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Procedures for obtaining 
muscle physiology parameters 
during a gracilis free‑functioning 
muscle transfer in adult patients 
with brachial plexus injury
Lomas S. Persad1, Filiz Ates1,6, Loribeth Q. Evertz1,7, William J. Litchy2, Richard L. Lieber3,4,5, 
Kenton R. Kaufman1,8* & Alexander Y. Shin1

A complete understanding of muscle mechanics allows for the creation of models that closely mimic 
human muscle function so they can be used to study human locomotion and evaluate surgical 
intervention. This includes knowledge of muscle–tendon parameters required for accurate prediction 
of muscle forces. However, few studies report experimental data obtained directly from whole human 
muscle due to the invasive nature of these experiments. This article presents an intraoperative, 
in vivo measurement protocol for whole muscle–tendon parameters that include muscle–tendon unit 
length, sarcomere length, passive tension, and active tension in response to external stimulation. 
The advantage of this protocol is the ability to obtain these rare experimental data in situ in addition 
to muscle volume and weight since the gracilis is also completely removed from the leg. The entire 
protocol including the surgical steps for gracilis harvest takes ~ 3 h. Actual testing of the gracilis where 
experimental data is measured takes place within a 30‑min window during surgery.

Quantifying human muscle mechanical properties is an important step in understanding in vivo muscle function 
as well as developing computational muscle models. Musculoskeletal models are used in the study of human 
movement and the effects of surgical intervention but almost never developed using data directly obtained from 
humans. To ensure physiological accuracy, predictions made by such models must be validated against actual 
experimental data. However, it is extremely difficult to obtain physiological data from living human muscle. Thus, 
musculoskeletal models typically rely on inferred data from experiments performed on cadavers or isolated, living 
muscle in  animals1,2. Obtaining experimental data from living humans remains a challenge. In response to this 
challenge, this protocol outlines the process of quantifying gracilis mechanical properties in patients who are 
undergoing a gracilis free functional muscle transfer surgery. The surgery is performed to restore upper extremity 
function in patients who had a traumatic brachial plexus injury. In this protocol, we describe measurement of 
in situ force–length properties at the time of surgery. We also provide details as to how the methods of muscle 
biopsy using a custom biopsy clamp can be used to measure sarcomere length via laser  diffraction3.

Development of the protocol. Adult brachial plexus injuries (BPI) occur due to trauma and are most 
seen in motor vehicle  accidents4. The mechanism of injury is violent or sudden extreme rotation of the head or 
shoulder which stretches or ruptures the nerves resulting in a BPI. Adult traumatic BPI are increasing due to 
the growing popularity of extreme sports and rising number of vehicular accident  survivors5–7. Most patients 
require surgery to restore elbow flexion. There is a time dependant degeneration of motor end plates follow-
ing injury. Surgical intervention, when possible, should occur within 6–10 months after injury to avoid this 
 degradation8. When feasible, nerve grafting of viable nerve roots or nerve transfers are performed. In late cases 
or when restoration of rudimentary grasp is desired, a unique surgical procedure exists where a leg muscle (gra-
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cilis) is surgically harvested from the patient’s leg and transplanted into their arm to restore elbow  flexion9. Since 
the gracilis is fully exposed during the muscle transfer, it represents an unprecedented opportunity to gather 
muscle physiological properties. The gracilis muscle function is characterized by measuring key parameters of 
sarcomere length, muscle–tendon length, muscle mass, and passive and active force–length properties. Pilot 
studies were performed to test the feasibility and logistics of measuring these parameters and these studies were 
used to develop the current protocol.

All methods used in this research involve experiments with human participants. This research study is per-
formed in accordance with the Declaration of Helsinki. Informed consent is obtained in accordance with relevant 
guidelines and regulations for human subject research as specified in 45 CFR 46.116-General Requirements 
for Informed Consent and 21 CFR 50.25-Elements of Informed Consent. Each research subject provides their 
informed written consent for study participation. Each subject agrees to the use of their image, if needed, for 
publication purposes. The protocol is approved by the Institutional Review Board of Mayo Clinic. We successfully 
demonstrated a viable, reproducible protocol to obtain in vivo normal human gracilis muscle–tendon length, 
sarcomere length, muscle architecture, high-fidelity active and passive force data.

Validation studies. Data obtained using this protocol were used to test the validity of predictions from a 
commonly used musculoskeletal models in OpenSim. Our results show that there are significant errors in mus-
cle length predicted from current musculoskeletal  models10. The greatest error occurred when the knee was fully 
extended with an absolute average error of muscle–tendon length of 7% and absolute average fiber length error 
between 15 and 32%. Furthermore, it was observed that the manual linear scaling method that was used by the 
models developed using  OpenSim11 did not capture the normal variability in muscle–tendon length observed 
in human subjects.

Additionally, we showed that the human gracilis muscle has passive mechanical properties that are more 
like rodent muscle than rabbit muscle since it was observed there was only a modest increase in gracilis passive 
modulus when going from single fiber to whole muscle. One key finding from this study was that sarcomere 
strain rather than muscle strain is the best predictor of passive skeletal muscle  stress12.

Applications of the method. The methodology to obtain active and passive mechanical properties of 
human skeletal muscle may be applied to other muscles for free functional muscle transfer or surgical proce-
dures where the muscle and associated nerve, artery, and vein are exposed.

Comparison with other methods. Elucidating muscle function in relation to the joints it crosses is cru-
cial for understanding human locomotion, however, direct measurements of individual human muscle force is 
very rare. In a few studies, force was measured from human Achilles  tendon13. The data on triceps surae mus-
cle  group14 provided important but limited information during walking. Initially, force–length characteristics 
of upper extremity muscles were obtained from  amputees15. The approach was modified, improved, and used 
on muscles of patients with cerebral palsy during tendon transfer  surgeries16–18. These earlier intraoperative 
data collections on upper extremity muscles provided limited data. Data collection was performed after the 
tendon was divided and measurement of muscle force production capacity at specific joint positions was not 
possible. Recent intraoperative studies focused on collecting isometric muscle force with respect to joint angle 
 position19,20. Implementation of buckle force transducers (BFTs) to human tendons enabled to measure muscle 
forces from an intact tendon. Using this approach, force–length characteristics of healthy gracilis muscle were 
reported e.g., during anterior cruciate ligament  surgery21 and hamstring muscles of patients with cerebral palsy 
who undergo muscle lengthening  surgeries22,23.

The main advantages of the present protocol are that (1) it allows us to measure the dimensions, shape, and 
weight of the whole muscle since the gracilis is completely removed from its native location. These can only be 
obtained during free muscle transfer surgeries. (2) This protocol is unique in that it provides an opportunity to 
relate not only the muscle force with the joint position but also with the sarcomere length.

Experimental design. Due to the unique and complex nature of brachial plexus reconstructive surgery 
involving a gracilis free functional muscle transfer, ideally the procedures are performed by two teams of sur-
geons to reduce anesthesia and surgical time. In this situation, one team of surgeons prepare brachial plexus 
nerves to be grafted or transferred as well as the donor nerve(s) and vessels for the gracilis transfer, while the 
second team harvests the myocutaneous free functioning gracilis. When done in this manner, there is a short 
window of time that the gracilis harvest team has before the upper extremity team is ready to receive the gracilis 
muscle. During this 20–30 min interval, muscle force–length data is obtained and does not disrupt the progress 
of the surgeons on the upper extremity or delay surgical progress.

Expertise needed to implement the protocol. Personnel required to execute the protocol include:

• Orthopedic hand surgeon and surgical assistant: The orthopedic hand surgeon with expertise in microvas-
cular surgery commences harvest of the gracilis muscle prior to testing, mounts the force transducer on the 
tendon and obtains the biopsy samples. The surgical assistant aids the surgeon in stabilizing the leg during 
muscle stimulation, measuring muscle–tendon unit (MTU) length. This team is part of the brachial plexus 
reconstruction team.
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• Neurophysiologist: They are responsible for setup of the intraoperative electromyography system and per-
forming the muscle stimulation trials. This team is otherwise a normal part of the surgical reconstruction 
for intraoperative nerve testing of the brachial plexus roots.

• Research scientist: They are responsible for data acquisition system set up that connects to the BFT, collects 
intraoperative data, and secures biopsy samples. They must be familiar with digital data acquisition systems, 
understand signal conditioning concepts, electronic instrumentation and can perform maintenance and 
calibration of the BFT.

• Photographer: They are responsible for recording a video of the muscle for volumetric analysis as well as cap-
turing images of the harvested gracilis when placed on a sterile towel and adjacent to a sterile ruler. Muscle 
and tendon length are measured from these images. They are called only when needed and are not present 
for the duration of the study.

Figure 1 shows the layout of the personnel in the operating room so they can all work together without inter-
fering with the overall surgical procedure. The research scientist and neurophysiologist are on standby until the 
surgeon gives the indication that the experimental protocol can be performed.

Limitations. The limitations that must be considered when using this protocol include:

• MTU length, force measurements and biopsy samples are obtained at multiple joint configurations. Therefore, 
the protocol requires repeated positioning of the leg at different joint configurations with predetermined joint 
angles. This source of error can be limited by having a single surgeon (AYS) position the leg for all subjects 
and choosing joint angles that can be easily approximated such as 45°, 60°, or 90° (refer to Fig. 7).

• There will be minor unwanted leg movement during muscle stimulation since the patient’s leg is being held 
at the required joint configuration as the muscle contracts. This source of error is reduced by stimulating the 
muscle submaximally and thereby reducing muscle force production to manageable levels.

• The submaximal muscle activation results in a reduced contraction and as such may not correctly represent 
the true force-generating potential of the gracilis. This has implications when modeling in vivo muscle func-
tion since the Hill-type models that are used are more accurate at predicting muscle forces under maximally 
activated  conditions24. This issue can be addressed by calculating the level of muscle activation then scaling 
the peak force values to maximal activation conditions. First, calculate the ratio of peak force for the 2 Hz 
twitch at submaximal activation to peak force of the CMAP twitch at 100% activation. This ratio estimates 
muscle activation during the stimulation trials. We found that this ratio was close to 0.8 therefore it was 
appropriate to linearly increase the experimental peak force to estimate maximal activation peak force.

• Active force measurement using the BFT prevents the use of electrocautery during the concurrent surgery 
at the upper extremity recipient site. The BFT signal is sensitive to this electrical interference resulting in a 
noisy signal. Careful cooperation and communication with the upper extremity team is necessary to limit 
delays during crucial stages of the surgery.

Figure 1.  Layout of operating room for intraoperative muscle force measurement. (1) The surgeon and 
assistant hold the leg in position while the surgeon keeps the stimulator probe on the obturator nerve during 
stimulation. (2) Neurophysiologist determines the settings for maximum compound muscle action potential 
(CMAP) then performs the 2 Hz and 20 Hz stimulation at 50% and 25% of the current required to produce 
maximal CMAP. (3) Research scientist records the output from the BFT using a custom LabVIEW interface. The 
neurophysiologist coordinates with the research scientist to indicate the start of each stimulation trial.
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Materials
Human subjects. Caution. All research protocols must be approved by an Institutional Review Board. 
Subjects must be over 18 years old and scheduled to undergo a gracilis free functioning muscle transfer surgery 
to restore elbow flexion as part of their brachial plexus injury  reconstruction9,25. Subjects must give written and 
informed consent to undergo the intraoperative gracilis muscle data collection as part of their brachial plexus 
reconstruction.

Equipment. Critical. These items are required for the experimental protocol. They are categorized accord-
ing to equipment handled by the surgeon (and therefore must be sterile) and those handled by the research 
scientist (located on the periphery of the surgical field and nonsterile) collecting the intraoperative data. The 
biopsy clamps are steam sterilized and the BFT is ethylene oxide (ETO) sterilized per the institutional sterility 
requirements. The data acquisition software and hardware listed below are examples. It is not necessary to use 
these specific products for this protocol.

Sterile equipment for surgeon. 

• Biopsy  clamp26 in Fig. 2a (14 cm modified hemostat clamp, Sabri Group, Pompano Beach, FL, USA model 
3-113-14)

• BFT in Fig. 2b (× 2) (S-shape, dimensions: width = 10 mm length = 20 mm and height = 9 mm, TEKNOFIL, 
Istanbul, Turkey)

• Plastic bowl (Medline DYND50315, Medline Industries, Mundelein, IL)
• Ruler (Medline DYNJRULER, Medline Industries, Mundelein, IL)
• #2 FiberWire suture with needle removed (AR-7200, Arthrex, Naples, FL)
• Titanium Liga-Clips (Ethicon LigaClip MCA Medium, Johnson and Johnson, Cincinnati OH)
• Nerve stimulator probe (90 mm Cadwell disposable side-by-side bipolar probe, Cadwell, Kennewick, WA, 

cat. no. 302429-00)
• Subdermal needle electrodes (Cadwell twisted disposable subdermal needle electrode, Cadwell, Kennewick, 

WA, cat. no. 302821-000-060)

Nonsterile research equipment. 

• Laptop with LabView (2019 version, National Instruments, Austin, TX)
• Data acquisition system (USB 6000, National Instruments, Austin, TX)
• Strain gauge amplifier (Model SGA, Interface force measurement solutions, Scottsdale, AZ)
• Intraoperative Neuromonitoring Instrument (Cadwell Cascade Pro, Cadwell, Kennewick, WA)

Figure 2.  Biopsy clamp and BFT. (a) Side view of modified biopsy clamp and close up view of clamp jaws. (b) 
Top and side view of BFT.
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• 200 mL storage bottles (Corning 431431, Corning Incorporated, Corning, NY)
• 50 mL conical tubes (Corning 352098, Corning Incorporated, Corning, NY)
• Parafilm (Parafilm “M”, American Can Co., Greenwich, CT)
• Digital scale (CS-5000, Ohaus Corp., Parsippany, NJ)
• Digital camera (EOS 5d mark iv, Canon U.S.A. Inc., MELVILLE, NY)
• Floor cord cover (optional)

Reagents. 

• 10 × phosphate-buffered saline (PBS)
• 10% buffered Formalin

Reagent setup. 1X PBS solution. Dissolve 20 mL of 10X PBS in 180 mL distilled water.

Buckle force transducer (BFT) calibration. The BFT is calibrated in the laboratory according to meth-
ods described by An et al.27. First, the BFT and data acquisition system are connected. The voltage offset on the 
strain gauge amplifier (Model SGA, Interface force measurement solutions, Scottsdale, AZ) is adjusted until 
the output of the BFT is zero, meaning that the Wheatstone bridge circuit of the BFT is balanced. The BFT is 
mounted on a length of rope (inset image Fig. 3) and voltage is recorded as four 0.9 kg (two-pound) weights are 
incrementally suspended to calibrate the BFT between 0 and 36 N. The calibration curve of force versus voltage 
is plotted resulting in a linear relationship with a coefficient of determination exceeding 0.9. The slope of this 
relationship yields the conversion factor (in units of  NV−1) for that specific BFT. To account for subject specific 
tendon thickness, regression analysis is used to correct the conversion factor as a function of tendon thickness. 
Therefore, the calibration steps are repeated for materials of varying thickness (1–7 mm) (Fig. 3).

Custom data acquisition program. The amplified signal from the BFT is collected with a data acquisi-
tion system (USB-6000, National Instruments) at a sampling frequency of 1 kHz. For the custom user interface, 
we recommend that the display show the live feed from the BFT to the operating room staff so that they can 
monitor its function as well as a separate display showing the previous trial that was collected. The custom Lab-
VIEW user interface is shown in Fig. 4 for reference.

Phases of the procedure
The procedure is broken into phases listed below. These phases are also identified within the procedure section 
where the experimental instructions are listed.

Setup of USB data acquisition device (DAQ). Calibration is performed in the laboratory prior to the 
surgery. Therefore, all devices should just be connected, powered on and ready to go. A schematic of the BFT 
setup is shown in foreground of Fig. 5. The research scientist performs this setup while the surgeon prepares the 
gracilis to be harvested.

Surgical technique for preparing the gracilis MTU. The steps for harvesting the gracilis are modified 
from the description by Giuffre et al.25, leaving the muscle origin and insertion intact until testing is completed. 
The contralateral gracilis is typically used as the donor muscle secondary to the vascular pedicle orientation to 

Figure 3.  Conversion factor (C.F) for the BFT as a function of specimen thickness. Data is shown for two 
gain settings (1.2 mV/V and 2.49 mV/V). Inset image shows an example of material used to calibrate the force 
transducer in the laboratory.
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Figure 4.  LabVIEW VI user interface. (1) Trial type selection. (2) Live feed from BFT. (3) Previously captured 
trial preview.

Figure 5.  Experimental setup. Foreground shows the devices that are used to record the BFT signal. The BFT 
cable from the patient is connected to the strain gauge amplifier input. The strain gauge amplifier output is 
connected to the DAQ which is connected to a laptop via a USB connection. Data collection is performed using 
LabVIEW. The nerve stimulator and electrodes are connected to an intraoperative neuromonitoring instrument 
(Cadwell Cascade Pro, Cadwell, Kennewick, WA). Details of EMG electrode placement are described in step 16 
and Fig. 10.
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the recipient vessels of the side of the brachial plexus injury. Exposure of the gracilis occurs simultaneously with 
the operative team exposing the brachial plexus, the infraclavicular vessels and recipient site. Three incisions 
made to harvest the gracilis (Fig. 6).

Short term paralytic agents are used for induction of anesthesia. After induction, no inhalational anesthetics 
are used during the exploration of the brachial plexus, harvest and testing of the muscle. Total Intravenous Anes-
thesia (TIVA) is utilized to optimize intraoperative nerve testing of the brachial plexus. Once evoked potentials 
are obtained, anesthesia is switched to inhalational anesthetics. TIVA is used during the entire muscle harvest 
and testing. The most commonly used TIVA agent is Propofol augmented with an opioid.

Intraoperative measurement. Force and length are measured from the MTU in situ with the muscle 
origin and insertion intact. These data are recorded at four joint configurations (Fig. 7). As the limb is placed in 
the various joint configuration the MTU is lengthened.

Measurement of MTU length. MTU length is measured using suture held at the origin and insertion of 
the gracilis and marked using surgical clips.

Measurement of muscle force with intraoperative stimulation of the motor nerve. Criti-
cal. In vivo muscle force is measured by stimulating the muscle via the obturator nerve and measuring the 
muscle passive and active forces using a BFT mounted on the gracilis distal tendon. The surgeon first mounts and 
secures the BFT on the gracilis tendon then inserts the EMG electrodes required for stimulating the muscle. The 
obturator nerve is first stimulated to determine the current required to produce a maximal compound muscle 
action potential (CMAP). For data acquisition this current is reduced by 50% and 25% to better stabilize the leg 
and prevent excessive forces from being generated thereby ensuring isometric conditions. We recommend hav-
ing a backup sterilized BFT ready to be quickly substituted if any technical problems arise.

Muscle biopsy. Muscle tissue samples are taken from the exposed proximal gracilis muscle using a novel 
muscle biopsy  clamp26 that has been validated against intraoperative laser diffraction-measured sarcomere 
length in rabbit muscle. Harvested muscle is located proximally to the skin paddle. Using a minimal touch 
technique, a 1 mm thick portion of muscle is dissected for a length of 2 cm, placed in the muscle biopsy clamp, 
divided, and immediately placed in buffered Formalin. This length of dissection ensures that the muscle speci-
men is not stretched during placement of the clamps. The specimen remains in the buffered solution for 2 days. 
After fixation, it is removed from the buffered solution and stored in 200 ml of 1X PBS until ready for sarcomere 
length measurement.

Measurement of muscle weight and videography of muscle. When the upper extremity is ready 
to receive the gracilis muscle, the gracilis is harvested with a goal of being revascularized within 60 min. During 
this time, the gracilis is weighed, and its dimensions are documented using high resolution pictures and video 
holding the distal tendon up and rotating the muscle next to a ruler. Images of the muscle are used to measure 
muscle and tendon length while the video is used to obtain volumetric measurements.

Procedure
Setup of USB data acquisition device (DAQ). 

1. Connect the USB DAQ to the computer with LabVIEW installed. Connect the strain gauge amplifier to the 
DAQ.

2. Load custom data acquisition program.
3. Confirm all devices are working.

Figure 6.  Three incisions made to harvest the gracilis. (1) Longitudinal incision made over the pes anserine. 
(2) Distal medial thigh incision at a length of the musculotendon junction. (3) Proximal medial thigh incision. 
(Printed with permission of the Mayo Foundation for Medical Education and Research. All rights reserved, 
copyright 2010).
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Surgical technique for preparing the gracilis MTU. 

4. The patient is placed in a supine position and undergoes a general endotracheal anesthesia after which para-
lytic agents are restricted secondary to the need for evaluation of donor motor nerves for the brachial plexus 
reconstruction. The patient is positioned in a slight beach chair position and the entire lower extremity is 
prepped and draped.

5. The gracilis harvest commences with the identification of the distal gracilis tendon at the level of the pes 
anserine of the medial proximal tibia. A longitudinal incision is made over the pes anserine, the sartorius 
fascia elevated and the gracilis and semitendinosus tendons are identified. Umbilical tape is placed around 
the gracilis tendon and the soft tissue attachments are methodically dissected off the tendon proximally while 
preserving the gracilis insertion. A longitudinal distal medial thigh incision is made to identify the muscle 
tendon junction of the gracilis. The gracilis tendon is freed from all surrounding soft tissue between both 
the tibia and distal thigh incisions. This was verified by ensuring the gracilis tendon glides freely between 
both incisions (Fig. 8a).

6. The gracilis tendon at the distal thigh incision is pulled using the umbilical tape and the outline of the gracilis 
drawn on the proximal thigh (Fig. 8b). A handheld Doppler is used to define the anterior and posterior bor-
ders of the gracilis muscle as well as the proximal vascular perforators to the skin paddle. The skin paddle is 
then drawn about the vascular perforators (Fig. 8b), which is approximately 6–10 cm from the groin crease.

7. An incision is made along the anterior skin paddle outline and dissection was carried through the adductor 
longus fascia. The adductor longus fascia is sewn to the anterior skin paddle to prevent shearing of the skin 
paddle.

8. The vascular pedicle and the obturator motor branch to the gracilis are identified between the adductor 
longus and the gracilis. The nerve is verified using a handheld nerve stimulator and a vessel loop is placed 
around the obturator motor branch to the gracilis (Fig. 8c). The vascular perforators to the adductor longus 

Figure 7.  Simulation of the four intraoperative joint configuration (JC) used during data collection. The first 
column shows hip abduction and the second column shows knee flexion. Hip flexion was 60°. Muscle length 
increases from 30 to 40 cm from JC1 to JC4.
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are ligated and the vascular pedicle (artery and two venae commitantes) are dissected to the level of the 
profunda femoral vessels.

9. The obturator motor branch to the gracilis is carefully dissected as far proximally as possible. The proximal 
gracilis tendon is visualized and cleared so its insertion on inferior pubic ramus is visible. The incision on 
the posterior skin paddle outline is made and dissection was done such that a fascial sleeve was maintained 
around the gracilis muscle (Fig. 8d).

Intraoperative measurement.. Measurement of MTU length. 

 10. A number 2 fiber wire suture (Arthrex, Naples FL) is passed from the proximal thigh incision, following 
the anterior edge of the gracilis, to the distal thigh incision, and then out the incision over the pes anerine. 
A Carmalt clamp holds the end of the fiber wire suture onto the pubic ramus origin of the gracilis muscle 
(Fig. 9a).

 11. The hip and knee are placed in the specific joint configuration (JC) orientations described in Fig. 7 starting 
with the shortest length first (JC1), the distal fiber wire suture is pulled taught and marked with a Ligaclip 
at the level of the tibial tubercle (inset Fig. 9b).

 12. The leg is manipulated to the other joint configurations, each time marking the length of the MTU on the 
suture. The fiber wire suture is removed, a knot is tied on the distal end and is passed off the surgical field 
where the measurements are subsequently determined in the laboratory.

Measurement of muscle force with intraoperative stimulation of the motor nerve. 

 13. Start custom data capture code.
 14. The surgeon mounts the BFT on the distal gracilis tendon at the pes anserine. To prevent shifting or 

unwanted movement of the transducer, it is placed under the skin, and the skin temporarily closed with 
surgical staples (Ethicon, Johnson and Johnson, Cincinnati, OH). The transducer cord is stapled along the 
tibia in a “S” configuration to prevent traction displacement.

 15. The BFT cable is dangled off the surgical table towards the research scientist, who connects the cable to 
the strain gauge amplifier input.

 16. The nerve stimulator probe is bent with a gentle hook and the obturator motor nerve branch to the gracilis 
muscle is placed on the hook approximately 3–4 cm proximal to its entrance into the gracilis muscle. A test 
stimulation is performed to verify muscle contraction as well as force transducer function. Care is taken 
by the surgeon not to put undue traction on the obturator nerve.

Figure 8.  Surgical procedure for preparing the gracilis MTU for testing. (a) The gracilis tendon is freed from 
surrounding soft tissue between the tibia incision and distal medial thigh incision. Umbilical tape is place 
around the gracilis MTU at incision 1 and incision 2. Soft tissue attachments to the tendon are dissected until 
the tendon glides freely when either tether is pulled. (b) The outline of the gracilis and skin paddle is drawn 
on the medial aspect of the thigh. (c) The obturator motor branch is located and identified using a vessel loop. 
(d) The gracilis MTU ready for intraoperative testing after the proximal paddle incision is made and proximal 
gracilis tendon identified. (1) Tibia incision, (2) distal medial thigh incision, (3) proximal medial thigh incision.
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 17. The active electrode is placed near the anticipated motor end plate, the reference electrode is placed distal 
in subcutaneous tissue near the gracilis tendon, and the ground is place between the active electrode and 
stimulator (Fig. 10).

 18. The system is checked with several test stimulations prior to commencement of testing. Refer to trouble-
shooting table (Table 1).

 19. The leg is moved to the first joint configuration and held in place by the surgeon and assistant.
 20. A maximal compound muscle action potential (CMAP) response is obtained by stimulating the obturator 

nerve with square-wave pulses of 0.1 ms duration and intensity starting at 1 mA. The current at which a 
maximal CMAP response is obtained is noted and reduced by 50%, ensuring submaximal stimulation.

 21. The muscle is stimulated for two consecutive trials at 2 Hz each lasting two seconds. After a rest period of 
10 s, the muscle is then stimulated for two consecutive trials at 20 Hz each lasting two seconds. Refer to 
troubleshooting table (Table 1).

 22. The stimulation current is reduced to 25% of the current required to obtain a maximal CMAP and the 
2 Hz and 20 Hz trials are repeated. Refer to troubleshooting table (Table 1).

Figure 9.  MTU length measurement. (a) One end of the suture is held at the gracilis origin and threaded from 
the proximal thigh incision to the distal thigh incision. (b) The suture is passed from the distal thigh incision 
out through the incision at the pes anserine. The inset image shows a titanium Ligaclip being used to mark the 
length of the MTU at the pes anserine.

Figure 10.  Intraoperative muscle stimulation and force measurement. Image illustrates the electrode placement 
required when stimulating the muscle. Left inset image shows the obturator nerve on hook of the nerve 
stimulator. Right inset image shows the distal tendon woven through the BFT arms. After the BFT is mounted, 
the incision is temporarily closed with surgical staples and the trailing wire is secured along the leg.
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 23. Steps 20–22 are repeated for each joint configuration. These nine stimulation trials are captured for each 
joint configuration spanning the muscle excursion range (JC1 to JC4).

 24. Once all testing is completed for each joint configuration, the force transducer and EMG electrodes are 
removed.

Muscle biopsy. 

 25. The leg is positioned to the shortest muscle length, JC1.
 26. The surgeon positions the biopsy clamp and it is engaged after ensuring the muscle is in its resting position 

for that joint configuration (Fig. 11a) and remains unstretched.
 27. The sample is bluntly dissected and freed from surrounding tissue so that when it is placed in the clamp 

jaws the muscle bundle is not stretched (Fig. 11b).
 28. The isolated muscle fiber bundle is released proximally and distally to the clamp.
 29. Immediately after the biopsy is taken, the surgeon places the clamp into a 50 mL conical tube containing 

10% buffered Formalin that is held by the research scientist located on the periphery of the surgical field. 
The research scientist sets aside the submerged sample and provides the surgeon with another conical tube 
containing Formalin in preparation for the next biopsy sample.

 30. Steps 26–27 are repeated for the remaining joint configurations.
 31. After all the biopsy samples are obtained for each joint configuration, the research scientist covers each 

conical tube with parafilm, places the lid on and stores them in a biohazard transportation container. The 
biopsy samples will remain in Formalin for 2 days after which they are removed (Fig. 11c) and stored in 
200 ml of 1X PBS solution.

 32. A tray table covered with sterile plastic is prepared to be used when weighing the muscle and capturing 
muscle images.

Table 1.  Troubleshooting table.

Step Problem Possible reason Solution

18
No signal from BFT

Disconnected cable Confirm good connection from BFT to strain gauge amplifier

Faulty BFT
Ask the surgeon to remove the BFT from the patient’s leg and gently tap 
the transducer. The BFT is sensitive to pick up on small forces. Observe 
if there are any changes in its signal. If there is no response, switch to the 
backup BFT

No response observed Stimulator not on obturator nerve Ask the surgeon to confirm if the stimulator electrode is on the correct 
nerve

21
BFT signal noisy

Electrocautery induced interference Confirm there is no electrical interference

Connection from strain gauge amplifier to USB DAQ slack Confirm there is a tight connection

MTU not freed from surrounding tissue or BFT caught on surround 
tissue Ask the surgeon to confirm the BFT placement on the tendon

BFT signal clipping Gain value too low Increase gain on strain gauge amplifier

22 No response observed 25% of CMAP current too low to cause muscle contraction Ask the neurophysiologist to increase the stimulation current

Figure 11.  Muscle biopsy. (a) The gracilis bundle is positioned within the biopsy clamp and the clamp is 
engaged. (b) Biopsy sample after release from surround tissue and dissection from the gracilis. (c) Biopsy sample 
after fixation.
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Muscle weight and videography. 

 33. Gracilis harvest continues by division of the obturator motor nerve as proximal as possible and detachment 
of the distal tendon at the tibia.

 34. The gracilis muscle is delivered into the proximal thigh wound (Fig. 12a) and the fascia of the adductor 
magnus is elevated so that a fascial sling surrounds the proximal gracilis. The proximal attachment to the 
pubic rami is taken down (Fig. 12c). At this time the gracilis is completely free with the exception of its 
vascular pedicle (Fig. 12b). The muscle is temporarily left in its native bed by placing skin staples on the 
skin paddle to the anterior skin edge until the muscle is ready to be transferred.

 35. When the upper extremity is ready to receive the gracilis muscle, the vascular pedicle of the gracilis is 
visualized and the artery and two venae commitantes are ligated and the ischemic clock is started.

 36. The gracilis muscle is placed in a sterile bowl and weighed.
 37. The surgeon holds the gracilis MTU at the distal tendon allowing the muscle to rotate along its long axis 

next to a ruler. A video of the rotating muscle is recorded.
 38. The freed muscle is placed on a sterile surgical towel and photographed next to a ruler which provided 

calibration.
 39. Once this is complete, the gracilis is transferred to the upper extremity and the remainder of the recon-

struction is completed.

Troubleshooting (Table 1)
Timing
These times are estimates for a surgeon and research scientist with experience performing this protocol. When 
attempting this protocol for the first time, aspects of the protocol may take longer, particularly the muscle stimu-
lation and force measurement steps.

Steps 1–2, setup of BFT connected devices: 10–15 min.
Steps 3–8, preparing gracilis muscle for harvest: 1.5–2 h.
Steps 9–11, MTU length measurement: 5–10 min.
Steps 12–23, muscle force measurement: 25–35 min.
Steps 24–29, muscle biopsy samples: 5 min.
Steps 30–35, muscle weighing and photography: 5 min.

Anticipated results
Buckle force data for three subjects are shown in Fig. 13. Maximal CMAP twitch, 2 Hz and 20 Hz stimulation 
trials for each joint configuration are presented in each column. Unfused tetanic contractions are observed at 
20 Hz for each joint configuration. To evaluate intra-subject variability, peak force was compared between the 
two 2 Hz and 20 Hz trials. The root mean squared error was calculated to be 2.4 N and 9.8 N for the 2 Hz and 
20 Hz trials, respectively.

A more detailed look at the force traces is presented in Fig. 14. Note that the twitch demonstrates the typical 
asymmetrical rise time and lengthened fall time characteristic of skeletal muscle (see comparisons in Fig. 1A of 
Oda, et al.28 and Fig. 1 of  Lieber29) indicating that it is free to develop force and that it is sufficiently activated by 
the motor nerve to recruit most or all of the motor units. Note also that at 2 Hz stimulation, the twitch is nearly 
completely relaxed while at 20 Hz stimulation, temporal summation of contractile events occurs leading to 
tetanic contraction as the active tension (AT). The high frequency 20 Hz tension ripple can be seen at the peak 
of the tetanic contraction (Fig. 14, inset).

The variation in muscle force with stimulation intensity is depicted in Fig. 15. Figure 15a shows the raw 
experimental values for one subject where the force increases with increasing stimulation current until it plateaus. 

Figure 12.  Gracilis Harvest. (a) Release of gracilis distally and passed through proximal thigh incision. 
(b) Gracilis neurovascular bundle. (c) release of gracilis proximally. (Printed with permission of the Mayo 
Foundation for Medical Education and Research. All rights reserved, copyright 2010).
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Figure 15b shows the normalized force-current relationship averaged over 12 subjects. These data were recorded 
during step 20 when the neurophysiologist gradually increases the stimulation current until a maximal CMAP 
response is recorded.

Twitch contractile parameters and their definitions are shown in Fig. 16. Normalized peak force of the first 
2 Hz twitch and 0.5 Hz twitch for seventeen subjects were compared. The ratio of peak stress was approximately 
0.8 and indicate that nearly all the motor units are being activated during the submaximal stimulated 2 Hz trials. 
The relatively long contraction and relaxation times (Fig. 16c–e) support the fact that the gracilis is comprised 
of about 75% slow muscle  fibers30.

The harvested MTU is shown in Fig. 17. MTU, muscle and external tendon slack length are measured from 
these images. External tendon length is measured from the point where the muscle fibers terminate distally. The 
skin paddle is shown near the muscle origin along with neurovascular supply and adipose tissue.

Figure 13.  Intraoperative contractile record for three subjects. The columns show the CMAP, 2 Hz and 20 Hz 
muscle response for each joint configuration (JC). Data were filtered using a fourth-order low pass Butterworth 
filter and a cutoff frequency of 30 Hz. Total force was normalized to muscle physiological cross-sectional area. 
Time scale bars are labeled for each plot. Hip abduction (HA) and knee flexion (KF) angles for each JC are 
written as (HA, KF). JC1 (45°, 130°), JC2 (45°, 90°), JC3 (45°, 45°) and JC4 (60°, 0°). Hip flexion was constant at 
60° throughout. The baseline force for each contractile record shows the amount of passive tension present in 
the gracilis MTU. There is an increase passive tension from JC1 to JC4.

Figure 14.  Intraoperative contractile record from BFT of gracilis muscle. Active tension (AT) and Passive 
tension (PT) are indicated in the figure. The dotted line represents zero tension, so this muscle is under about 
20 N of passive tension in vivo. Inset represents the plateau of the 20 Hz stimulation showing a 20 Hz ripple.
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Figure 15.  Recruitment curve. (a) Twitch force versus stimulation current for one subject. (b) Recruitment 
curved calculated for 12 subjects. Active force and stimulation current were normalized to their respective 
maximum value at each joint configuration during the CMAP probing trials described by step 20 above.

Figure 16.  Muscle contractile parameters for 0.5 Hz and 2 Hz activation. (a) Definition of the twitch contractile 
parameters; Thc time from start of contraction to moment when force is half its maximum value, Tc time from 
start of contraction to moment when force is at its maximum value, Thr time from start of contraction to when 
force decreases to half its maximum value during the relaxation phase, Fmax maximum twitch force. (b) Peak 
force normalized to muscle physiological cross-sectional area. (c) Half peak contraction time (Thc). (d) Peak 
contraction time (Tc). (e) Half relaxation time (Thr). Twitch parameters for 0.5 Hz are compared to the first 
2 Hz contraction for seventeen subjects (n = 17).
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Data availability
Raw data obtained using this protocol are available from the corresponding author upon request.

Code availability
Custom LabVIEW code used in the protocol will be made available upon request to the corresponding author.
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