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Children’s value‑based decision 
making
Karen E. Smith  * & Seth D. Pollak 

To effectively navigate their environments, infants and children learn how to recognize events predict 
salient outcomes, such as rewards or punishments. Relatively little is known about how children 
acquire this ability to attach value to the stimuli they encounter. Studies often examine children’s 
ability to learn about rewards and threats using either classical conditioning or behavioral choice 
paradigms. Here, we assess both approaches and find that they yield different outcomes in terms of 
which individuals had efficiently learned the value of information presented to them. The findings offer 
new insights into understanding how to assess different facets of value learning in children.

Learning the predictive value associated with environmental stimuli is essential to adaptive decision making1,2. 
It facilitates a wide range of behaviors across development including obtaining food, avoiding life-threatening 
injury, adequate seeking of protection, and effective navigation of the social world3,4. For these reasons, there 
has been a growth in research aimed at elucidating the mechanisms through which value learning emerges5,6. 
In these studies, acquisition of value information is typically assessed by pairing neutral stimuli with a salient 
outcome. Learning is then inferred in one of two ways: through subsequent physiological or behavioral reactiv-
ity to the neutral stimuli, or the extent to which participants use the stimuli to guide their behavioral choices7–9. 
However, it is not clear that these two approaches index similar measures of learning. To test the comparability 
of these approaches, we presented children with an opportunity to learn the value of stimuli and then assessed 
both changes to their reactivity to the new information as well as the degree to which that new information 
changed their decision-making.

Humans can recognize and use probabilistic relationships in their environments as early as infancy10,11. 
Indeed, probabilistic learning during early childhood has been implicated in a number of different processes, 
including language learning, category formation, and social behavior12–14. Additionally, probabilistic learning 
of reward and threat has been implicated in behavioral outcomes, such as the emergence of risk taking and 
aggression15,16 and a range of psychopathologies17–19. Together this suggests that value learning is present early 
in development and plays a critical role in shaping how children interact and engage with their environment.

Because early value learning has been associated with the emergence of behavioral and mental health prob-
lems, there has been interest in examining how early environments might influence the development of value 
learning processes. However, this literature remains inconclusive. Some evidence suggests that stress exposure 
and predictability in childhood are linked to the development of reward and threat learning processes7,9,20–22,40. 
Other reports indicate limited support for any association7,23,24. One potential explanation for these discrepancies 
is these studies use a variety of different paradigms to assess children’s learning, which may tap very different 
components of these processes.

Specifically, the different paradigms used in studies of children’s value learning may not represent comparable 
measures of learning. The types of paradigms employed to assess children’s value learning are typically either clas-
sical Pavlovian or instrumental conditioning paradigms. In both of these paradigms, neutral cues (or unsigned 
value signals) are paired with appetitive or aversive reinforcers. In classical Pavlovian conditioning, learning is 
inferred based on whether or not an organism demonstrates physiological and behavioral responses to the neu-
tral cue (i.e., heart rate and skin conductance responses, freezing, reaction times). In instrumental paradigms, 
learning is inferred based on whether an organism executes the expected behavioral response to the neutral cue. 
For example, if an organism presses a lever to avoid administration of an aversive shock, it is assumed they have 
learned predictive value of the neutral stimulus1,16,25. Although these two paradigms are both used to assess value 
learning in children, there are potentially important differences between them. Classical conditioning tasks use 
physiological and behavioral responses elicited directly by the neutral cue to assess whether the child has linked 
some value to a stimulus, but do not determine whether that information is directly or meaningfully translated 
into guiding decision-making or behavior25,26. Instrumental tasks provide insight into goal directed behaviors. 
However, they are dependent on inferences of learning based upon whether a child executes a behavioral response 
to either approach an appetitive reinforcer or avoid an aversive reinforcer27,28. In sum, there may be many reasons 
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that a child decides whether or not to execute a behavioral response that are not necessarily related to whether 
they have acquired relevant, new information.

As one example, motivation may influence how a child behaves during assessment of learning. This poten-
tial confound between learning and motivation is illustrated by studies in which monetary (or point) rewards 
are used as appetitive reinforcers7,29,30. These approaches are predicated upon the idea that children who have 
learned neutral cue–reinforcer relationships will respond to the neutral cues in ways that maximize their receipt 
of monetary rewards. Children’s learning is then modeled based on their behavioral choices25,31. While it could 
be the case that children do not execute the expected behavioral responses because they have not learned, they 
also may not execute the expected responses because they are not sufficiently motivated by the monetary reward 
to use the information they have learned. Conversely, a loss of monetary reward may not be sufficiently salient 
to change behavior32. Comparing children’s performance across different assessments of learning can aid in 
illuminating whether behavior is being driven by learning or other motivational drives.

To test whether different measures of value learning identify similar groups of children as having learned, 
we compared children’s performance on a classical conditioned learning task and on a behavioral choice task. 
Children underwent a Pavlovian conditioning paradigm involving both appetitive and aversive reinforcers. Next, 
we assessed the extent to which they were able to use the conditioned stimuli to make decisions about whether 
to approach or avoid the various reinforcers. If both approaches are measuring comparable aspects of learning, 
children who demonstrate good associative learning on the conditioning paradigm should also be able to use that 
learned information to guide their approach and avoidance decisions. We assessed learning through both overt 
behavior and autonomic nervous system reactivity, and tested learning using a variety of different reinforcers to 
guard against stimulus-specific effects.

Results
Value learning as assessed by conditioning.  We began by confirming that children learned the value 
of the previously neutral stimulus items during conditioning (for task design see Figs. 1 and Figure S1). Learn-
ing was assessed in three ways. First, we ran an HLM model including pre-conditioning and post-conditioning 
rating and reinforcer type as fixed effects with random effects for reinforcer type nested within subject for Visual 
Analogue Scale ratings. Children rated cues paired with appetitive reinforcers more positively after conditioning 
and those paired with aversive reinforcers more negatively (χ2(4) = 15.28, p = 0.004). This was especially true 
for the points and aversive noise reinforcers. Second, we examined children’s modeled learning rates. Across 
participants, the best fit yielded a learning rate of 0.2 which is similar to those utilized in other studies33–35. As 
a tertiary measure of learning, we also examined heart rate reactivity (using IBIs) to different reinforcer trials 

Figure 1.   Task schematics. (A) Example of neutral shape—reinforcer pairings and probability ratios. Neutral 
shapes were paired with either a positive image, points reward, negative image, or aversive noise 80% of the time 
and neutral scrambled image 20% of the time. One shape was always paired with the neutral scrambled image. 
Images were taken from the Open Affective Standardized Image Set (OASIS; Positive Image: I256; Negative 
Image: I287), an open access set of images with standardized ratings of valence and arousal50. (B) Example of 
a trial in the conditioning task. (C) Example of a trial in the behavioral choice task. Pressing the green button 
resulted presentation of the reinforcer; pressing the red button resulted in presentation of a blank screen. 
Thus, pressing the green button represents an approach response and pressing the red represents an avoidance 
response. Figure adapted from Smith and Pollak47.
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during the conditioning task. Children demonstrated differential heart rate reactivity to the different reinforcers 
(χ2(4) = 50.27, p < 0.001) further indicative of learning during the task (for full discussion of heart rate analyses 
see Supplemental Materials). Including age, gender, and WASI-II score in the models did not change any of the 
reported effects. Further details of the analyses are reported in the Supplemental Materials Tables S1 and S2.

Value learning as assessed by behavioral choice.  We next examined children’s behavior on the behav-
ioral choice task (Fig. 1) to determine how they used the information they learned in the conditioning task. To 
do so, we ran logistic HLM models with a random effect for reinforcer type nested within participant. Reinforcer 
type (points, positive image, aversive noise, negative image) was included as a fixed factor and whether or not 
the child approached was the outcome variable. As expected, children approached the appetitive reinforcers and 
avoided the aversive reinforcers (χ2(4) = 143.37, p < 0.001). As with the Visual Analogue Scale ratings, this was 
most pronounced for the points and aversive noise. Including age, gender, and WASI-II score did not change any 
of the reported effects. Further details of the analyses are reported in the Supplemental Materials.

Comparing performance on the conditioning and behavioral choice tasks.  To determine if per-
formance on the conditioning task and behavioral choice task identified similar groups of children as having 
acquired the value of the stimuli, we examined clusters of behavior using change in pre- and post-conditioning 
ratings of the neutral shapes and use behaviors on the approach avoidance task. Our measure of learning during 
the conditioning task was change in visual analogue scale ratings of the shapes measured using unstandardized 
residualized change scores. For the points and the positive image, more positive change is indicative of increased 
learning, and for the aversive noise and negative image, more negative change is indicative of greater learning. 
Our measure of use behaviors was children’s likelihood of demonstrating the expected behavior. Effective use 
of information reflects a participant choosing to approach appetitive reinforcers and avoid aversive reinforcers. 
Because there is an opportunity for additional learning in the behavioral choice task, analyses were run using 
only behavior on the first five trials of the task. If performance on the two tasks is comparable, the cluster analysis 
should identify two latent subgroups of behavior: one in which children demonstrate learning on the condition-
ing task and effective use of information on the behavioral choice task and a second in which individuals dem-
onstrate little evidence of learning on the conditioning task and poor use of information on the behavioral choice 
task. Consistent with this, we identified a group of children that appeared to demonstrate higher conditioned 
learning and higher effective use of information as well as a group of children with lower conditioned learning 
and lower effective use of information. However, two additional groups of behavior were also identified: a group 
of children demonstrating higher conditioned learning but lower effective use of information and a group of 
children demonstrating lower conditioned learning and higher effective use of information. The presence of 
these two additional groups suggests that the two tasks do not provide comparable inferences of learning for 
all individuals. The four clusters were similar across the different reinforcer conditions (points, positive image, 
aversive noise, negative image) (Fig. 2). We also ran all cluster analyses using an alternative measure of learning 
(behavior derived from our computational reinforcement model) and behavior across all trials and found com-
parable patterns which are reported in Figures S2–S6.

Examination of alternative hypotheses.  It was possible that children did not use information they 
learned in the conditioning task because they had forgotten the cue reinforcer relationships by the time they 
completed the behavioral choice task. To test this alternative hypothesis, we assessed explicit recall for these 
relationships at the completion of the behavioral choice task (Figure S1). We found no evidence that an inabil-
ity to recall the cue reinforcer relationships accounted for performance differences between high and low use 
groups for high learners (ps > 0.10; Table S3). Additionally, there was no consistent evidence that the relationship 
between learning and use of value information was associated with children’s age, gender, or general cognitive 
ability (ps > 0.10; Table S3). It was also possible that the observed pattern of behaviors across the two tasks was 
due to children’s relative cognitive immaturity. To assess whether our findings replicate in an adult sample, we 
conducted a follow-up study with young adults (n = 74) using the same experimental paradigm (see also36). We 
found comparable effects (Fig. 2), suggesting our findings are not specific to early childhood. Full methods and 
results for the adult follow-up study are reported in the Supplemental Materials (Table S4).

Discussion
We tested whether classical conditioning and behavioral choice tasks identify similar groups of children as 
having learned a set of value information and found that they do not. Some children demonstrated learning 
on the conditioning task that was similarly reflected in their actions in the behavioral choice task. Yet others 
demonstrated evidence of learning based only on the conditioning task that was not reflected in their behavioral 
choices, or, conversely, showed little evidence of learning on the conditioning task but clearly used the learned 
value information in making their behavioral choices. Last, some children demonstrated little evidence of learn-
ing based on either tasks. This finding helps account for some reported inconsistencies in the reward and threat 
learning literature.

The robustness of this dissociation is supported by several lines of convergent evidence. First, we found 
similar evidence for this phenomenon across four distinct types of reinforcers, making it unlikely that there 
are stimulus-specific effects across individuals. Second, we found similar patterns using different ways to assess 
learning on the conditioning task, making it unlikely that the effects are specific to one type of measurement. 
Third, children’s using previously learned information less effectively was not accounted for by the participant’s 
forgetting the value information or general cognitive factors. Our findings suggest that studies assessing value 
(or reward/threat) learning in children should carefully consider whether the method of assessment being used 
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aligns with the primary question of interest—neither approach is more or less accurate, but each approach 
assesses a distinct aspect of learning. For this reason, there is utility in using multiple tasks when examining 
learning and motivational processes.

Utilizing multiple assessments of learning may be especially critical when assessing individual differences 
in value learning processes, or the effects of experiences on the acquisition of value information. Altered value 
learning has been implicated in a range of psychopathologies17–19, and there is growing evidence altered value 
learning may be one mechanism through which adverse experiences early in childhood increase risk for later 
psychopathology and behavioral problems9,37,38. To date, research in this area cannot make clear claims about 
whether observed differences are linked to learning or differences in other motivational drives39,40. Some recent 
evidence suggests it is likely the latter41. Using multiple assessments can help clarify what motivational compo-
nents underlie these observed behavioral differences.

Taken together, the present data indicate a need for further research examining the mechanisms underlying 
what transforms learned information into action in early childhood—or what prevents acquired information 
from being transformed into action. Of particular interest are central prefrontal-dopaminergic striatal circuits. 
These circuits appear to play an important role in encoding value and informing goal directed approach avoidance 
behaviors in instrumental learning tasks27,42. Dopaminergic activity has been linked to effective approach and 
avoidance of appetitive and aversive stimuli respectively1,43. Additionally, dopamine may be particularly relevant 
to the motivational salience of stimuli44. Research examining reactivity in central circuits can test whether altered 
reactivity in dopaminergic circuits contributes to the differential behavioral patterns observed.

Future research can refine the relationship between children’s learning and use of value information. One 
potentially surprising finding is that we identified children who demonstrated lower learning on the condition-
ing task but still executed the expected behavioral choices on the approach avoidance task. We suspect that the 
approach avoidance task provided some additional opportunity for learning. This is likely because children 
continue to be exposed to and receive feedback about the cue-reinforcer relationships across trials. Since our 
measures of learning are continuous and not dichotomous (learning/no learning)16,25, this re-exposure to the 
stimuli may have reactivated these representations for some participants. An alternative explanation is this is 
due to the fact that the instrumental nature of the approach avoidance task provides participants with increased 
control over the outcomes. Provision of control has been demonstrated to increase motivation during value-
based tasks and increase the subjective value of reinforcers45,46. Thus, this increased control may have facilitated 
faster encoding of value information for some individuals who previously demonstrated poorer learning. The 
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Figure 2.   Clusters based on participants’ performance on the conditioning and behavioral choice tasks (for 
first five trials) for each reinforcer condition. Four comparable clusters of learning on the conditioning task and 
use on the behavioral choice task were identified for all reinforcer conditions suggestive of a separation between 
conditioned learning and behavioral choice based assessments of value information acquisition. They followed 
this general pattern: (1) Individuals who demonstrated high learning on the conditioning task and high use on 
the behavioral choice task (in red); (2) Individuals who demonstrated high learning on the conditioning task 
and low use on the behavioral choice task (in green); (3) Individuals who demonstrated low learning on the 
conditioning task and high use on the behavioral choice task (in blue); and (4) Individuals who demonstrated 
low learning on the conditioning task and low use on the behavioral choice task (in purple). All axes are 
standardized. VAS Visual Analogue Scale.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5953  | https://doi.org/10.1038/s41598-022-09894-3

www.nature.com/scientificreports/

lack of substantial differences between clusters examined using behavior during the first five trials and across 
the entire task, could be interpreted as evidence against additional learning. However, both reactivation of prior 
representations of shape reinforcer relationships and facilitation of learning by increased control could have 
occurred rapidly, within the first five trials. Further research can further examine what may be driving this effect.

It could be argued that the differences we observe in performance across the tasks are reflective of other 
within-individual differences not captured by our measures of learning or memory for cue reinforcer relation-
ships. However, we did utilize multiple measures of learning and found a similar pattern of dissociation in 
performance on the tasks across these convergent measures. It could also be argued that the differences we 
observe are a result of the two tasks indexing different forms of learning27,28; yet the observation that some chil-
dren only approached positive stimuli and only avoided negative stimuli suggest this is not driving differential 
performance on the two tasks. These behavioral decisions would not have been possible if children were not 
applying previously learned information from the conditioning task. Finally, the current sample was primarily 
White and the samples for some of the low use groups are relatively small. Future research should replicate this 
effect in larger, more diverse samples with more representation in both high use and low use groups to reduce 
limitations associated with generalizability.

Overall, these data cast a new light on how to assess the processes through which children acquire critical 
information from stimuli in the environment and transform that information to guide their actions, broadly 
referred to as value-based decision making. Research aimed at further examining the factors the prevent learned 
information from being used in decision making can aid in our understanding of the mechanisms underlying 
these effects and holds potential for informing intervention and treatment for behavioral problems associated 
with disrupted value learning and use.

Method
Participants.  We aimed to recruit 70 child participants (see also47). Final recruitment was 72 children (29 
female 8 – 9 years old (M = 8.43; SD = 0.50; Race: 65.3% White Non-Hispanic; 2.8% Asian; 9.7% Black/African 
American; 9.7% White Hispanic; 4.2% Hispanic; 4.2% Multi-Racial; 4.2% Other). We recruited children in this 
age range because it appears to be the earliest period when children reliably exhibit both appetitive and aversive 
conditioned learning7,48. Children provided verbal assent, and their parents provided written informed consent. 
Child participants received a toy prize and their parents received $25. This study was approved by the University 
of Wisconsin-Madison Institutional Review Board and performed in accordance with relevant guidelines and 
regulations.

Procedure.  Methods are the same as those described previously in47. Participants attended one laboratory 
session lasting approximately ninety minutes. On arrival, participants completed a conditioned learning task, 
assessing their ability to learn associations between value information and neutral stimuli. They then completed 
an approach avoidance task, assessing participants’ ability to use the information they learned in the condition-
ing task to guide behavior. To ensure potential differences in performance on the two tasks were not driven by 
differences in memory for the learned relationships, participants completed an explicit recall task after under-
going conditioning. Post-experiment all participants were debriefed. Tasks were presented using E-Prime 2.0 
on a touch screen Windows PC. An electrocardiogram (ECG) was collected using standard lead II electrode 
configuration throughout the experiment. To control for any potential differences in cognitive functioning, the 
Matrix Reasoning and Vocabulary subtests of the Wechsler Abbreviated Scale of Intelligence-Second Edition 
were administered to all participants (WASI-II)49.

Conditioned value learning.  Participants completed a Pavlovian conditioning paradigm where they saw 
five colored shapes followed by either appetitive, aversive, or neutral reinforcers33,47. Appetitive reinforcers con-
sisted of points and a positive image; aversive reinforcers were an unpleasant 95 dB noise and a negative image 
(Fig. 1). The images were taken from the Open Affective Standardized Image Set (OASIS; Kurdi et al.50; Posi-
tive Image: I256; Negative Image: I287). During conditioning, participants saw a visual cue (geometric colored 
shape) that was displayed until a keyboard response was made or 1.5 s had passed. This cue was followed by a 
delay period of 6 s during which a fixation cross was displayed. The delay was followed by either a corresponding 
reinforcer or a scrambled neutral image presented for 1.5 s with a probability of 0.8 for the reinforcer and 0.2 for 
the scrambled neutral image. Each trial was followed by a jittered inter-trial interval of 2.5–5.5 s. A fifth neutral 
condition consisted of a geometric cue always followed by the neutral scrambled picture. To maintain attention 
and as a measure of conditioning, participants were asked to press a keyboard response button as soon as they 
saw the geometric cue. Participants completed 14 trials of each condition for a total of 70 trials. Presentation of 
each trial was randomized within participants. Across participants, the shape-reinforcer pairings were counter-
balanced using a Latin Square design.

To measure conditioned learning, participants were asked to rate how good or bad they thought each neutral 
shape was prior to and after the conditioning task using a Visual Analogue Scale. Visual Analogue Scale rat-
ings ranged from 0 (Bad) to 100 (Good) (Figure S1). Consistent with previous research, response times from 
participants’ button press to the neutral shapes were also used as a convergent secondary behavioral measure 
of learning33. These response times were used to model participants’ learning rates during conditioning using a 
reinforcement learning framework51. We derived participant level learning rates using subjects’ response times 
(RTs) to the cue using participants’ keyboard responses to neutral shapes during the conditioning task. RTs have 
been shown to be good indicators of conditioning52,53, and learning rates represent the speed of integration of 
recent outcomes16,25.
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Use of learned information to guide behavioral choice.  After the conditioning task, participants 
completed a behavioral choice task in which they were asked to use information from the conditioning task to 
approach or avoid appetitive and aversive stimuli47. This task was similar to the conditioned learning task, with 
the following exceptions. On each trial, participants were presented with the same shapes they had encountered 
on the previous task. After 1.5 s, a green and a red button appeared on either side of the screen. These buttons 
remained on screen until participants made a response (Fig. 1). If participants selected the green button, the 
paired reinforcer was presented. However, if participants selected the red button, a blank screen appeared with-
out any reinforcer. In this manner, selecting the green button represented an approach response and pressing the 
red button represented an avoidance response. Participants completed 14 trials of each condition for a total of 70 
trials. Trial presentation was randomized within participants and the side of the screen where the green and red 
buttons appeared was counterbalanced across participants.

Memory of learned information.  To ensure that differences in performance on the conditioning task and 
the behavioral choice task were not a result of participants forgetting the shape-reinforcer pairings, participants 
also completed an explicit recall task at the end of the experiment47. Memory was assessed two different ways. 
In one block, participants saw each neutral shape and were asked to identify what came after it by selecting one 
of four choices. In another block, participants were presented with each reinforcer and asked to identify what 
came before it by selecting one of four choices. Presentation of trials within blocks was randomized, and order of 
blocks was counterbalanced across participants. Details of the task are shown in Figure S1.

Physiological measures.  As a tertiary convergent measure of learning, we examined autonomic cardiac 
reactivity during the conditioned learning task. Heart rate was derived from the ECG continuously throughout 
the study. Results for heart rate are described in inter-beat interval of the heart (IBI). The IBI represents the time 
in milliseconds between two heart beats, such that as heart rate decreases, IBI increases. The IBI series, derived 
from ECG, was time sampled at 4 Hz (with interpolation) to yield an equal interval time series. The ECG was 
measured using a Bionex system (MindWare Technologies LTD, Gahanna, OH). MindWare software was used 
to visually inspect all physiological data. To examine whether there were differences in autonomic reactivity dur-
ing anticipation and presentation of reinforcers, IBIs were coded for the six second anticipatory period between 
cue presentation and reinforcer presentation to assess reactivity in anticipation of the reinforcer. IBIs were also 
coded for the time period between reinforcer presentation and next cue presentation to assess autonomic reac-
tivity to the reinforcers (4–7 s).

Statistical analyses.  We used hierarchical linear modeling (HLM) techniques to examine participants’ 
pre- and post-conditioning Visual Analogue Ratings of the neutral shapes by reinforcer conditioning, reaction 
times to the neutral shapes by reinforcer condition, memory for the shapes by reinforcer condition, behavior on 
the behavioral choice task, and changes in IBI reactivity to reinforcers during conditioning. All HLM techniques 
were run using the lmer and glmer functions in the lme4 package in R v3.5.1, the Anova function in the car 
package was used to examine significance of the fixed effects. The emmeans package to examine simple slopes for 
interactions in linear models as recommended by Preacher et al.54 and estimated marginal effects for predicted 
response probabilities for interactions in logistic models55,56.

To examine whether individuals exhibited different patterns of learning and use behaviors across the con-
ditioned learning and behavioral choice tasks, we used k-means clustering methodology57. K-means takes a 
data driven approach that allows for identification of latent subgroups across measures of interest – in this case 
behavioral performance across the two tasks. We opted to use a data driven approach as this allows for identifi-
cation of potential subgroups of behavioral performance without imposing a priori assumptions about how the 
behaviors should relate. Our measure of learning during the conditioning task was change in visual analogue 
scale ratings of the neutral shapes pre- and post-conditioning. Specifically, we calculated unstandardized residu-
alized change scores by subtracting participants’ pre-conditioning rating from their post-conditioning rating. 
We then regressed the change score onto the pre-conditioning rating to remove baseline variance in ratings58. 
These unstandardized residualized change scores and performance on the behavioral choice task were included 
as the k-means clustering factors. Clusters were run separately for each condition (points, noise, positive image, 
and negative image). Further methodological and analytic details, including discussion of other potential cluster 
solutions, are presented in the Supplemental Materials and Table S5.

Data availability
Associated data and code is available on the Open Science Framework (OSF; https://​osf.​io/​ns3ke/).
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