, the edge sets of propagation graphs estimated by our method achieved 
comparable or higher F-measure and layer accuracy than those by a baseline method (optimal constant delay 

a b

c d e

Figure 4.   Results for stock market datasets. (a) Probability density of average time delay sum estimated by 
kernel density estimation for stock market datasets. We used Gaussian kernel with a bandwidth with the 
parameter β = 0.25 . The black circle ( θ = 26.6 ) indicates a threshold value adopted by our method. (b) The 
estimated stock price propagation graph by the proposed method. Each vertex is labeled by its representing 
sector number. Each vertex’s color indicates its belonging layer: blue, green, yellow and orange vertices belong to 
VÊ
0  , VÊ

1  , VÊ
2  , and VÊ

3  , respectively. The thickness of an edge shows the size of the average time delay; the thicker 
the edge is, the longer the delay is. (c) The minimum cost alignment path between s9 and s17 in the dynamic 
programming table for the minimum cost alignment. The diagonal positions correspond to no delay, and above 
and below diagonal positions correspond to the statuses of delayed s9 and s17 , respectively. (d) Line graph of time 
series s′9 and s′17 with their matched positions in the minimum cost alignment. The average time delay sum of s9 
from s17 is 22.0. The horizontal axis is time, and the vertical axis is standardized stock price. Gray and light blue 
lines between s′9 and s′17 indicate estimated correspondences between the stock price derivative time series s9 and 
s17 in the minimum cost alignment. The gray (light blue) lines indicate that the sector 9 (sector 17) follows the 
sector 17 (sector 9). (e) The standardized sequences of the opening price for NAGAWA (black) and KYOKUTO 
BOEKI KAISHA (blue). Lines between them indicate their corresponding positions. The horizontal axis is time, 
and the vertical axis is standardized stock price. NAGAWA looks following KYOKUTO BOEKI KAISHA with 
large time delay during time period between 60 and 190.
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model), where layer accuracy is the accuracy on the number of steps to be taken in propagation from the source 
individuals to each individual.

In order to demonstrate practical usefulness of our method, we applied our method to propagation analyses 
of stock price and biological cell firing. For both datasets, the propagation order estimated by our proposed 
method is shown to be consistent with visually recognizable propagation order. The propagation delay is not 
stable for stock price propagation, but which stocks tended to follow which stocks in a given period is interesting 
information and automatic visualization may be useful to investors. Our method is considered to be useful for 
analyses of such unstable propagation.

a

b

Figure 5.   Estimated layer partitions and probability densities of the average time delay sum. (a) Layer partitions 
of the estimated propagation graphs for I1 (cell location: t = 50 ), I2 (cell location: t = 100 ), I3 (cell location: 
t = 150 ), I4(cell location: t = 200 ), respectively from left. (b) Probability density of average time delay sum 
estimated by kernel density estimation for each dataset; I1 , I2 , I3 , and I4 , respectively from left. We used Gaussian 
kernel with a bandwidth with the parameter β = 0.25 . The black circles indicate threshold values adopted by 
our method.
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