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QSAR analysis on a large 
and diverse set of potent 
phosphoinositide 3‑kinase gamma 
(PI3Kγ) inhibitors using MLR 
and ANN methods
Fereydoun Sadeghi1, Abbas Afkhami1,2*, Tayyebeh Madrakian1,3 & Raouf Ghavami4

Phosphorylation of PI3Kγ as a member of lipid kinases‑enzymes, plays a crucial role in regulating 
immune cells through the generation of intracellular signals. Deregulation of this pathway is 
involved in several tumors. In this research, diverse sets of potent and selective isoform‑specific 
PI3Kγ inhibitors whose drug‑likeness was confirmed based on Lipinski’s rule of five were used in the 
modeling process. Genetic algorithm (GA)‑based multivariate analysis was employed on the half‑
maximal inhibitory concentration  (IC50) of them. In this way, multiple linear regression (MLR) and 
artificial neural network (ANN) algorithm, were used to QSAR models construction on 245 compounds 
with a wide range of  pIC50 (5.23–9.32). The stability and robustness of the models have been evaluated 
by external and internal validation methods  (R2 0.623–0.642, RMSE 0.464–0.473, F 40.114,  Q2

LOO 
0.600, and  R2

y‑random 0.011). External verification using a wide variety of structures out of the training 
and test sets show that ANN is superior to MLR. The descriptors entered into the model are in good 
agreement with the X‑ray structures of target‑ligand complexes; so the model is interpretable. Finally, 
Williams plot‑based analysis was applied to simultaneously compare the inhibitory activity and 
structural similarity of training, test and validation sets.

Phosphatidylinositol 3-kinases (PI3Ks) are a group of plasma membrane-associated lipid kinases-enzymes 
that their phosphorylation plays a critical regulatory role in the cellular  processes1,2. In The cellular regulatory 
mechanism, kinases and phosphatases catalyze activation and deactivation processes via phosphorylation and 
dephosphorylation of PI3Ks,  respectively3. In response to various external stimuli such as oncogenes, growth 
factors, hormones, and environmental variations, PI3Ks are phosphorylated through conversions of phosphati-
dylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3)4,5. PIP3 serves as a 
docking site of effector proteins such as protein kinase B (PKB/Akt) that act as the second messenger molecule in 
the cellular  membranes1. This intracellular signaling pathway has an important role in regulating diverse cellular 
processes such as cell growth, differentiation, proliferation, survival, and  migration6–8. Reversible phosphoryla-
tion of inositol lipids controls diverse functions in cells. Deregulation of this pathway occurs by various genetic 
and epigenetic mechanisms in a wide range of  tumors9–11. PI3Ks are divided into classes I, II, and III based on 
the differences in their structures and specific  substrates12,13. According to the regulator proteins and signaling 
pathways, class I PI3Ks are further subdivided into class IA and class IB. Class IA PI3Ks contains three enzyme 
isoforms, PI3Kα, PI3Kβ, and PI3Kδ; while PI3Kγ is the only member of class IB and its corresponding signal 
primarily is generated by G-protein coupled receptors (GPCRs). PI3Kδ and PI3Kγ can generate intracellular 
signals to regulate immune cells. These two enzyme isoforms are being investigated for cancer treatment in the 
 clinic14–16. PI3Kα and PI3Kβ are involved in the regulation of cell survival and  metabolism17–20. Overall, PI3Kγ 
controls a critical switch between immune stimulation and suppression during inflammation and  cancer21. The 
abnormal expression of PI3Kγ is the result of the mutation and deficiency of phosphatase and tensin homolog 
on chromosome ten (PTEN)1,22.
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In competition with ATP, PI3Kγ inhibitors bind to the ATP cofactor binding site in the active form of kinases 
to block PI3Kγ activity through stabilizing inactive kinase  conformations23. PI3Kγ has attracted attention as 
a potential drug target in treating advanced solid tumors, leukemia, inflammatory, and various autoimmune 
diseases. Over the past two decades, PI3Ks (especially PI3Kγ) inhibitors have been attracting extensive interest 
and more than 600 medicinal chemistry-based publications and patents to date show the importance of these 
 compounds24. Enormous efforts have been dedicated to the development of highly efficient, safer, potent, and 
selective isoform PI3Kγ inhibitors. Gangadhara et al. discovered a class of PI3Kγ inhibitors. They proposed that 
the cyclopropyl ethyl moiety of these inhibitors induces a significant conformational change in both the kinase 
and helical domains of PI3Kγ which results in blocking the ATP–binding  site25. Other research groups also dis-
covered a series of potent and selective PI3Kγ inhibitors, some of which are:  azaisoindolinones26,  benzothiazoles27, 
7-substituted triazolopyridine (CZC24758)28, IPI-549 (through optimization of isoquinolinone)29, and 7-azain-
dole  isoindolinone30. Drew et al. designed potent PI3Kγ inhibitors based on the differences of IPI-549 and AZ2 in 
the binding modes interaction with ATP binding site of PI3Kγ31. SAR study on 6-aryl-2-amino-triazolopyridines 
was performed by Bell et al.32 Zhu et al. provide an overview to discuss the structure‐selectivity‐activity relation-
ship of existing clinical PI3Kγ  inhibitors33 and, ultimately Taha et al. used ligand‐based modeling and virtual 
screening followed by in vitro analysis to discover nanomolar PI3Kγ  inhibitors34.

Despite all these efforts, indeed selecting isoenzyme compounds is difficult; due to the high sequence homol-
ogy among the PI3K isoforms. Therefore, the discovery and development of PI3Kγ-selective inhibitors are still 
quite challenging.

Cost and time consumption are disadvantages of the in vivo-in vitro assays during drug development. QSAR 
analysis in a primary screening through selecting and proposing the most potent drug candidates causes to 
prioritize the synthesis of effective drugs; subsequently, pharmaceutical research can be more efficient. Halder 
and Cordeiro reported the QSAR-Co tool for predicting the activity of inhibitor compounds against different 
isoforms of PI3Ks, under various experimental  conditions35.

In this research, QSAR analysis was carried out on a large and diverse set of potent and selective isoform-
specific PI3Kγ inhibitors using an artificial neural network and multivariate linear regression. The interpretability, 
clarity, and understandability of the models presented by MLR make it a good choice for modeling. At the same 
time, the complex relationship between the chemical structures of PI3Kγ inhibitors and their biological response 
is the best justification for using the ANN-based nonlinear method.

Classification as another aspect of QSAR modeling can also be mentioned that was developed on qualita-
tive categorical  responses36. In the simplest case, chemical compounds are classified into two categories active/
inactive based on their biological activity. The mapping function based on the output variables is employed to 
predict the class or category for a given observation. In the case of two classes, binary classification is applied. 
Due to the high sequence homology among the PI3K isoforms, here we used regression-based QSAR models 
for a quantitative study.

Most of the compounds used in this research have been recently synthesized or evaluated experimentally. 
Also, to increase the application domain of the models, these compounds were investigated in a wide range of 
 pIC50 (− log  IC50). The selectivity of these compounds for PI3Kγ over the other PI3K isoforms is confirmed 
by X-ray crystallography. To take into account safety profiles related to absorption, distribution, metabolism, 
elimination, and toxicity (ADMET) during the prediction of activity, Speck-Planche and Cordeiro introduced 
the multitasking model for quantitative structure biological effect relationships (mtk-QSBER)37–39. In the present 
work, Lipinski’s rule of five was used to check the drug-likeness of  compounds40. Moreover, to further assess 
the models, external verification was performed using another group of PI3Kγ inhibitors with high structural 
diversity and a wide range of activity.

Materials and methods
Data sets. In this study, 245 compounds of PI3Kγ inhibitors collected from published  literature18,24,28–32,41 
were used for QSAR modeling. It is worth mentioning that, after removing duplicate molecules from the above 
references, a data set consisting of 256 molecules was collected. Then 11 compounds were removed from the data 
set, including seven molecules that were too different structurally for investigation in the application domain 
of the models and four molecules whose  pIC50 values were out of the considered range significantly. Thus, the 
final data set was reduced to 245 molecules. All minimum inhibitory concentration  (IC50) values of molecules 
were converted into the corresponding  pIC50. The structure of these molecules and their corresponding values of 
PI3Kγ inhibitory activity  (pIC50) are presented in Supplementary Table S1. Also, simplified molecular input line 
entry specification (SMILES) strings of molecules are provided in Supplementary Table S2.

Drug‑likeness assessment. For assessment of drug-likeness of a molecule, Lipinski’s rule of five was 
 employed40. Based on the distribution of molecular properties (molecular weight, H-bond donors, H-bond 
acceptors, and logP) among several thousand drugs of USAN (United States Adopted Name) data set, the per-
cents of drugs that are predicted to have poor absorption or permeation are specified in Table 1. In this Table, 
the ClogP parameter is calculated based on the substructure (atomic group) contribution. In comparison with 
other estimation methods, ClogP has a better agreement with experimental results. This parameter as a criterion 
of lipophilicity affects the permeability, accumulation, absorption, bioavailability, and drug cytotoxicity.

For 245 compounds involved in the modeling process, the aforementioned properties were calculated using 
Dragon 5.5 software  package42, except the ClogP that the Data warrior  software43 was used to calculate it. Cal-
culated parameters for these 245 compounds are presented in Supplementary Table S3. The result of checking 
them by Lipinski’s rule of five confirmed their favorable drug-likeness as shown in Table 1.
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Descriptors calculation and feature selection. In the first stage of the molecular modeling, SMILES 
strings of the structures were saved in SDF (Structure Data File) format; then, Open Babel  software44 was applied 
to convert them into the HyperChem HIN format. Following the modeling process in the HyperChem 8 software 
 package45, the molecular mechanics force field  (MM+) procedure was used to pre-optimization of 3D structures 
to lower energy levels. Then, the Semi-empirical methods including PM3 and AM1, which belong to quantum 
chemistry methods, were used to optimize the structures geometrically and electronically, respectively. Root 
mean square gradient equal to 0.001 kcal Å−1  mol−1 was determined as the critical value of optimization. The 
most stable optimized conformer of each structure was selected and saved. Subsequently, Dragon 5.5 software 
 package42 was used to compute 2D autocorrelation descriptors (a total of 96 of such descriptors) and, using the 
former optimized geometrics, three-dimensional (3D) descriptors including Randic molecular profiles, geo-
metrical, RDF, 3D-MoRSE, WHIM, and GETAWAY categories (a total of 41, 74, 150, 160, 99 and 197 of such 
descriptors, respectively).

Among 22 different classes of descriptors computable by the Dragon software, 3D and 2D autocorrelation 
descriptors most probably have a successful performance in 2D-QSAR modeling based on the results of our 
previous studies on the inhibitory activity of anti-cancer drug  candidates46,47. More details about these descrip-
tors and the superior features that make them most appropriate for modeling are provided at the end of the 
manuscript. To avoid overfitting, during the QSAR model development, objective feature selection was used to 
reduce the redundant and unnecessary information. In this way, descriptors that are zero and constant for all 
molecules were discarded from the descriptors pool. Additionally, as a rule highly correlated (R > 0.90), from 
each pair of descriptors that have a correlation coefficient greater than 0.9, only one remains in the descriptors 
pool and the other one is eliminated. Following the feature selection, based on the above described, the number 
of descriptors is reduced from 817 to 290 numbers, up to this stage. Subsequently, subjective feature selection 
involves the genetic algorithm tool in selecting the most relevant set of descriptors that were not  collinear48.

This algorithm is based on the theoretical principles of Darwin’s theory of evolution and is highly welcomed 
to multivariate analysis. GA runs based on the following steps:

Initially, many subsets of descriptors are randomly generated that serve as chromosomes, where the descrip-
tors included in each subset play the role of the gene. Then, for each subset of descriptors (each chromosome), the 
MLR model was developed separately. Based on the goodness prediction of inhibitory activity, the chromosomes 
are evaluated. The correlation coefficient  (Q2) value plays the role of the fitness function which is calculated based 
on employing the leave-one-out cross-validation (LOO-CV) method on each chromosome separately (LOO-CV 
is described in the next part of this research). Each subset of descriptors located on a chromosome is encoded 
with a string of binary 1 and 0 values. Based on the modeling results, if the descriptor corresponding to each gene 
is effective in predicting the inhibitory activity, its value is equal to 1, otherwise, it is taken to be 0. This function 
leads to the expulsion of the worst subsets. Then two types of modification are operated randomly including 
crossover through the replacement of the corresponding sections of the two parent chromosomes from two points 
(Duble) and mutation that is operated through randomly changing a position of a parent chromosome to change 
its value. In this way, the child chromosomes are extracted, and according to what was previously described, their 
fitness is computed. The best children replace the worst parent to improve the primary population. This process 
is subsequently repeated until the most relevant set of descriptors with the highest convergence are selected or 
criteria defined to stop the algorithm are achieved. In this work using MATLAB  software49, GA was run based 
on the optimal parameters presented in Table 2. By selecting the most suitable descriptors, the number of them 
reduced from 290 to 56 cases.

Dataset splitting. One of the most common methods in QSAR model evaluation is external validation 
that is performed through dividing the whole data set into the training and test sets by a ratio of 4:1. It is highly 
critical that both groups must be a reliable representatives of the entire dataset in terms of molecular structure, 
biological activity, and physicochemical property.

Among the various methods of data splitting,  DUPLEX50 and Kennard–Stone51 algorithms are more wel-
comed; because, they perform data splitting according to the aforementioned conditions, which are introduced 
below.

Table 1.  Assessment of the drug-likeness (solubility and permeability of a molecule) based on Lipinski’s rule 
of five. a United States Adopted Name. b Molecular weight. c H-bond donors (Total NH and OH). d H-bond 
acceptors (The sum of nitrogen and oxygen atoms). e Polar surface area (only nitrogen and oxygen atoms 
considered). f Rotatable bonds number. g Number of atoms.

properties Percent of  USANa data set out of (cutoff) Lipinski’s rule of five Percent cutoff compounds in the present study (%)

MWb
More than 500 daltons (11%) to (22%) in the entire data set 14.3

More than 600 daltons (8%) 1.63

nHDonc More than 5 (8%) 0.82

nHAccd More than 10 (12%) 10.61

CLogP Greater than 5 (10%) 3.67

TPSA(NO)e Greater than 140 Ǻ2 9.32

RBNf More than 10 0.82

nATg More than 70 2.04
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The DUPLEX algorithm based on the PCA. Considering the large number of structural descriptors, 
this approach causes the total space of structures to be counted for data splitting and helps to uniform distri-
bution (homogenity) of data set into the training and test. Based on this algorithm, first, principal component 
analysis (PCA) was performed on the entire data set including 290 relevant descriptors. Then a new activity was 
calculated through establishing a principal component regression (PCR) between original experimental inhibi-
tory activity and PCs. Subsequently, the results were provided to the DUPLEX algorithm to splitting the data set 
based on the following process:

In the beginning, the two most distant (i.e. most dissimilar) objects are removed from the dataset and placed 
into the training set. From the remaining points, the next pair which are farthest apart are picked up and placed 
into the test set. Among the remaining points, two points are moved to the training set with the greatest distance 
from each other, again. Then, from the remaining objects, the one which is furthest away from those previously 
selected as the training set, is moved to the test set. The process is repeated until each set contains a certain 
number of molecules. By employing this method, the uniform distribution of data between the training and test 
sets was guaranteed not only in the properties but also in the structures.

Kennard–Stone algorithm. In a similar approach to DUPLEX, Kennard–Stone algorithm ensures that 
each point of the test set is close to at least one point of the training set. This algorithm uses the following equa-
tion to split a dataset into training and test set:

 k represents the number of inputs, while μ and σ are labels for mean and standard deviation of the input or 
output variable, respectively.

Euclidean distance EDx (p,q) is employed by this algorithm to ensure the uniform distribution of the selected 
subset in the data space as below:

Based on the several reports, in the data splitting process, the superiority and high quality of the DUPLEX 
algorithm over other methods have been  confirmed52–54 so in this research, the modeling process was performed 
using the training set obtained from DUPLEX.

In our research following data splitting by DUPLEX algorithm, Kennard-stone algorithm, and Random data 
splitting by Minitab  software55, GA-MLR models were established on the training set and then generalized to the 
test and validation sets. More details of data splitting and model validation using these methods are presented 
in the section “QSAR modeling results”.

Statistical factors and methods used in the model evaluation and validation. Since the external 
and internal validation of the model is an essential step in QSAR analysis, several statistical parameters were 
employed to assess the performance of the models, which are briefly described in Table 3, and equations used 
in calculation them have been presented. Williams plot-based analysis is explained later (Determination of the 
application domain of the model).

Model development. The SPSS  software56 establishes multivariate linear regression by receiving the data 
matrix consist of the most suitable 3D and 2D autocorrelations descriptors selected by GA and the correspond-
ing inhibitory activity of each x-vectors. According to the stepwise procedure, the entry of the descriptors into 
the model continues until the  R2 value is strengthened significantly and the root mean square error (RMSE) 
value is weakened by entering the new descriptor. Of course, simultaneously the value of the Fisher’s test (F) 
parameter is controlled so that it accepts its optimum value. Very high and very low values of F lead to overfitting 
and underfitting errors, respectively. One of the valid criteria in monitoring the optimum value of F is the vari-
ance inflation factor (VIF) which shows the correlation between the descriptors (described in continue further); 
during the modeling process, its value must be kept less than 5. In addition, the coefficients of the descriptors 

(1)Objective function =

k+1
∑

i=1

{

[µ(i)train − µ(i)test] + [σ(i)train − σ(i)test]
}

,

(2)EDx

(

p, q
)

=

√

√

√

√

n
∑

j=1

[xp
(

j
)

− xq(j)]
2
p, q ∈ [1,M].

Table 2.  Parameters of the genetic algorithm.

Cross validation Random

Number of subsets 4

Window width 2

% Initial terms 20

Max generation 100

% at Convergence 70

Mutation rate 0.003

Cross-over Double
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should be acceptable values based on their standard deviation. The criterion for stopping the entry of descrip-
tors into the model is that by entering the new descriptor, the statistical performance factors do not improve 
significantly.

The above approach prevents overfitting. The variance inflation factor (VIF) test, ensures that the modeling 
process is not accompanied with multicollinearity and is calculated as below:

where  R2
j is the square of the correlation coefficient between descriptors during the model development. VIF 

equal to 1 indicates that the j-th descriptor is not correlated to the remaining ones. To accept the model, the VIF 
value should be between 1 and 5, but in the case of VIF values higher than 10, there is significant multicollinear-
ity; so the model must be corrected.

Leave‑one‑out cross‑validation (LOO‑CV). During the LOO-CV as one of the internal validation 
methods, each molecule is removed from the data matrix and the remaining molecules are employed to model 
development. Using the extracted model, the molecule that was kept out is predicted; this process is repeated 
for all molecules.

Y‑randomization test. To ensure that the developed model does not arise from chance, y-randomization 
is performed through the scrambled biological activity. This procedure is repeated twenty times randomly; then 
a new regression is established using the same parameters of the original model. Low values of  R2

y-random and 
 Q2

y-random in the new models with shuffled  pIC50, confirm the efficiency and robustness of the main developed 
model.

Description of the artificial neural network theory, briefly. Artificial neural networks algorithms 
inspired by biological neural networks in the human  brain57. The application of ANN is based on this hypothesis 
that a given training data to construct a model, can learn and generalize from previously seen examples. During 
the learning, the algorithm extracts the rules and relationships governing the experimental data through their 
processing. The extracted information is inducted into the network. ANN, as a nonlinear modeling technique, 
has been used extensively in QSAR analysis and constructed from an input layer, hidden layer(s), and an output 
layer. The number of input neurons to the network is equal to descriptors used in the linear model development. 
The weight parameter determines the effect of the input layer on the output layer, which is adjusted during 
training with the feed-forward back-propagation approach. The trial and error procedure on the training set 
is employed to optimize the size of the hidden layers. The criterion for this assessment is the average square 
error (MSE) which acts as a performance function. In the present study, the Bayesian regularization algorithm 
was used to train with a feed-forward approach and sigmoid as a hidden layer transfer function was employed. 
Experimental  pIC50 acts as one output layer. A large number of hidden layers causes the developed model to have 
an overfitting problem; however, a too-small number of hidden layers leads to fault tolerance and weakens the 
generalization capability of the net. In the current study, the implementation of the above approach resulted in 
the 10-3-1 network architecture. Separate validation of the model was performed by one-tenth of the training 
set selected randomly. In this way, the performance of the ANN was monitored; through evaluation predicted 

(3)VIF =
1

1− R2
j

,

Table 3.  Model performance parameters and their related equations. a yi, ŷi, and i are experimental, predicted, 
and average values of  pIC50 respectively; p: the number of descriptors in the model; n: the number of samples.

Statistical parameters Brief definition Equationsa

Correlation coefficient R was used to investigate the correlation between the 
descriptors entered in the models

R =

∑

(xi−x)(yi−y)
√

∑

(xi−x)2
∑

(yi−y)
2

− 1 ≤ R ≤ 1

The square correlation coefficient of multiple linearities 
 (R2) R2 is used to indicate the goodness of fit R2 = 1−

∑

(yi−ŷi)
2

∑

(yi−yi)
2

Adjusted R squared  (R2
adj)

R2
adj is measured based on descriptors that really help in 

explaining the dependent variable R2
adj = 1−

(

1− R2
)

[(

n−1
n−p−1

)]

Fisher’s test (F)
F used to calculate the variance established between groups 
to the variance within groups. The larger value for F ratio 
indicates that the model ability is better to predict  pIC50 in 
the training set

F =

∑

i (ŷi−yi)
2

p
∑

i(yi−ŷi)
2

n−p−1

Root mean square error of prediction (RMSEP)
RMSEP based on the difference between predicted and 
observed values of  pIC50 for the test set represents the 
model’s prediction ability

RMSEP =

√

∑n
i=1(ŷi−yi)

2

n

The square correlation coefficient for leave-one-out cross-
validation  (Q2

LOO)
Q2

LOO is calculated based on the predicted values of  pIC50, 
during perform LOO-CV

Predicted values of  pIC50 calculated from this method, are 
placed in the R squared equation

Prediction residual error sum of squares (PRESS)
PRESS is determined the difference between experimental 
and predicted values of  pIC50 for the total data set during 
the LOO-CV processing

PRESS =
∑n

i=1

(

yiobs − yipred
)2
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values of the validation set during the training of the network. The training is stopped when the results for the 
validation set are not significantly improved.

Results
QSAR modeling results. The DUPLEX algorithm was employed to dividing total 245 PI3Kγ inhibitors 
into the training (196 molecules) and test sets (49 molecules). The MLR model was developed using a relevant 
set of descriptors selected by GA and was evaluated by the test set

R2 and RMSE values calculated for training and test sets using the DUPLEX algorithm, Kennard–Stone 
algorithm, and random data splitting are provided in Table 4.

Figure 1 is plotted based on the data splitting pattern by Kennard–Stone algorithm on 245 compounds used 
in this study.

As a general rule, a QSAR model is considered to be predictive if calculated values of  R2,  Q2, and  R2
pred are 

higher than 0.6, 0.6, and 0.5,  respectively58,59; therefore, robustness and stability of the GA-MLR model are 
confirmed based on the obtained statistical performance. The values of 3D and 2D autocorrelations descriptors 
appearing in model 1 (Eq. 4) are presented in Supplementary Table S4. These descriptors are briefly introduced in 
Supplementary Table S5. Based on model 1 (Eq. 4), the prominent role of 3D-MoRSE descriptors in combination 
with 2D autocorrelations can be further evaluated. Minimal multicollinearity between the selected descriptors 
is confirmed by the VIF index with values less than 3.893 (Table 5); therefore, an informative and optimal GA-
MLR model has been built. Based on model 1 (Eq. 4) the predicted values of  pIC50 for training and test sets are 
provided in Table 6. Using the same descriptors selected by the GA-MLR model, ANN was also established on 

(4)

pIC50 = 9.670 (±0.935) − 0.891(±0.158)Mor12p+ 0.246(±0.046)RDF010e− 0.604(±0.115)Mor14u

− 0.540 (±0.110)Mor15m− 1.727(±0.302)GATS6p− 0.732(±0.183)Mor19m+ 0.038(±0.008)Te

− 12.244(±4.271)G2v− 0.039(±0.014)Mor02v+ 0.718(±0.293)GATS4p,

ntraining = 196, R2
= 0.623, R2

adj = 0.602, RMSE = 0.473, F = 30.546,

ntest = 49, R2
= 0.662, RMSEP = 0.451.

Table 4.  Calculated  R2 and RMSE parameters for training and test sets separately, following the data splitting 
process by three methods.

Method

DUPLEX algorithm Kennard–Stone algorithm Random data splitting by Minitab software

Training set Test set Training set Test set Training set Test set

R2 0.623 0.662 0.610 0.635 0.631 0.634

RMSE 0.473 0.451 0.476 0.492 0.489 0.476

Figure 1.  Plot of the data splitting pattern using Kennard–Stone algorithm on 245 compounds.
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196 compounds as a training set and was validated by the remaining 49 compounds as the test set. The prediction 
performance confirms the stability and efficiency of ANN:

The performance of ANN is relatively better than MLR, in the case of the training set  (R2
train = 0.642 for ANN 

in comparison to  R2
train = 0.623 for MLR); conversely, in the case of the test set, the MLR has the better prediction 

performance  (R2
test = 0.662 for MLR in compare to ANN with  R2

train = 0.615). The calculated values of  pIC50 for 
training and test sets using of ANN technique can be seen in Table 6.

Out‑of‑sample testing validation. We carried out the out-of-sample testing, as a validation method, to 
indicate the robustness and stability of the model and to show that the test set selected by the DUPLEX algo-
rithm is representative. Using Minitab software, 49 molecules were selected randomly as a test set from the data 
set (245 molecules); then the QSAR model was established on the 196 remaining compounds. This model was 
employed to predict the inhibitory activity of the test set.

The above-mentioned process was repeated 10 times. The results were presented in Table 7; including  R2 of 
training and test sets and VIF. These results are in good agreement with the accepted values for these parameters 
except for the fifth iteration (in this case the  R2 value is slightly less than 0.5 for the test set). These results also 
confirm that the descriptors are relevant and model 1 (Eq. 4) is predictive. Also, the maximum value obtained 
for the VIF parameter at each time of out-of-sample testing validation is less than 5, so the established models 
are not involved with multicollinearity error. The test compounds that were selected randomly at each time of 
the aforementioned validation method are presented in Supplementary Table S6. In Table 8, the total 56 descrip-
tors selected by GA are listed and descriptors with the highest frequency of iterations in the established models 
were bold. 

A notable point is that frequent descriptors in the models established based on this validation method are also 
included in model 1 (Eq. 4). Since model 1 (Eq. 4), is well confirmed by the recent validation, the methodology 
used for QSAR modeling can be considered valid; especially, in the case of feature selection by GA and data 
splitting by duplex algorithm. Statistical performance parameters represented in Table 7, also verify that model 
1 (Eq. 4) is not involved with overfitting  problem60,61.

Subsequently, the GA-MLR model was developed using whole 245 compounds (no splitting) for comple-
mentary evaluations of the model.

External verification of the QSAR modes. In order to, first, further evaluate the model robustness, sec-
ond, to investigate the application domain of the models, and, third, to compare the effectiveness of the models 
in the face of novel structures, a diverse set of PI3Kγ inhibitors consisting of 45 compounds, out of the training 
and test  sets17,25,33,62–65 (Supplementary Table  S7), were used to external verification of the predictive QSAR 
models. SMILES strings of these molecules are presented in Supplementary Table S8. External verification was 
carried out based on the following process: first, by considering model 1 (Eq. 4), the corresponding descriptors 

ntraining = 196, R2
= 0.642, R2

adj = 0.610, RMSE = 0.464,

ntest = 49, R2
= 0.615, RMSEP = 0.500.

(5)

pIC50 = 9.402(±0.829) − 0.933(±0.141)Mor12p+ 0.270 (±0.041)RDF010e− 0.589(±0.103)Mor14u

− 0.536(±0.098)Mor15m− 1.728(±0.269)GATS6p− 0.810 (±0.167)Mor19m

+ 0.036(±0.007)Te+ 0.770 (±0.264)GATS4p− 11.635(±3.658)G2v− 0.039(±0.013)Mor02v

n = 245, R2
= 0.632, R2

adj = 0.616, Q2
LOO = 0.600, RMSE = 0.476, F = 40.114,

RMSECV = 0.623, R2
y−random = 0.011, Q2

y−random = 0.0006, PRESS = 94.677.

Table 5.  The correlation coefficient of descriptors and corresponding VIF values based on model 1 (Eq. 4).

Mor12p RDF010e Mor14u Mor15m GATS6p Mor19m Te G2v Mor02v GATS4p VIF

Mor12p 1.000 2.210

RDF010e 0.142 1.000 3.455

Mor14u 0.097 − 0.155 1.000 1.332

Mor15m − 0.227 − 0.269 0.053 1.000 1.828

GATS6p − 0.219 0.057 − 0.147 0.102 1.000 1.388

Mor19m 0.418 0.179 − 0.016 − 0.019 0.298 1.000 1.957

Te 0.384 − 0.193 − 0.172 0.020 − 0.192 − 0.041 1.000 2.885

G2v − 0.084 0.168 − 0.024 0.170 0.052 0.081 − 0.100 1.000 1.559

Mor02v − 0.277 − 0.439 − 0.014 − 0.176 0.109 − 0.174 − 0.432 0.197 1.000 3.893

GATS4p 0.184 − 0.083 0.176 − 0.056 − 0.130 − 0.205 0.110 − 0.074 − 0.069 1.000 1.215
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Compound

Activity  (pIC50)

ReferencesExp

Pred

MLR ANN

1 7.05 8.07 7.82 31

2 6.32 7.89 7.95 31

3 7.30 7.26 7.19 31

4a 7.10 7.68 7.72 31

5 6.54 7.47 7.40 31

6 7.12 7.26 7.49 31

7 6.37 7.79 7.48 31

8 8.26 7.90 7.81 31

9 7.77 8.09 7.97 31

10 7.82 7.55 7.49 31

11 7.22 7.92 7.46 31

12 8.36 7.95 7.84 31

13 8.54 7.87 7.79 31

14 6.37 7.59 7.89 31

15 8.04 7.57 7.32 31

16 8.14 7.90 8.05 31

17 7.85 7.56 7.78 31

18 7.15 8.09 8.19 31

19 7.03 8.01 8.40 31

20 8.54 8.82 8.78 31

21 8.19 8.17 8.17 31

22 8.23 7.78 7.93 31

23 7.36 8.40 8.08 31

24 7.51 8.05 8.25 31

25 7.19 7.55 7.86 31

26 8.12 7.94 7.38 31

27 8.66 8.00 7.94 31

28 8.68 8.32 7.95 31

29 8.66 7.85 7.98 31

30 8.89 7.91 7.86 31

31 8.57 8.43 8.41 31

32 8.18 8.05 8.12 31

33 8.10 8.08 8.06 31

34 7.28 7.81 7.92 31

35 9.00 8.01 8.00 31

36 8.68 7.27 7.37 31

37 8.15 8.22 8.06 30

38 8.48 7.51 7.72 30

39 8.48 8.57 8.47 30

40 7.38 7.64 7.69 30

41 8.24 8.16 8.23 30

42 7.80 7.46 7.54 30

43 8.59 7.75 7.97 30

44 8.49 8.33 7.49 30

45 6.55 8.21 7.86 30

46 7.89 7.61 7.70 30

47 7.92 8.23 8.40 30

48 8.35 8.32 8.36 30

49 8.60 8.26 8.24 30

50 8.55 8.60 8.55 30

51 8.68 8.56 8.41 30

52 8.80 8.62 8.26 30

53 8.66 8.56 8.41 30

54 8.92 8.69 8.47 30

Continued



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6090  | https://doi.org/10.1038/s41598-022-09843-0

www.nature.com/scientificreports/

Compound

Activity  (pIC50)

ReferencesExp

Pred

MLR ANN

55 8.51 8.33 8.51 30

56 8.79 8.49 8.60 30

57 8.82 8.63 8.77 30

58 8.40 8.09 8.21 30

59 8.57 7.92 8.08 30

60 8.30 8.08 8.17 30

61 6.74 7.59 7.63 30

62 8.59 8.79 8.47 30

63 8.30 8.01 8.32 30

64 8.22 7.87 7.89 30

65 8.17 8.47 8.42 30

66 8.05 7.66 7.74 30

67 7.30 6.67 7.17 30

68 7.59 8.04 7.84 30

69 7.55 8.63 8.22 30

70 7.40 7.18 7.22 30

71 7.60 6.86 7.49 30

72 8.38 8.31 7.67 30

73 8.37 8.42 8.28 30

74 8.62 8.21 7.64 30

75 8.43 8.22 8.00 30

76 8.62 7.82 8.00 30

77 8.10 8.02 8.09 30

78 8.60 8.04 8.32 30

79 8.40 8.37 8.46 30

80 8.59 8.14 8.27 30

81 8.40 7.70 7.88 30

82 8.82 8.55 8.53 30

83 8.92 7.83 8.21 30

84 8.55 8.01 8.21 30

85 8.59 8.17 8.06 30

86 8.48 8.00 8.09 30

87 8.68 8.40 8.46 30

88 8.48 8.73 8.68 30

89 8.44 7.85 7.92 30

90 6.07 6.85 6.74 24

91 5.24 5.98 6.09 24

92 5.23 5.65 5.93 24

93 7.40 6.31 6.43 24

94 6.00 5.90 5.92 24

95 6.58 6.85 6.70 24

96 7.60 6.92 6.98 24

97 7.10 7.47 7.80 24

98 6.36 5.99 5.98 24

99 7.61 7.51 7.84 24

100 8.10 8.46 9.07 24

101 5.23 5.72 5.52 24

102 6.75 7.58 7.30 24

103 7.60 6.94 7.04 24

104 6.33 7.04 7.10 24

105 6.57 6.94 7.04 24

106 7.00 6.69 6.36 24

107 8.40 7.97 8.35 24

108 9.00 9.13 8.95 24

Continued



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6090  | https://doi.org/10.1038/s41598-022-09843-0

www.nature.com/scientificreports/

Compound

Activity  (pIC50)

ReferencesExp

Pred

MLR ANN

109 6.09 6.24 6.28 24

110 7.22 6.90 6.95 24

111 7.22 6.75 6.98 24

112 8.19 7.66 7.98 24

113 7.30 8.20 7.90 24

114 5.33 5.96 5.82 24

115 5.53 6.17 6.43 24

116 5.65 6.52 5.95 24

117 6.76 6.52 6.20 24

118 8.08 7.51 8.43 24

119 6.00 7.09 6.79 24

120 6.10 7.08 6.59 24

121 6.29 6.21 6.26 24

122 5.52 5.66 5.96 24

123 6.17 6.22 6.09 24

124 5.70 6.00 5.92 24

125 7.60 7.13 7.85 24

126 7.60 7.20 7.38 24

127 8.40 8.15 8.47 24

128 8.30 8.18 8.31 24

129 8.00 7.43 7.02 24

130 8.52 7.80 7.32 24

131 7.54 7.19 6.87 24

132 6.80 7.78 7.38 24

133 8.90 8.41 8.33 24

134 8.10 7.57 7.08 24

135 5.40 6.49 6.26 32

136 6.80 6.22 6.38 32

137 6.00 6.00 6.13 32

138 7.40 6.09 6.14 32

139 6.30 6.48 6.55 32

140 6.50 7.19 7.03 32

141 6.60 6.39 6.47 32

142 6.20 6.45 6.36 32

143 6.70 6.98 7.27 32

144 6.30 6.77 6.90 32

145 6.60 6.23 5.97 32

146 5.40 6.39 6.13 32

147 5.50 5.65 5.75 32

148 5.80 6.20 6.07 32

149 5.40 6.70 6.43 32

150 6.40 6.03 6.05 32

151 7.20 6.81 6.49 32

152 7.10 6.77 6.69 32

153 8.10 7.37 7.34 32

154 7.00 6.68 6.41 32

155 6.50 6.75 7.02 32

156 6.50 6.33 6.39 32

157 5.50 5.92 6.04 32

158 8.20 7.67 8.03 32

159 6.20 7.46 7.68 32

160 6.60 6.70 6.52 32

161 7.89 7.70 7.90 32

162 7.50 7.31 7.23 32

Continued
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Compound

Activity  (pIC50)

ReferencesExp

Pred

MLR ANN

163 7.80 7.48 7.64 32

164 6.80 7.08 7.39 32

165 7.00 7.05 6.83 32

166 6.00 6.59 6.38 32

167 5.70 6.86 6.63 32

168 6.90 6.73 6.87 32

169 5.68 6.39 6.27 18

170 5.64 6.98 6.63 18

171 6.72 7.24 7.49 18

172 5.52 6.76 6.44 18

173 7.57 7.07 6.97 18

174 7.60 7.38 7.52 18

175 7.55 7.42 7.58 18

176 8.24 7.60 7.46 18

177 7.38 6.63 6.60 18

178 8.52 7.46 7.67 18

179 7.42 6.66 6.96 18

180 6.72 6.66 6.86 18

181 7.16 7.82 7.55 18

182 6.96 6.64 7.16 18

183 6.00 7.01 7.45 18

184 7.44 8.27 7.72 18

185 7.82 7.62 7.85 18

186 8.70 8.64 8.76 18

187 8.52 8.56 9.00 18

188 8.10 7.88 7.89 18

189 8.40 7.52 7.62 18

190 6.80 6.51 6.38 18

191 6.00 7.07 7.45 18

192 9.22 8.14 7.85 18

193 6.10 6.81 7.22 18

194 6.60 6.20 6.13 18

195 7.40 6.91 6.92 29

196 7.22 6.89 6.70 29

197 6.40 6.58 6.33 29

198 6.00 6.37 6.14 29

199 6.52 7.09 7.04 29

200 6.82 6.92 7.08 29

201 6.96 6.71 6.69 29

202 7.30 6.28 6.36 29

203 6.00 6.73 6.68 29

204 5.96 6.56 6.51 29

205 5.96 6.44 6.55 29

206 6.48 6.81 6.67 29

207 7.85 6.69 6.77 29

208 7.60 6.72 6.73 29

209 6.55 6.96 6.91 29

210 6.96 6.95 6.98 29

211 6.46 6.86 7.03 29

212 6.77 6.49 6.73 29

213 6.96 7.12 6.95 29

214 7.12 6.74 6.66 29

215 6.44 6.96 6.76 29

216 7.00 6.54 6.61 29

Continued
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were extracted for each structure of the validation set (Supplementary Table S9). Then, predicted  pIC50 values of 
these compounds were calculated through the generalization of the MLR and ANN models to them (Table 9).

Simultaneous comparison of training, test, and validation sets based on the QSAR analysis 
results. Displaying the training, test, and validation sets in one graphical plot provides a clear insight into 
the molecular distribution, goodness of fit in three subsets of PI3Kγ inhibitors, and ultimately, a more accurate 
assessment of the application domain of the models. In the following, each of these three aspects is explained in 
detail.

Data set distribution in terms of standard deviation. Based on the MLR and ANN models, standard 
deviation ((pIC50)Exp−  (pIC50) pred) of PI3Kγ inhibitors versus their corresponding  (pIC50)Exp values have been 
displayed in Fig. 2. The random and uniform distribution of the data on both sides of standard deviation equal to 
zero can be seen not only in the training set but also in the test and validation sets as a reliable representative of 
the entire data set. These results confirm that the systematic error did not occur during the model development.

Regression results of the validation set in comparison to the training and test sets. Modeling 
efficiency has been evaluated based on the training and test sets in section “QSAR modeling results”; here, 
we will focus on the model evaluation based on the validation set. A scatter plot of the predicted  pIC50 versus 
the experimental values during the QSAR model development on 196 PI3Kγ inhibitors has been displayed in 
Fig.  3. Based on these observations, both proposed models have good predictive performance; nevertheless, 
ANN is superior to MLR in the face of the validation set.  (R2

valid. = 0.648 for ANN in comparison to  R2
valid. = 0.532 

for MLR). Since ANN is a nonlinear modeling algorithm, considered to be more efficient with high flexibility. 
Also, using three methods for data splitting, the performance statistical parameters were obtained as: DUPLEX 
algorithm  (R2 = 0.532, RMSE = 0.566), Kennard–Stone algorithm,  (R2 = 0.552, RMSE = 0.571) and random data 

Compound

Activity  (pIC50)

ReferencesExp

Pred

MLR ANN

217 7.10 7.22 6.92 41

218 7.90 7.88 7.72 41

219 6.90 7.82 7.99 41

220 6.90 7.81 7.31 41

221 7.80 7.78 7.57 41

222 6.60 7.38 7.23 41

223 7.20 7.53 7.22 41

224 7.50 7.07 6.66 41

225 7.60 8.18 7.86 41

226 7.60 7.78 7.43 41

227 8.10 7.76 7.56 41

228 8.20 8.13 7.94 41

229 8.00 8.22 8.13 41

230 8.60 8.43 8.37 41

231 7.20 8.18 7.88 41

232 8.50 7.30 7.21 41

233 7.80 7.74 7.73 41

234 8.20 8.37 7.99 41

235 8.40 8.24 8.34 41

236 8.60 7.90 7.44 41

237 7.70 7.23 7.32 28

238 7.60 6.91 7.41 28

239 7.50 7.45 7.91 28

240 7.70 7.44 7.48 28

241 7.70 8.10 7.72 28

242 7.40 7.37 7.87 28

243 8.10 7.07 7.40 28

244 7.60 7.86 7.89 28

245 7.80 7.81 8.03 28

Table 6.  Experimental  pIC50 values for 245 PI3Kγ inhibitors used as training and test sets and corresponding 
predicted values for them based on the MLR and ANN methods. a Bold cases used as a test set.
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splitting  (R2 = 0.532, RMSE = 0.517). Based on the following reasons both models, especially ANN, are robust 
and approved:

1. The wide variety of structures with  pIC50 from 5.00 to 9.30 was used in the validation process

Table 7.  Out-of-sample testing validation results based on the random dataset splitting.

Iteration
GA-MLR models developed on the training set (196 molecules) 
which were selected randomly by Minitab Number of descriptors included in the model Max. VIF value

R2

Training set Test set

1
− 4.584 + 0.205 × RDF010e + 1.196 × Mor32p − 0.924 × MATS7p + 3.12
2 × ATS1m − 0.044 × RDF035e + 4.589 × G3v + 0.935 × Mor18p + 0.80
1 × GATS4p − 1.015 × GATS2e

9 3.514 0.612 0.567

2

8.065–0.875 × Mor12p + 0.227 × RDF010e − 0.406 × Mor14u 
− 0.512 × Mor15m − 0.966 × MATS7p − 12.374 × G2v 
− 1.31 × MATS4p − 1.001 × Mor19m − 0.531 × Mor17p + 0.017 × Te

10 3.640 0.649 0.519

8.213–0.829 × Mor12p + 0.225 × RDF010e − 0.378 × Mor14u 
− 0.529 × Mor15m − 0.852 × MATS7p − 12.482 × G2v − 1.238 × 
MATS4p − 1.162 × Mor19m − 0.504 × Mor17p + 0.022 × Te − 0.81 × 
GATS6p + 3.491 × G3v

12 3.720 0.671 0.573

3
4.73–1.174 × Mor14p + 0.075 × RDF040m − 1.179 × MATS7p + 4.615 
× G3v + 0.188 × RDF010e + 1.588 × Mor18p + 0.044 × Tm − 0.618 × 
Mor17p − 0.392 × Mor15m + 0.019 × RDF070e

10 3.770 0.655 0.546

4

7.584–0.889 × Mor12p + 0.056 × RDF115p − 0.554 × Mor14u − 0.91 × 
Mor19m − 1.721 × GATS6p + 0.03 × Te − 0.416 × Mor15m + 0.222 × 
RDF010e + 0.782 × GATS4p − 0.038 × Mor02v

10 4.071 0.629 0.618

9.338–0.723 × Mor12p − 0.454 × Mor14u − 1.089 × Mor19m − 1.62 × 
GATS6p + 0.039 × Te − 0.393 × Mor15m + 0.216 × RDF010e + 0.716 × 
GATS4p − 0.054 × Mor02v − 11.137 × G2v − 0.586 × Mor17p + 0.81 × 
MATS2e

12 4.256 0.659 0.663

5
11.308–0.617 × Mor12p + 0.087 × RDF030p − 1.182 × GATS6p − 0.842 
× Mor19m − 0.84 × GATS2e + 1.105 × GATS4p + 1.611 × Mor32p 
− 11.84 × G2e − 0.939 × MATS7v − 10.216 × G2v

10 2.749 0.620 0.455

6
7.637–0.701 × Mor12p + 0.264 × RDF010e − 0.544 × Mor14u − 0.927 × 
Mor19m − 1.528 × GATS6p − 0.423 × Mor15m + 0.042 × Te − 0.582 × 
Mor17p − 0.045 × Mor02v

9 4.602 0.647 0.512

7

9.063–0.939 × Mor12p + 0.273 × RDF010e − 0.552 × Mor14u − 0.549 
× Mor15m − 0.838 × MATS7p − 1.172 × MATS4p − 1.096 × Mor19m 
− 1.237 × GATS6v − 10.483 × G2v + 0.017 × Te

10 2.685 0.611 0.715

9.673–0.867 × Mor12p + 0.33 × RDF010e − 0.573 × Mor14u − 0.486 
× Mor15m − 0.605 × MATS7p − 1.056 × MATS4p − 1.081 × Mor19m 
− 1.432 × GATS6v − 11.274 × G2v + 0.03 × Te − 0.045 × Mor02v

11 4.249 0.627 0.659

8

7.677–0.79 × Mor12p − 0.93 × Mor19m − 0.973 × GATS6p + 1.183 × 
GATS4p − 1.242 × MATS7p − 10.824 × G2v + 1.735 × Mor32p + 0.026 
× Tm − 0.419 × Mor14u + 0.143 × RDF010e

10 2.728 0.630 0.567

8.293–0.753 × Mor12p − 0.909 × Mor19m − 1.255 × GATS6p + 1.171 × 
GATS4p − 0.949 × MATS7p − 11.963 × G2v + 1.19 × Mor32p + 0.028 × 
Tm − 0.461 × Mor14u + 0.192 × RDF010e − 0.382 × Mor15m

11 2.826 0.650 0.603

9

5.887–0.895 × Mor12p + 0.211 × RDF010e − 0.526 × Mor14u − 0.959 × 
MATS7p − 0.362 × Mor15m + 0.032 × Tm − 0.945 × GATS6p − 0.939 × 
Mor19m + 0.762 × GATS4p − 0.433 × Mor17p

10 3.298 0.635 0.597

8.017–0.775 × Mor12p + 0.23 × RDF010e − 0.493 × Mor14u − 0.834 × 
MATS7p − 0.339 × Mor15m + 0.043 × Tm − 0.987 × GATS6p − 0.955 × 
Mor19m + 0.763 × GATS4p − 0.575 × Mor17p − 0.04 × Mor02v − 9.722 
× G2v

12 4.175 0.658 0.642

10
− 4.785 + 0.293 × RDF010e − 1.202 × MATS7p − 0.445 × 
Mor15m + 1.155 × GATS4p + 3.047 × ATS1m + 1.385 × Mor18p − 0.744 
× Mor14p + 5.133 × G3m − 1.147 × GATS2e − 0.026 × RDF035e

10 4.900 0.642 0.566

Table 8.  The total 56 descriptors selected by GA carried out to out-of-sample testing validation. The most 
frequent descriptors, also included in model 1 (Eq. 4), are in bold.

Molecular descriptors Descriptor category

ATS1m, MATS7v, MATS2e, MATS4p, MATS7p (6 times), MATS8p, GATS7m, GATS2v, GATS6v, GATS2e, 
GATS8e, GATS4p (5 times), GATS6p (7 times) 2D autocorrelations

RDF050u, RDF040m, RDF050m, RDF070v, RDF010e (9 times),
RDF015e, RDF020e, RDF035e, RDF045e, RDF050e, RDF070e, RDF020p, RDF030p, RDF115p, RDF descriptors

Mor12u, Mor14u (6 times), Mor17u, Mor26u, Mor15m (8 times), Mor19m (7 times), Mor23m, Mor30m, 
Mor32m, Mor02v (4 times), Mor19v, Mor03e, Mor02p, Mor03p, Mor10p, Mor12p (8 times), Mor14p, Mor17p (5 
times), Mor18p, Mor19p, Mor32p,

3D-MoRSE descriptors

G2v (6 times), G3v (5 times), G2e, G2p, E3e, Tm, Te (5 times) WHIM descriptors



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6090  | https://doi.org/10.1038/s41598-022-09843-0

www.nature.com/scientificreports/

2. QSAR models established on the small number of compounds tend to have better prediction performance 
than the models developed on a large data set. On the other hand, the efficiency of the QSAR model built 
from the large data set, consisting of diverse chemical structures and a wide range of  pIC50, may seem low 
due to confounding  factors66. However, a model that has been established on more compounds may have a 
wider applicability  domain67 which will be described in the next section.

Table 9.  The experimental  pIC50 values of 45 PI3Kγ inhibitors used as a validation set and corresponding 
predicted values for them based on the MLR and ANN methods.

Compound

Activity  (pIC50)

ReferencesExp

Pred

MLR ANN

246 7.01 7.86 6.98 62

247 7.43 8.21 7.63 62

248 7.20 8.27 7.38 62

249 7.82 8.47 8.64 62

250 7.77 7.80 7.70 62

251 9.30 8.02 8.07 62

252 8.15 7.96 7.95 62

253 9.15 7.98 8.37 62

254 9.15 8.28 8.05 62

255 7.12 6.97 6.91 62

256 7.85 7.03 7.05 62

257 7.85 7.48 7.83 63

258 7.32 6.76 6.58 63

259 7.44 7.07 7.40 63

260 6.51 6.25 6.56 63

261 7.80 7.38 7.58 63

262 9.00 7.80 8.41 63

263 5.98 6.83 6.33 63

264 7.80 7.79 8.31 63

265 6.80 5.94 5.71 63

266 7.30 7.27 7.30 63

267 7.60 7.11 7.14 63

268 5.51 6.46 6.13 63

269 6.80 7.53 7.28 64

270 7.60 7.82 7.95 64

271 8.10 8.25 8.44 64

272 7.20 7.13 6.93 64

273 9.10 7.91 8.10 64

274 8.90 8.13 8.32 64

275 9.10 7.55 7.96 64

276 8.90 7.83 7.90 64

277 9.00 8.29 8.62 64

278 6.30 7.40 7.47 65

279 5.20 6.62 6.78 65

280 7.60 6.14 6.40 65

281 7.55 7.77 7.95 65

282 5.00 5.83 5.53 65

283 5.72 6.12 6.37 65

284 6.79 6.31 6.31 17

285 6.42 5.96 5.63 17

286 5.89 6.06 5.78 17

287 7.68 6.70 6.84 33

288 8.70 8.06 8.37 33

289 7.20 7.16 7.49 25

290 7.30 6.92 6.69 25
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Determination of the application domain of the model. One of the main aspects of QSAR modeling 
is determining the application domain (AD) of the model. AD is defined as a chemical space constructed by the 
descriptors and biological responses used in QSAR model development on the training set. Using this approach, 
the model efficiency in the face of new compounds that may have not been synthesized is assessed. Williams 
plot-based analysis was used to determine AD. Williams plots represented in Fig. 4 are based on the MLR and 
ANN model results. This figure makes it possible to comparison the validation set with the training and test set 
simultaneously in terms of structural similarity and inhibitory activity.

Acceptable limits of structural similarity and inhibitory activity, have been marked with vertical dash line 
(warning leverage) and horizontal dotted lines, respectively. It can be observed that all of the 290 compounds, 
consisting of 196, 49, and 45 molecules as training, test, and validation set respectively, are within the boundaries 
of acceptable standard deviation (± 3δ). To get a better insight from the structural similarity and biological activ-
ity in Fig. 4, the molecules close to the boundaries, have been also specified by their corresponding numbers. A 
chemical structure with high leverage (h > h*) in the training has high influences ability in the modeling process, 
thus the chemical in the training set is not an outlier for the response fitting. h* is calculated as follow:

n and k are the numbers of training compounds and descriptors in the model, respectively.
None of the compounds belonging to the test set is X outlier (h* = 0.17). However, two molecules that belong 

to the validation set are out of the structural similarity threshold. In interpreting these observations, the follow-
ing explanations can be noted:

(6)h∗ = 3
(K + 1)

n
.

Figure 2.  Dispersion plots of standardized residuals versus experimental values of the  pIC50 during the QSAR 
model development on PI3Kγ inhibitors.

Figure 3.  Scatter plots of the predicted versus experimental  pIC50 values for MLR (A) and ANN (B) models 
constructed on PI3Kγ inhibitory activity.
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1. The whole molecules of the test set are placed in the acceptable limits of structural similarity and standard 
deviation; it may be because that the models are developed based on the samples with a wide range of struc-
tures and  pIC50. The proposed models with wide application domine can predict the test set with credibility.

2. The four molecules of the training set with a leverage value greater than 0.17, means that these compounds 
are very dominant in determining the model; in other words, they are good “influence points” and can be 
indicators of high accuracy and robustness of the  model68. Moreover, these compounds have been accurately 
predicted by model 1 (Eq. 4) with the lowest standard deviation.

3. In the case of the validation set, as can be seen, only two compounds are X outlier; however, it should be 
noted that in the routine QSAR studies, evaluation is limited to the test set but in this research, for further 
assessment of the models, a wide variety of structures were employed as a validation set, out of the train-
ing and test sets. As shown in Fig. 4, two X outlier compounds of the validation set are also located on the 
left side of compound 100 with lower leverage than it. Therefore, according to the description provided in 
“Materials and methods”, the predicted results of these two compounds can be also accepted. In addition, 
these molecules are also well predicted by model 1 (Eq. 4). Accordingly, the high stability, predictive ability, 
and robustness of the MLR and ANN models were assessed in the face of new compounds.

Descriptors interpretation. In-depth insight about structural descriptors helps chemists in the design 
of new effective drugs through the interpretation of QSAR models. For example, several factors are involved in 
the binding of a ligand to a target such as van der Waals volumes and surfaces, polarizability, hydrophobicity, 
lipophobicity, etc. Four categories of descriptors which are entered in the models are defined in Supplementary 
Table S5 and briefly described here:

Characteristics and capabilities of the four different categories of descriptors. 3D‑MoRSE 
descriptors. This category of descriptors was introduced in 1996 by Schuur and et al.69. Range of scattering 
parameter values (0–31 Å−1) and variety of weighting schemes (unweighted and weighted with atomic mass, 
atomic van der Waals volume, atomic Sanderson electronegativity, and atomic polarizability) has given them 
high flexibility and pervasively. 3D-MoRSE descriptors can be employed successfully to extract information 
from the entire structure of the molecule that results to discriminate a large and diverse set of compounds cor-
rectly. These descriptors are sensitive to the presence of specific molecular fragments.

Based on the coordinates, 3D structure, and electron diffraction of molecules, 3D-MoRSE descriptors provide 
information that calculates by summing atom weights as the following expression:

where I is diffraction intensity of electron diffraction, s is the scattering parameter (Angle X-ray scattering),  rij is 
the interatomic distance between i-th and j-th atoms, N indicates the number of atoms, and  Ai and  Aj expressed 
the different atomic properties as the weight that were mentioned above. The wide range of scattering parameters 
is calculated at 32 evenly distributed values at scattering angle(s) in the range of 0–31 Å−1 from the 3D atomic 
coordinates of molecules based on the above function.

RDF descriptors. In this category, molecular descriptors are calculated through radial basis functions centered 
on different interatomic distances and are based on the probability of finding an atom in interatomic space with 
an r  radius70. In this category, atoms can also be weighted by various atomic properties (atomic mass, polariz-
ability, etc.). They are independent of factors such as the size of a molecule that is dependent on the number 

(7)I(s) =

N
∑

i=2

i−1
∑

j=1

AiAj
sinsrij

srij
,

Figure 4.  Williams plots-based analyses to compare training, test, and validation sets during the MLR and 
ANN models development on the PI3Kγ inhibitory.
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of atoms and focus on describing the 3D arrangement of atoms. These descriptors are effective in providing 
properties that refer to the morphology of molecular such as steric hindrance, planar or non-planar structure, 
etc. Another feature of these descriptors which makes them a suitable choice for QSAR analysis is that they are 
invariant against translation and rotation of a molecule.

WHIM descriptors. These descriptors as statistical indexes are obtained through the projection of atoms on the 
Cartesian  coordinate71. To calculate them, the most stable conformer with minimum energy is used. They can 
cover 3D information about different characteristics of molecular structure such as size, shape, symmetry, and 
atomic distribution. Specific information can be obtained from any subset of these descriptors.

2D autocorrelation descriptors. 2D autocorrelation descriptors are calculated based on the molecular graph to 
represent the topological structure of the  compounds72. In this class of descriptors, interatomic topology dis-
tance is considered based on the length of the types of atomic pairs. Atoms are visualized as the set of discrete 
points in space and atomic properties including atomic masses, atomic van der Waals volumes, atomic Sander-
son electronegativities, and atomic polarizabilities were used to evaluate at that  points73. This class of descriptors 
in combination with 3D-MoRSE descriptors, discuss chemical space between the  compounds74. Depending on 
they are unweighted or weighted with atomic mass, atomic van der Waals volume, atomic Sanderson electron-
egativity, and atomic polarizability provide a wide variety of information.

Interpretation of the type and coefficient of descriptors in the model compared with X‑ray 
structures of target‑ligand complexes. It is noteworthy that in the models established in this research, 
3D-MoRSE descriptors have a prominent presence. The negative sign of the coefficients for descriptors weighted 
with van der Waals volume (G2v and Mor02v) and the positive sign of the coefficients for descriptors weighted 
with atomic Sanderson electronegativity (RDF010e and Te) is favorable for increasing the inhibitory activities 
of molecules. The negative sign of the coefficients for Mor12p and GATS6p that were weighted with atomic 
polarizability, show that smaller or negative values for these descriptors are favorable for increasing the activities 
of molecules. In the case of descriptors weighted with atomic mass (Mor15m and Mor19m), the negative sign of 
coefficients is favorable for increasing the inhibitory activities of molecules.

These results, clearly are in good agreement with the experimental observations. This claim is confirmed 
through an investigation of the X-ray crystal structure which is used following the experimental assays to dem-
onstrate the binding of the ligand with the target site (ATP-binding pocket) of the PI3Kγ  enzyme18,24. Interac-
tion between drug structures and PI3Kγ enzyme occurs through strongly electronegative atoms such as N, O, 
or F. These atoms in the role of hydrogen bond acceptor or hydrogen bond donor (NH and OH) bind to the 
corresponding polar group R of residual amino acids including Aspartic acid, Glycine, Glutamine, Tryptophan, 
Lysine, Serine and so on.

Based on the empirical observations, there is a direct relationship between the polarity of the compounds 
and their inhibitory activity. In a similar situation, the type and coefficients of the descriptors present in the 
models, show that by increasing the electronegative atoms (N, O, or F) in the structures, their inhibitory activity 
is enhanced.

Devinyak et al.75 reported that in 3D-MoRSE descriptors weighted by atomic van der Waals volume, and 
atomic polarizability, significantly decreases the effect of Hydrogen and diminishes the roles of Nitrogen, Oxygen, 
and Fluorine. In other words, the presence of Oxygen and Nitrogen atoms in the structures reduces the values of 
these descriptors. Since these descriptors have negative-sign coefficients in the model, smaller values for them 
are favorable and lead to an increase in their inhibitory activity.

They also showed that 3D-MoRSE descriptors weighted by atomic mass, practically eliminate the role of 
Hydrogen atoms, while significantly increasing the effect of Phosphorus, Sulfur, and Chlorine on the values 
of these descriptors. Considering the negative sign of coefficients for this class of descriptors entered in our 
developed model, larger values of them, in agreement with the experimental observations, lead to the decrease 
of drug inhibitory activity.

In the case of RDF010e and two other descriptors that were weighted by atomic Sanderson electronegativity 
coefficients in the models have a positive sign. The presence of the electronegative atoms such as N, O, F, or Cl 
in the structure of these compounds, increases the value of the aforementioned descriptors; consequently, leads 
to an increase in the predicted inhibitory activity. In agreement with the empirical observations, these results 
confirm the stability and correctness of the models, again.

Based on the above interpretation, the total descriptors used in the modeling are in good agreement with the 
experimental results except for GATS4p. This descriptor was the last choice in the stepwise modeling approach 
with SPSS software and has the least influence in prediction activity. Elimination of GATS4p has no significant 
effect on the predictive ability of the models.

Altogether, polar regions strengthen the inhibitory activity of the molecules used as inhibitors of PI3Kγ 
enzyme. while hydrophobic substitution such as bulky groups and long carbon chain substitution weaken it. 
Comparing the structures presented in Supplementary Table S1 with experimental activities and modeling results 
gives a better impression of these structures. For example, the pairs or the series of following compounds can 
be compared: the series 107, 108 and 109, the pairs 96 and 97, 102 and 103, 191 and 192, 193 and 194, 202 and 
203, 209 and 228, 229 and 230, 167 and 168, and so on.

Based on the above discussions the stability and efficiency of the QSAR model were confirmed; so, it can be 
employed in the face of the external structures in the application domain of the model.
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Conclusion
These compounds were previously confirmed as selective isoform-specific PI3Kγ inhibitors by X-ray crystal-
lography. Drug-likeness of them was also confirmed well, based on Lipinski’s rule of five, before using them in 
the modeling process. QSAR analysis and its evaluation were performed on a diverse set of PI3Kγ inhibitors 
in a wide range of  pIC50 using MLR and ANN models. The out-of-sample testing, as a validation method, was 
carried out 10 times with different test set selected randomly. The results indicate that descriptors are relevant, 
the model is predictive, and not facing overfitting. The models were assessed also successfully using another 
set of compounds out of training and test sets with various structures. To further evaluate the robustness and 
interpretability of the models and to ensure the accuracy of the methodology used in the modeling process, these 
models were interpreted based on the type and coefficients of the descriptors included in the models. Results are 
in good agreement with X-ray structures of target-ligand complexes.
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