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Modeling time evolving COVID‑19 
uncertainties with density 
dependent asymptomatic 
infections and social reinforcement
Qing Liu & Longbing Cao*

The COVID‑19 pandemic has posed significant challenges in modeling its complex epidemic 
transmissions, infection and contagion, which are very different from known epidemics. The 
challenges in quantifying COVID‑19 complexities include effectively modeling its process and data 
uncertainties. The uncertainties are embedded in implicit and high‑proportional undocumented 
infections, asymptomatic contagion, social reinforcement of infections, and various quality issues 
in the reported data. These uncertainties become even more apparent in the first 2 months of the 
COVID‑19 pandemic, when the relevant knowledge, case reporting and testing were all limited. Here 
we introduce a novel hybrid approach SUDR by expanding the foundational compartmental epidemic 
Susceptible‑Infected‑Recovered (SIR) model with two compartments to a Susceptible‑Undocumented 
infected‑Documented infected‑Recovered (SUDR) model. First, SUDR (1) characterizes and 
distinguishes Undocumented (U) and Documented (D) infections commonly seen during COVID‑19 
incubation periods and asymptomatic infections. Second, SUDR characterizes the probabilistic density 
of infections by capturing exogenous processes like clustering contagion interactions, superspreading, 
and social reinforcement. Lastly, SUDR approximates the density likelihood of COVID‑19 prevalence 
over time by incorporating Bayesian inference into SUDR. Different from existing COVID‑19 models, 
SUDR characterizes the undocumented infections during unknown transmission processes. To capture 
the uncertainties of temporal transmission and social reinforcement during COVID‑19 contagion, the 
transmission rate is modeled by a time‑varying density function of undocumented infectious cases. 
By sampling from the mean‑field posterior distribution with reasonable priors, SUDR handles the 
randomness, noise and sparsity of COVID‑19 observations widely seen in the public COVID‑19 case 
data. The results demonstrate a deeper quantitative understanding of the above uncertainties, in 
comparison with classic SIR, time‑dependent SIR, and probabilistic SIR models.

The novel coronavirus disease 2019 (abbreviated “COVID-19”), caused by the SARS-CoV-2 virus, was declared a 
pandemic by the World Health Organization (WHO) on March 11, 2020. COVID-19 fundamentally differs from 
the other existing epidemics, including SARS and Ebola. It has caused unprecedented and all-round challenges, 
devastation and crises to health, society, the economy, and many other aspects, with about 6M deaths and 460M 
confirmed cases reported all over the world (WHO COVID-19: https:// covid 19. who. int/.).

COVID‑19 disease characteristics.  Despite common epidemic clinical symptoms, such as fever and 
cough, COVID-19 presents other characteristics that makes it mysterious, contagious and challenging for quan-
tification, modeling and containment. (1) High contagiousness and rapid spread: the  review1,2 finds that the R0 
of COVID-19 may be larger than 3.0 in the initial stage, higher than that of SARS (1.7–1.9) and MERS ( < 1)3. 
SARS-CoV-2 is more transmissible than severe acute respiratory syndrome coronavirus (SARS-CoV) and Mid-
dle East respiratory syndrome coronavirus (MERS-CoV) although SARS-CoV-2 shares 79% genomic sequence 
identity with SARS-CoV and 50% with MERS-CoV,  respectively4–7. (2) A wide range of incubation period: a 
median incubation period of approximately 5 days was reported  in8 for COVID-19, which is similar to SARS. 
 In9, the mean incubation period ranges from 4 to 6 days, comparable to SARS (4.4 days) and MERS (5.5 days). 
Although an average length of 5–6 days is reported in the literature, the actual incubation period may be as long 
as 14  days8,10–12. (3) A large quantity of asymptomatic and undocumented infections: asymptomatic infections 
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may not be screened and diagnosed before the symptom onset, leading to a large number of undocumented 
infections and the potential risk of contact with the infected  individuals13. For example, the review  in14 reports 
6–41% of populations are truly asymptomatic, while the study  in15 shows that a large percentage (86%) of infec-
tions are undocumented, about 80% of documented cases are from undocumented ones. (4) High mutation 
with mysterious strains and high contagion: the major SARS-CoV-2 variants of concern such as B.1.1.7 (Alpha 
labeled by WHO), B.1.351 (Beta) and B.1.617.2 (Delta) variants emerge with a higher transmissibility (B.1.1.7 at 
about 50% increased transmission)16 and reproduction rate (increasing 1–1.4 by B.1.1.7)17, challenging existing 
vaccines, containment and mitigation methods.

COVID‑19 modeling challenges.  The aforementioned COVID-19 complexities became even more 
sophisticated in the first 2 months of the COVID-19 pandemic. This early stage of COVID-19 presented vari-
ous uncertainties in terms of case reporting and testing insufficiency and inconsistencies, making the reported 
data noisy and uncertain. Modeling such COVID-19 uncertainties significantly challenge existing epidemic 
modeling and complex system  modeling1,18. First, the COVID-19 transmission processes involve uncertainty, 
e.g., the randomness of infection and contagion particularly during the incubation period and for asympto-
matic infectious cases, making them difficult to model properly. Second, many observable and hidden factors 
(e.g., related to asymptomatic contagion and habitual behaviors) and mitigation-related factors (e.g., lockdown, 
social distancing, and human cooperation) interact with each other and collaboratively affect the COVID-19 
transmission processes and dynamics. Third, the infection and contagion processes and the transition between 
different states such as the susceptible, the infectious, and the recovered seem to be highly complex, including 
being random, nonlinear, time-varying, and noisy. Lastly, the documented COVID-19 data with the confirmed, 
death, and recovered case numbers (e.g., in the JHU  CSSE19) are macroscopic and subject to significant data 
uncertainty, i.e., quality issues, including acquisition inconsistencies, noise, errors, under-reporting and missing 
reportings, and randomness in case confirmation and reporting in different countries and regions. The publicly 
available case data does not disclose the full picture and the hidden nature of COVID-19 dynamics and may not 
reflect the reality. For example, inaccurate statistics and missing reportings likely exist in a considerable number 
of asymptomatic infections. The actual compartments of susceptible, infectious and recovered populations may 
be difficult to obtain, resulting in highly unreliable data and poorly evaluated ground truth for evaluation.

In addition, social reinforcement is another phenomenon embedded in a COVID-19-affected community. 
In social systems, a stimulus from one person may increase the frequency of the behaviors that immediately 
precede it. Such interpersonal stimulus is called social reinforcement, which characterizes the reinforced influence 
of social  behaviors20. The COVID-19 pandemic also demonstrates large-scale social behaviors and interactions. 
Hence social reinforcement is an important aspect to understand COVID-19 transmissions. Examples of social 
reinforcement in COVID-19 are infections through dense and close social contacts, household-to-household 
infections, household and local community infections, and the phenomenon that increasing infection awareness 
may slow the spread of infectious diseases.

As a result, modeling COVID-19 is highly challenging. Special attention must be paid to the above various 
uncertainties, in addition to the epidemic attributes. However, the existing data-driven COVID-19 modeling 
on the poor-quality and uncertain COVID-19 case data appears highly challenging, easily resulting in overfit, 
underfit, or non-actionable  results1,18.

Modeling gap analysis.  In light of the huge number of publications reported on modeling COVID-191,2, 
we roughly categorize COVID-19 modeling into three directions: epidemic compartmental modeling of the 
COVID-19 infection and transmission processes, which is built on epidemiological compartments and models 
for the existing epidemics; data-driven modeling of COVID-19 intrinsic characteristics and infection processes 
on the relevant COVID-19 data; and hybrid modeling by integrating knowledge and modeling methods for a 
compound or comprehensive epidemic understanding and insight of COVID-19. A typical epidemic compart-
mental model following conventional epidemics is the susceptible-infected-recovered (SIR) model. SIR simpli-
fies the transmission process and separates the population into three compartments: the susceptible, the infec-
tious, and the removed. A large number of SIR variants are available with more specific compartments. For 
example,  SEIR21 adds an extra exposed compartment, and  TSIR22 incorporates time-dependent transmission 
into SIR to model the varying transmission and removal rates over time. These classic SIR-based compartmen-
tal models were designed for past epidemics and their transmission process, which do not directly capture the 
aforementioned COVID-19 complexities.

Several very recent SIR-based extensions are available for modeling COVID-19. For example, Chen et al.23 
explore the time-dependent SIR for the time-varying transmission of COVID-19. Such models simply assume 
the SIR variables are temporal, while the actual COVID-19 processes may evolve over multiple factors, e.g., 
enforced interventions, and diversified cooperation levels. Further, fine-grained SIR models like  SIDARTHE24 
and  SEI_DI_UQHRD25 divide the infection process into more specific stages to mimic the features of COVID-19. 
However, they overfit the specific country/regional data and lack a general applicability. In addition, SIR-based 
probabilistic models like SIR-Poisson26 assume the infected case numbers follow specific distributions such as 
Poisson distributions, while the actual conditions of COVID-19 case developments may be much more compli-
cated. In addition, limited research is available on modeling the interactions between COVID-19 infections and 
social  reinforcement27, in particular, in the early stage of the COVID-19 pandemic.

A critical reason for the aforementioned problems of COVID-19 models is that they mainly focus on fitting 
the COVID-19 data (e.g., by regression) or reproducing the transmission processes (e.g., with specific hypoth-
eses) rather than directly addressing the aforementioned COVID-19 complexities. This is also evidenced by 
the overwhelming publications on regression-based COVID-19 analysis in the global research  communities2.
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SUDR for modeling COVID‑19 uncertainties.  In this work, we are motivated to directly characterize 
the aforementioned COVID-specific uncertainties in the context of social interactions, asymptomatic infections, 
and data quality issues for the early stage of the COVID-19 pandemic. We address the modeling challenges 
and gaps by integrating both domain- (the epidemic and social attributes of COVID-19) and data- (quantify-
ing COVID-19 attributes and factors) driven modeling. We aim to leverage multi-resources about COVID-19 
and multi-aspect modeling capabilities to address the aforementioned various COVID-19 uncertainties and 
 challenges1. Combining domain- and data-driven modeling  thinking18, we characterize the COVID-19 epi-
demic processes by capturing asymptomatic and undocumented infections and social reinforcement which 
are essential but hidden in the COVID-19 systems and processes. This is achieved using a hybrid approach: 
(1) capturing and incorporating new knowledge and compartments about the COVID-19 epidemiology into 
enhanced epidemic SIR models; (2) incorporating data-driven probabilistic mechanisms into the epidemic SIR-
based extension to model the uncertainties of COVID-19; and (3) creating factors and mechanisms to capture 
the social characteristics of COVID-19.

Accordingly, a density-dependent Bayesian probabilistic Susceptible-Undocumented infectious-Documented 
infectious-Recovered (SUDR) model is proposed. First, to capture the confirmed and undocumented asymp-
tomatic infections, SUDR replaces the infection compartment in the basic SIR model with two compartments: 
undocumented infection (U), and documented infection (D). SUDR assumes that, when infected by the virus, 
the susceptibles first transfer to the undocumented infectious compartment and then move into the documented 
infected compartment only if detected. Second, we take a density-dependent view of COVID-19 infection devel-
opment and characterize undocumented infections and social reinforcement in the COVID-19 contagion. Third, 
we incorporate probabilistic mechanisms to model the density likelihood-based prevalence, unknown infections, 
and the uncertain and noisy conditions of COVID-19 data. Lastly, Bayesian inference is applied to approximate 
the SUDR solution. To capture the imperfect and noisy statistics of COVID-19 data, we elaborate the model as 
a probabilistic extension with certain priors and solve it by sampling from the mean-field posterior distribution.

Figure 1 illustrates the SUDR rationale of modeling the undocumented and asymptomatic infections and the 
social interactions between infecteds (in red) and susceptibles (in green) in COVID-19. We assume all infections 
are undocumented at the beginning. Then, some will transit to documented infections once they are confirmed 
by COVID-19 testing. Since the majority of infected symptomatic individuals are identified as documented infec-
tions and then quarantined, they have a low probability of further infecting other susceptible individuals. Hence, 
we assume only undocumented infectious individuals can infect the susceptibles, and there are safe interactions 
between uninfected susceptibles and unsafe interactions with asymptomatic infections. More interactions and 
denser contacts with asymptomatic infections will increase the chance of being infected. Accordingly, the central 
green nodes in scenarios (a) and (c) share the same probability of being infected since they have the same density 
of unsafe interactions and close contacts with the infected. However, more unsafe interactions, as shown in (b), 
will increase the infection probability of the susceptible individuals, showing social reinforcement and cluster 
infection in COVID-19  transmission28. As a result, the infection rate of the central green node in scenario (b) 
is much higher (e.g., by three times if it is linear additive) than that of scenario (a). Thus, SUDR models the 
transmission rate as the function over the undocumented infection density.

In summary, this work discloses the following insights and contributions in modeling COVID-19 
uncertainties:

susceptible undocumented infection documented infection
safe interaction unsafe interaction

(a)       (b) (c)

Figure 1.  The SUDR rationale: modeling the social interaction density of asymptomatic COVID-19 infections. 
The different colored nodes represent individuals in different epidemiological compartments. The connections 
between nodes represent safe or unsafe social interactions with uninfected or asymptomatic infections. The 
susceptible, undocumented infected, and documented infected are represented by the green nodes, the red 
nodes with a dashed outline, and the red nodes with the solid outline, respectively. The undocumented infected 
with the dashed outline shows that they are contagious through unsafe interactions (the yellow lines), while 
the documented infected with the solid outline shows that they cannot infect the susceptible since they are 
quarantined or isolated. Thus, the social interactions between the susceptible and the documented infected (the 
black lines), if they exist, are safe and highly perceptive.
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• A susceptible-undocumented infectious-documented infectious-recovered model SUDR explicitly captures 
the undocumented infections corresponding to asymptomatic infections, often missed in existing COVID-19 
modeling.

• A probabilistic density-dependent infection function models both the COVID-19 uncertainty w.r.t. the infec-
tion rate over the density of undocumented infections and the exogenous contagion reinforcement through 
social interactions. It tackles the gaps with a constant or time-dependent assumption of infections.

• Bayesian inference with a mean-field method solves the SUDR optimization to cope with the poor quality 
of COVID-19 data, including uncertainty, noise, and sparsity.

We empirically verify the effectiveness of our method in detecting undocumented infections with COVID-19 
data from different countries with noise and sparsity. The experiment results show that our model outperforms 
the classic SIR model, time-dependent SIR model, and probabilistic SIR model on the COVID-19 data.

Results
Here, we report the results of SUDR in inferring undocumented infections and epidemic attributes. We further 
analyze the robustness of the model with different levels of sparsity.

Inferring undocumented infections. As discussed in the above, there is often a large number of undocu-
mented (unreported) infected cases, in particular, asymptomatic or mild symptomatic infections, along with 
the COVID-19 transmission process. This is more evident at the early stage of the epidemic outbreak due to the 
limited number of tests and the lack of preparedness, and in the vaccinated communities owing to an enhanced 
immunity. Here, we verify this observation.

Using the documented infected case numbers, the undocumented infected case numbers in the selected 11 
European countries are inferred by the SUDR model, as shown in Fig. 2. We carry out the inference in the first 
2 months from the beginning of the COVID-19 epidemic outbreak in each country for case studies and evalu-
ation. While undocumented infections may exist along with the whole process of COVID-19 transmission, 
under-reporting is even more prominent at the early stage of the epidemic outbreak due to the limited number 
of tests and the lack of preparedness. The specific time period for each country is shown in the third column in 
Table 1. As shown in Fig. 2, the posterior samples of the undocumented infection converge and the posterior 
samples of the documented infections fit well with the observations. The results show that there are many more 
undocumented infections than documented ones in this time period (a more in-depth quantitative comparison 
is given in the following part). Further, the prevalence of undocumented infection curves exhibit a similar trend. 
It is firstly increasing and then decreasing in most of the countries where COVID-19 spread rapidly, except 
Germany and the United Kingdom, as shown in Fig. 2. This common trend of undocumented infections across 
countries also reflects the increasing COVID-19 test capacity, the government’s enforcement of testing, and 
people’s increased willingness to be tested, which is consistent with real-world scenarios.

In Fig. 2, the fluctuation of the two-colored curves illustrates the different stages of the epidemic contagion 
in the 2-month period. At the initial stage of the epidemic, most countries had a limited ability to test for the 
COVID-19 virus. Also, due to the long incubation period and the number of asymptomatic infections, most 
infected individuals may not have been tested immediately after infection. Hence, at the early stage of outbreaks, 
there may be a large proportion of undocumented infections, resulting in the significant exceedance of the green 
curves over the orange ones. Then, with the increase of testing availability and coverage and the enhanced pub-
lic willingness to be tested, the number of undocumented infections drops gradually. If all the undocumented 
infections are immediately detected, the curve of the undocumented infections would only be a horizontal shift 
of the curve of documented infections because the undocumented infections would become documented once 
detected. However, the overall undocumented-to-documented trend shift still holds, explaining why the peak of 
documented infections always lags behind that of the undocumented ones in each country, as shown in Fig. 2.

Further, the results in Fig. 2 also show the different COVID-19 transformations and evolving states in each 
country. For instance, COVID-19 transmission was likely under better control at the end of the first 60-day period 
in Austria, Denmark and Switzerland since they passed the peaks of both undocumented and documented daily 
infections. In contrast, the United Kingdom and Germany were still at their early outbreak stages as the curves, 
especially the green curves, rise sharply. The rapid increase of undocumented infections in these countries 
demonstrates the number of infections increased rapidly without effective interventions.

Both undocumented and documented infection case numbers evolve over time. Since the fluctuation of 
documented infection case numbers lags behind the undocumented infection case numbers, it is difficult to 
compare them without proper time and data alignment. Hence, we only compare their peak values. We demon-
strate the peak value of undocumented infections and the peak value of documented infections for each country 
in Table 1. In cases where the curve is still increasing and has not reached its summit, we simply replace the peak 
value with the maximum value. For documented infections, the observed maximum number of daily active cases 
in that period is listed in the fourth column, while for undocumented infections, we compute the mean peak 
value from the samples (the green curves shown in Fig. 2) inferred by the SUDR model. The 95% confidence 
interval is also illustrated along with each mean peak value of undocumented infections. The last column shows 
the ratio of max IU/max ID , which reflects how big the quantitative gap is between the maximum numbers of 
undocumented infections and documented ones.

For most countries, the ratio max IU/max ID ranges from around 2 to 6 in the 60-day time period of the 
first wave of COVID-19. Some existing studies show similar  results29. For example, the number of infected in 
Italy was estimated to be around 3.5 times higher than that reported at the end of February, 2020. However, two 
outliers are identified in the results: 12.86 (Germany) and 10.88 (the United Kingdom), which are much larger 
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than the average estimated ratio. This is because, in the initial stage, the increase in the number of documented 
infections lags behind the evolving undocumented infections. When comparing the peak value of undocumented 

Figure 2.  The undocumented infections inferred by the SUDR model. We show the density of infected 
individuals, namely the prevalence of the undocumented and documented infections inferred by SUDR in 11 
European countries in the first 2 months of their COVID-19 epidemic. For each country, the ground truth of 
their reported documented infection case numbers is shown by a dotted black line. The orange lines are 100 
random posterior samples of documented infections. The green lines are 100 random posterior samples of 
undocumented infections inferred by SUDR, with 2.5% and 97.5% percentiles presented by the two solid black 
lines.
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infections and the initial value of documented infections, the ratio becomes larger than the actual value. We 
notice that the number of active undocumented infections gradually decreases to a low level once the first wave 
is finally under control.

Overall, Fig. 2 shows that detecting undocumented infections and inferring the relationship with documented 
infections provide a reliable speculation about the COVID-19 contagion in the first 2 months of COVID-19 
outbreaks. Table 1 further shows the quantitative peak values of documented and undocumented infections. 
The max IU/max ID ratio shows an intuitive evaluation of the gap between reported and unreported infections. 
These results may assist in understanding infection movement, forecasting an increase in detected infection cases, 
and initiating and adjusting the corresponding mitigation policies. In addition, since individual indicators do 
not paint a complete picture of evolving documented or undocumented cases, readers should cross-refer to all 
indicators to arrive at more comprehensive and trustful insights when making intervention policies and choos-
ing the corresponding control measures.

Inferring the epidemic attributes. The main attributes describing the COVID-19 epidemic are the 
infection rate β , the detection rate θ , and the removal rate γ . θ refers to the average transition from undocu-
mented infection state to documented infection state from a statistical perspective. γ indicates how fast cases are 
removed statistically (it does not reflect the specific days for a case removal). The higher the gamma rate, the fast 
the case number gets decreased, resulting in fast control of the epidemic. Here, SUDR infers these variables on 
the reported data from 11 European countries.

First, the infection rate is one of the most important epidemiological attributes to describe the transmission 
and reproduction features of COVID-19. In existing studies, infection rate is typically modeled as a constant or 
time-varying variable. However, this assumption does not accurately reflect the characteristics and complexi-
ties, as discussed in the introduction to the COVID-19 transmission processes. Cluster infection is a prominent 
characteristic of the spread of COVID-19, and the virus transmission routes and circumstances usually involve 
household, local community and nosocomial  infections28,30. Considering this particular epidemiological feature, 
we model the infection rate as a density-varying (or prevalence-varying) complex function in the SUDR model, 
which provides a much better capacity to capture the COVID-19 complexities. However, it is difficult to obtain 
an accurate closed-form solution for the complex prevalence-varying infection rate function. The reasons for 
this include: we have no idea about the micro-level transmission mechanism and the expression form; and the 
infection rate can only be inferred at discrete points (i.e., the observed prevalence of the reported infection) 
which are extremely sparse. Hence, we summarize some important statistical characteristics of the sampled 
infection rates over the undocumented infection densities inferred by our model and present them in the box 
and whisker plot in Fig. 3.

The spread of the SARS-CoV-2 virus in the initial stage shows different transmission dynamics with chang-
ing infection rates among the 11 European countries. The box plot depicts what the distribution of the infection 
rate may look like. As shown in Fig. 3, countries like Austria, Germany, Spain and Switzerland have relatively 
higher average infection rates (23.2, 23.1, 21.9 and 21.0, respectively) compared with France and Sweden (11.3 
and 12.9, respectively). Furthermore, the variation range is reflected by the minimum, the lower quartile, the 
upper quartile, and the maximum. Since the infection prevalence is defined on the domain [0, 1], whereas the 
observed densities are usually close to 0 but never reach  127, it can also be inferred that the larger the variation 
range, the more sensitive the complex contagion function over the infection density.

Lastly, in addition to verifying the infection rate, SUDR also infers two other epidemiological attributes: the 
detection rate, and the removal rate, from the data. As shown in Table 2, the detection rate θ indicates the average 
COVID-19 test ability and test coverage in a country. The higher the detection rate, the faster the undocumented 
infection cases drop. For instance, as shown in Table 2, the detection rates in four countries, Austria, Denmark, 
Spain and Switzerland are much higher than the others. As shown in Fig. 2, the undocumented infection cases in 
these four countries drop quickly until approaching the level of documented infection cases. We also find that the 
removal rates γ in the four countries are also relatively higher. Considering that most undocumented infections 

Table 1.  A quantitative comparison of the documented and undocumented infections in each country.

Country Population Period
Peak value of ID  
(observation)

Peak value of IU  (mean 
with 95% CI)

Ratio: max I
U /max I

D  
(mean with 95% CI)

Austria 8,847,037 2/25–4/24 9334 42,837 [38,071, 47,827] 4.59 [4.08, 5.12]

Belgium 11,422,068 3/01–4/29 29,075 82,935 [69,496, 91,033] 2.85 [2.39, 3.13]

Denmark 5,797,446 2/27–4/26 3799 18,602 [16,658, 22,335] 4.90 [4.38, 5.88]

France 66,987,244 2/25–4/24 97,613 336,513 [254,356, 477,853] 3.45 [2.61, 4.90]

Germany 82,927,922 1/27–3/26 37,998 488,708 [368,942, 647,584] 12.86 [9.71, 17.04]

Italy 60,431,283 2/20–4/19 108,257 352,977 [307,658, 384,688] 3.26 [2.84, 3.55]

Norway 5,314,336 2/26–4/25 7266 27,963 [20,207, 34,538] 3.85 [2.78, 4.75]

Spain 46,723,749 2/25–4/24 101,617 307,248 [293,207, 322,021] 3.02 [2.89, 3.17]

Sweden 10,183,175 2/25–4/24 15,606 41,629 [33,361, 53,929] 2.67 [2.14, 3.46]

Switzerland 8,516,543 2/25–4/24 14,349 47,996 [44,176, 52,139] 3.34 [3.08, 3.63]

United Kingdom 66,488,991 1/31–3/30 31,784 345,930 [268,306, 445,503] 10.88 [8.44, 14.02]
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are on asymptomatic or mildly symptomatic patients who are easier to cure, the number of removal cases will 
increase in unit time when more undocumented asymptomatic or mild infections are detected.

Robustness analysis. As previously mentioned, the reported COVID-19 case data contains various uncer-
tainties and quality issues, including the randomness of case reporting, statistical errors, missing undocumented 
infection cases, missing reportings, inconsistencies in reporting standards, etc. With such significant uncertain-
ties in the COVID-19 data, as a probabilistic compartmental model, SUDR is more robust and applicable than 
the existing SIR and its variants. This is because SUDR assumes the parameters follow a certain distribution 
instead of a fixed constant or function.

Here, we evaluate the SUDR robustness through backtesting validation on the COVID-19 case numbers in 
the Hubei province, China from Jan 12, 2020 to Mar 23, 2020, collected by JHU  CSSE19. We choose this data to 
validate SUDR robustness due to its extremely demanding challenges. Hubei was the location of the first large-
scale outbreak of COVID-19. When the epidemic started to spread, there was limited knowledge about the virus 
and its containment. The data also involves different confirmation criteria, e.g., the inclusion of suspected cases 
with a clinical diagnosis of confirmed cases in Hubei, China on Feb 12th, 2020. In comparison with other late 
reported data, this data is more complex in its case reporting uncertainty, noise and statistics. Comparatively, 
the aforementioned European data may be less uncertain and noisy since some reporting mistakes were already 
 corrected19. As the Hubei case numbers already contain noise such as statistical errors, missing values, and so on, 
here we incorporate various degrees of sparsity into the data by randomly masking some of its values, resulting 
in four sets: the complete data, 5% sparsity, 10% sparsity, and 20% sparsity. In this experiment, the degrees of 

Figure 3.  The inference of the prevalence-varying infection rate β(IU ) of 11 countries. The complex COVID-
19 contagion is modeled using the undocumented infection prevalence and density-varying function, which 
is inferred by the SUDR model through HMC sampling. This box and whisker plot depicts the significant 
descriptive statistics of the infection rate, including the median, the minimum, the maximum, the lower 
quartile, and the upper quartile. The distribution of the sampled infection rates and skewness are visually shown 
by displaying the quartiles and median. Here, we only overlay the medians (the red bar) for the purpose of 
conciseness.

Table 2.  The detection and removal rates inferred by SUDR in each country. We show the mean value and 
the 95% CI of detection rate θ and removal rate γ . A positive correlation can be found between θ and γ in most 
countries.

Country Detection rate θ  (mean with 95% CI) Removal rate γ  (mean with 95% CI)

Austria 0.97 [0.90, 1.00] 3.38 [3.14, 3.60]

Belgium 0.68 [0.60, 0.80] 0.35 [0.25, 0.47]

Denmark 0.91 [0.69, 1.00] 3.67 [3.17, 4.00]

France 0.74 [0.41, 0.98] 0.77 [0.16, 1.32]

Germany 0.56 [0.34, 0.86] 2.33 [0.72, 4.08]

Italy 0.83 [0.75, 0.95] 1.15 [1.07, 1.23]

Norway 0.68 [0.53, 0.92] 1.18 [1.06, 1.31]

Spain 0.98 [0.93, 1.00] 1.21 [1.12, 1.27]

Sweden 0.73 [0.54, 0.93] 0.15 [0.003, 0.55]

Switzerland 0.97 [0.89, 1.00] 2.07 [1.88, 2.23]

United Kingdom 0.70 [0.47, 0.95] 1.06 [0.14, 2.23]
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Bernstein polynomials of the β function, the deviation hyper-parameters, and the HMC parameters of SUDR 
are the same as in the above experiment.

Three baselines are chosen for the robustness comparison. First, SIR is a classic compartmental model with 
fundamental biological insight. Second, time-dependent SIR23 is an SIR with time-dependent functions to model 
the transmission rate and removal rate and applies the ridge regression for the model solution. Lastly, complex 
SIR27 is a probabilistic extension of SIR by replacing the constant transmission rate with a density-dependent 
function that relies on the infection case numbers. These baselines only model the explicitly documented infec-
tions as they cannot detect undocumented infections. For the sake of fairness, the comparison experiments 
only test how well these models fit the reported cases under complex data conditions. The settings of the time-
dependent SIR and complex SIR models are the same as in their original designs for optimal performance.

In the backtesting, according to the known case numbers (including the population, the documented infec-
tion numbers, and the recovered and death case numbers), we infer the infection rate β and the removal rate γ 
using these models. Then, with the initial values, the case number series can be obtained step by step using the 
ODE functions of the models. The robustness and effectiveness of the models can be estimated by how well the 
computed case number series fit the observed daily cases in the data under different noise conditions.

As shown in Fig. 4, SUDR and complex SIR achieve a similar performance. SUDR performs better in the 
first half of the time period (before day 30), while the complex SIR performs better in the second half (after day 
50). This suggests that SUDR pays more attention to the data before day 30 in inferring the epidemiological 
parameters, while the complex SIR does the opposite. However, both models perform better than the time-
dependent SIR and classic SIR at different levels of sparsity. With the increase of sparsity, the performance of 
SUDR and complex SIR drops gradually but still outperforms the others. The classic SIR model (the blue curve) 
shows quite a different trend to the real observation data, indicating the significant inaccuracy of the inferred 
transmission rate and removal rate. Obviously, it is not reliable to infer the trend of COVID-19 merely from the 
constant mean values of transmission rate and removal rate. The time-dependent SIR model performs better 
than the classic SIR model as it captures some changes in the observations and is trivially affected by the sparsity 
level. In contrast, the time-dependent SIR is fragile to noise. It is noteworthy that the Hubei data involves more 
confirmed cases due to the relaxed case confirmation since Feb 12,  202023. This specification adjustment leads 
to a lift in infectious cases around the 32n day, as shown in Fig. 4. After this adjustment cutoff point, the time-
dependent SIR does not fit the actual infectious case numbers, especially in the second half stage. In summary, 

Figure 4.  The performance comparison on the COVID-19 data with different levels of sparsity. The black dots 
refer to the density of daily infection cases. The colored lines show the density of daily infection cases inferred 
by the four models: SIR, time-dependent SIR, complex SIR, and SUDR. With the backtesting validation, 
the visualization shows the robustness and effectiveness of these models, indicating how well the estimated 
prevalence by these models fit the actual observations at different levels of sparsity.
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the probabilistic compartmental models, namely SUDR and complex SIR, are robust enough to combat the noise 
and sparsity in the data reporting.

The comparison results in Fig. 4 provide some general insights. On one hand, the compared models represent 
three typical directions of epidemic modeling: the epidemiological compartments, the time dependency of case 
numbers, and the uncertainty of case reporting. These are important concerns in understanding the COVID-19 
complexities by epidemic modeling: the classic compartmental model (e.g., SIR), time-dependent compartmental 
model (e.g., time-dependent SIR), and probabilistic compartmental model (e.g., complex SIR and SUDR). On 
the other hand, the complex conditions of COVID-19 data must be captured in COVID-19 modeling, including 
missing values, statistical errors, rectification, and sparsity. In addition, it is observable that probabilistic compart-
mental models like SUDR outperform the classic compartmental models and time-dependent compartmental 
models, as shown by the results.

Discussion
Accurately inferring the undocumented infection case numbers of COVID-19 is one of the most challenging 
tasks in modeling COVID-19, which is even more difficult for the data collected in the very early stage of the 
COVID-19 pandemic. The challenge comes from various uncertainties related to not only the COVID-19 epi-
demic represented by the sophisticated epidemiological attributes of the coronavirus but also other diversified 
data uncertainties. In particular, a high proportion of asymptomatic and mildly symptomatic infections with a 
high contagion threat to the susceptible exist, with strong inconsistencies in case reporting methods, timing, and 
 confirmations1. The public data for the early stage is with various data quality issues, including noise, inconsisten-
cies and errors. These issues are still apparent in the current COVID-19 resurgence, mainly caused by coronavirus 
mutations (such as Delta, Lambda and Omicron variants) and in the vaccine breakthrough infections.

This study proposes an inference approach from the macro-level perspective for this complex social-tech 
problem. There is no true knowledge about the actual underlying interactions between entities and in the process 
of COVID-19 transmissions. Accordingly, a density-dependent infection function better captures complex con-
tagion dynamics, including social reinforcement and non-monotonous relations between the expected epidemic 
size and their average transmission rate, than other typical methods of modeling constant and time-dependent 
infection rate.

Contrary to complex contagion functions, we adopt a concise and plain four-compartment SIR-like model 
to characterize the COVID-19 transmission processes. The proposed SUDR shows a stronger generalization 
ability than the elaborative compartmental models which may include seven or more states. Due to a lack of 
knowledge about the underlying contagion interactions and spread patterns, it is thus appropriate to design a 
generalized model that can avoid vital deviations and mismodelling errors in characterizing the actual contagion 
mechanisms.

The second observation from this work is that probabilistic compartmental models are a good choice to 
characterize complex data conditions in COVID-19 reporting. With Bayesian frameworks, probabilistic com-
partmental models outperform other mathematical epidemic models by assuming the central epidemiological 
parameters follow certain distributions. This naturally captures the uncertainty in both the COVID-19 processes 
and case data, which is superior to typical constant models (e.g., the classic compartmental models SIR and SEIR) 
and time-varying function models (e.g., time-dependent compartmental models). In addition, probabilistic 
compartmental models also offer better robustness and interpretation than classic compartmental models and 
time-dependent compartmental models.

However, our work and similar probabilistic compartmental modeling can be further enhanced in various 
ways. First, it is difficult to obtain the accurate infection function due to the extreme sparsity of the prevalence 
and the sampling method. The relationship between the infection rate variation and the undocumented infec-
tion density is still unknown by the current model. Second, SUDR assumes the clusters are isomorphism and 
homogeneity. In fact, the population stratification and the interaction structure within a cluster may influence 
the COVID-19 contagion, requiring further study. Lastly, probabilistic compartmental models strongly depend 
on the prior knowledge of distributions and hyperparameters, which however, are difficult to obtain. In addition, 
there are also other factors that may be considered: the number of tests, the methods and coverage of testing, the 
infectious period, and the delay in case documentation of each case, if such data is available.

Going beyond modeling social reinforcement on infections, there are many other complex factors and 
interactions in the COVID-19 problem space. These include virus mutations, vaccination rate and efficacy, 
nonpharmaceutical interventions, external factors such as weather and mobility, and their joint influence on 
COVID infection, transmission and containment. These factors interact and jointly affect the evolution of the 
COVID-19 pandemic and the endemic in a region, together with other internal and external factors. Increas-
ing specific research has been reported on each of these aspects, however, only limited research is available on 
jointly modeling these interactions and  influence31. A future topic relevant to this work is to explore probabilistic 
compartmental modeling in modeling the interactions and influence of such factors.

Methods
Data. We evaluate the SUDR model in detecting undocumented infections under imperfect conditions, i.e., 
the reporting noise and under-reported numbers in the publicly available data. We test the model on real-world 
60-day COVID-19 data from 11 European  countries32, a subset of the global COVID-19 case dataset reported by 
JHU  CSSE19. The data records the worldwide daily case numbers, including confirmed case numbers, recovered 
case numbers, and death case numbers. The data is publicly available, and we confirm this case study confirms 
our university’s research ethics and all experiments were performed in accordance with relevant guidelines and 
regulations.
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Here, we only extract the initial period (i.e., the first 60 days) of the COVID-19 outbreak in these countries. 
This early state is more likely embedded with undocumented cases and it is more challenging to model and con-
trol the epidemic dynamics. In general, the first waves and the resurgence of new COVID-19 variants are often 
more challenging to model and propose  interventions31. The challenges usually come from a limited number 
of COVID-19 tests, poor test coverage, poor knowledge and awareness of COVID-19 complexities including 
transmissions, incubation periods, mutated attributes, and the difference from their original strains. At this stage, 
many confirmed cases may only be documented after obvious symptoms appear and sufficient test toolkits are 
available. This thus incurs a larger proportion of undocumented infections.

Modeling COVID‑19 transmission mechanisms. SUDR is a compartmental epidemic model embed-
ded with Bayesian statistical methods. It jointly models the COVID-19 epidemic processes, asymptomatic infec-
tions, social reinforcement of contagion, and imperfect data conditions.

Figure 5 illustrates the SUDR model for the epidemiological compartmental characterization of COVID-19. 
SUDR comprises four compartments (S, IU , ID ,R) to simulate the entire transmissions with asymptomatic infec-
tions and the transfer from an undocumented to a documented state. Accordingly, the COVID-19 transmission 
and dynamics are formulated per Eqs. (1)–(4) over time steps t = 1, 2, . . . ,T (corresponding to each day in daily 
case reporting).

S refers to the number of susceptible individuals who are not epidemically contained and thus may be exposed 
to the virus at the infection rate (function β ). When infected, a susceptible transits to the undocumented infec-
tious compartment (Eq. 1). P refers to the subpopulation involved in the epidemic, which is assumed to be a 
part of the entire population W (this is particularly applicable to the first COVID-19 waves and new resurgence 
after full zero-infection containment). As superspreading events (SSEs) and cluster infection are common in 
the COVID-19  pandemic33,34, not all people in W are susceptible, particularly when they geographically stay 
far away from the epicenter or adopt effective self-protection measures (e.g., wearing face masks or staying at 
home). In other words, SUDR does not involve such individuals in the epidemic transmission processes to be 
modeled. Accordingly, we assume only α ∈ [0, 1] of the entire population W is involved in the active epidemic 
shown in Fig. 5, i.e., P = αW.

IU is the number of undocumented individuals contracting the virus, who can thus infect those susceptible 
individuals such as close contacts or household infections. They are undocumented as they may be either in an 
incubation period or asymptomatic. This undocumented group forms an important determinant of the pathogen’s 
pandemic potential, as these infections are likely undiagnosed but highly  contagious15. Those undocumented 
infectious individuals, once confirmed with the virus infection (e.g., by diagnosis test) at detection rate θ , transit 
to the documented infectious compartment ID (Eq. 2), who are then quarantined and will rarely further infect 
other susceptible individuals. We assume those observed cases fall in this group. People in ID will then either be 
cured or unfortunately die, and then directly transit to the removed compartment R at the removal rate γ (see 
Eq. 3). Both IU and ID are time-dependent over time t. R combines both recovered and deceased individuals who 
are converted from the undocumented and documented infectious compartments (see Eq. 4). We further assume 
the recovered and dead individuals are immune against the virus, i.e., they will not further infect other people.

(1)
dS(t)

dt
=− β(IU (t))S(t)IU (t)/P

(2)dIU (t)

dt
=β(IU (t))S(t)IU (t)/P − θIU (t)− γ IU (t)

(3)dID(t)

dt
=θIU (t)− γ ID(t)

(4)
dR(t)

dt
=γ (IU (t)+ ID(t))

S R
/

Figure 5.  Compartment representation of the SUDR model. SUDR sequentially characterizes the COVID-19 
transmission mechanisms as follows: (1) the susceptible (S) transit to the undocumented infected ( IU ) once they 
are infected at the infection rate β ; (2) the undocumented infected are either detected at the detection rate θ and 
become documented ( ID ) or removed directly; and (3) the documented infected are removed. We assume both 
the undocumented and documented infected become recovered or deceased (R) at the same removal rate γ.
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Modeling the asymptomatic infections. As illustrated in Fig. 1, COVID-19 infectious individuals may 
infect the susceptible during their incubation periods or when they are asymptomatic. However both scenarios 
are undetectable. In addition, it is shown that a large proportion of asymptomatic infections cannot be detected 
immediately. These asymptomatic infections are a great challenge to sourcing and containing infections before 
the onset of symptoms and infecting other people, leading to a significant time delay in treating the infected 
and mitigating their contagion spread. To address the incubative and asymptomatic infections, we partition 
the infectious population I into undocumented IU and documented ID infectious individuals. Those undocu-
mented cases could be in incubation or asymptomatic, and we assume all COVID-19 infections are likely ini-
tially undocumented. However, those with the onset of symptoms and diagnosed will be detected, transferring 
to the documented compartment ID at detection rate θ.

We further assume that only undocumented infectious individuals are infectious to the susceptible since those 
who are detected are likely quarantined and are unlikely to further infect the susceptible without close contact. 
The undocumented infections may have a much higher probability than the documented to interact with the 
susceptible when they have minimal symptoms or are unaware of infection. This assumption is consistent with 
reality especially at the early stage of the COVID-19 outbreak, when both viral testing and effective protection 
are limited.

Modeling the contagion reinforcement. The contagion of COVID-19 may be reinforced during unsafe 
social interactions and reinforcement, as COVID-19 can be regarded as a complex social reinforced contagion 
network. When a susceptible individual is infected, their close contacts may have a higher probability of being 
infected. The infections of close contacts will further be passed to their contacts. Consequently, the population 
infection probability increases nonlinearly at the density of infected neighbours in a chained way. This explains 
the commonly seen cluster infections, such as through local communities like households, parties and hospitals, 
which dominate the spread of COVID-19.

SUDR thus models this COVID-19 contagion reinforcement, which may be caused by various contagious 
factors. We model the transmission rate as the function of the density of the infected population, inspired  by27. 
Compared with assuming a time-dependent transmission rate in the epidemic modeling, a density-dependent 
transmission rate function can more reasonably characterize the social reinforcement of COVID-19 contagion 
and provide a better interpretability of dominating cluster infections.

Modeling data uncertainty, sparsity and noise. To model the aforementioned COVID-19 data qual-
ity issues including noise, sparsity and randomness, we incorporate Bayesian inference into SUDR, making it 
capable of modeling these data conditions. For this, we refer the density of documented infections at time t as 
the COVID-19 prevalence Yt for the measurement. Yt ∈ [0, 1] , which is much closer to 0 due to the large popula-
tion size. By assuming that the population is well mixed, the likelihood of the prevalence Y1:T can be obtained as:

yt ∈ Y corresponds to the state set of susceptible, undocumented infectious, documented infectious, and 
removed people at time t. y0 = (S0, I

U
0 , ID0 ,R0) corresponds to the initial state. The noise component is shown 

in Eq. (6), which is a normal distribution with mean I[yt ] (referring to the density of the infectious individuals 
in the state set at time t) and standard deviation σ.

Since there is not a closed-form solution for Eq. (5), we take a mean-field approximation method for the 
inference. Similar to the inference  in27, we only consider the largest contribution in Eq. (5), leading to

where ỹ1:T (β , θ , γ ; y0) is the time series of the density of infectious individuals, computed from Eqs. (1)–(4) 
given the initial condition y0.

With the prevalence likelihood, we further obtain the posterior distribution of the prevalence data Y1:T:

Before sampling, we assume the priors for β , θ , γ and σ in the likelihood. We first parameterize the infection 
rate function β since we cannot directly place priors for functions. Bernstein polynomials are adopted for the 
parameterization as shown in Eq. (9), where N is the degree of Bernstein polynomial for β with coefficients ξ0:N.

(5)
P(Y1:T |β , θ , σ , γ , y0)

=

∫

Y T
P(Y1:T |y1:T , σ)P(y1:T |β , θ , γ , y0)dy1:T

(6)P(Y1:T |y1:T , σ) =
∏
t

q(Yt |I[yt ], σ)

(7)P(Y1:T |β , θ , γ , σ , y0) =
∏
t∈T

q(Yt |ỹt(β , θ , γ ; y0), σ)

(8)P(β , θ , γ , σ , y0|Y1:T ) =
P(Y1:T |β , θ , γ , σ , y0)P(β , θ , γ , σ , y0)

P(Y1:T )

(9)β(IU ) = BN (I
U ; ξ0:N )
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The SUDR model summary. In summary, we have the SUDR model to infer the COVID-19 prevalence 
Y1:T at time t = 1, . . . ,T and i = 0, . . . ,N as follows:

where SUDR(β(ξ1,...,N ), θ , γ , y0(S0, IU0 , ID0 )) returns a mean-field time series of prevalence with a contagion 
function β parametrized by the degree N Bernstein polynomials of coefficients ξ , detection rate θ , removal rate 
γ , and initial conditions y0 = (S0, I

U
0 , ID0 ) . Since there is no information about the initial cases, here, we assume 

the initial conditions S0, IU0 , ID0  follow distributions:

Figure 6 further shows the probabilistic graphical model of SUDR, where the grey circle refers to the observed 
data, namely the reported infections; and the white circles stand for the variables to be inferred by the model. 
The hyperparameter is represented by the black dot, and the capital letter in the box indicates the number of the 
variables contained in the box. The probabilistic graphical model clearly demonstrates the dependency relation-
ship between the variables.

Model implementation. SUDR is implemented in the STAN probabilistic programming language for sta-
tistical  inference35. The Hamiltonian Montre-Carlo (HMC) algorithm is adopted to generate samples from the 
posterior distribution in Eq. (8). The observed daily infectious case numbers are divided by the corresponding 
population of each country to obtain the density (the prevalence). For the sake of simplicity, we set α as a con-
stant value 0.01 in our experiments, indicating that 1% of the whole population in the country is involved in 
the epidemic transmission process. We set N = 8 for the degrees of the Bernstein polynomial of the β function 
since the low degree Bernstein polynomial performs well enough for the inference. For the deviation hyper-
parameters in Eq. (10), we set b = 10 , c = 5 , e = 10 , a = d = f = g = h = 1 , µθ = µγ = µIU0

= µID0
= 0 , and 

µs0 = 0.01 . For the HMC algorithm, the default four chains are adopted for sampling. Other sampling param-
eters like the iteration number and control parameters are adjusted for each country until convergence.

(10)

Yt ∼ Normal(ỹt , σ
2)

σ 2 ∼ Half-Cauchy(0, a)

ỹ1:t = SUDR(β(ξ1,...,N ), θ , γ , y0(S0, I
U
0 , ID0 ))

ξi = µξ + δi

µξ ∼ Half-Normal(0, b)

δi ∼ Half-Normal(0, c)

θ ∼ Half-Cauchy(µθ , d)

γ ∼ Half-Cauchy(µγ , e)

(11)

S0 ∼ Half-Normal(µs0 , f )

IU0 ∼ Half-Normal(µIU0
, g)

ID0 ∼ Half-Normal(µID0
, h)

= ( , , )

( , ) ( , )

Figure 6.  The graphical model of the inference for SUDR. The grey node Yt refers to the observations, and the 
white nodes are variables to be inferred from the observations. The box shows the dimension of the variables. 
The prior information is characterized by the hyperparameters (black dots).
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