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Differentiating solitary brain 
metastases from glioblastoma 
by radiomics features derived 
from MRI and 18F‑FDG‑PET 
and the combined application 
of multiple models
Xu Cao1,8, Duo Tan2,8, Zhi Liu3,8, Meng Liao1, Yubo Kan1, Rui Yao2, Liqiang Zhang4, Lisha Nie5, 
Ruikun Liao6*, Shanxiong Chen2* & Mingguo Xie7*

This study aimed to explore the ability of radiomics derived from both MRI and 
18F‑fluorodeoxyglucose positron emission tomography (18F‑FDG‑PET) images to differentiate 
glioblastoma (GBM) from solitary brain metastases (SBM) and to investigate the combined application 
of multiple models. The imaging data of 100 patients with brain tumours (50 GBMs and 50 SBMs) were 
retrospectively analysed. Three model sets were built on MRI, 18F‑FDG‑PET, and MRI combined with 
18F‑FDG‑PET using five feature selection methods and five classification algorithms. The model set 
with the highest average AUC value was selected, in which some models were selected and divided 
into Groups A, B, and C. Individual and joint voting predictions were performed in each group for the 
entire data. The model set based on MRI combined with 18F‑FDG‑PET had the highest average AUC 
compared with isolated MRI or 18F‑FDG‑PET. Joint voting prediction showed better performance than 
the individual prediction when all models reached an agreement. In conclusion, radiomics derived 
from MRI and 18F‑FDG‑PET could help differentiate GBM from SBM preoperatively. The combined 
application of multiple models can provide greater benefits.

Glioblastoma (GBM) and metastatic tumours (MET) account for a large proportion of brain tumours, especially 
in the  elderly1. The differentiation of GBM and MET faces great challenges in imaging diagnosis because of the 
sharing imaging features, such as cystic necrosis, ring enhancement, and obvious peripheral oedema, and some 
METs appear solitary, while GBM may sometimes be  multifocal2,3. In particular, it is challenging to differenti-
ate MET from GBM, while MET appears as SBM. However, the differentiation necessary for the treatment of 
these two tumours is entirely  different4. Histopathological examination is still the gold standard for qualitative 
diagnosis. However, the accuracy of pathological diagnosis will also be affected by various  factors5,6. Sometimes, 
a biopsy is unavailable for specific reasons, such as the patient being too weak to undergo surgery, the tumour 
being involved, or being too close to an eloquent area. Therefore, noninvasive and highly accurate differential 
diagnosis methods are of great significance.

MRI plays a vital role in distinguishing brain GBM from brain  SBM7,8; however, it is not very practical by 
traditional research methods based on qualitative features and parameters from  MRI9. Radiomics is an efficient 
research method for extracting many quantitative features from medical  images10,11, providing more information 
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than human eyes can recognize. It offers good performance in assessing the pathophysiology of tumours and 
distinguishing tumour  characteristics12,13. In recent years, radiomics has made considerable progress in tumour 
and nontumor disease  diagnosis14–17. There have been several studies on the differentiation of GBM and SBM 
by radiomics derived from MRI. For example, radiomic features extracted from peritumoral oedema areas in 
T1-weighted contrast-enhanced imaging (T1C) and T2-weighted imaging (T2) were used to differentiate GBM 
from  SBM18,19. The above studies have shown good potential, with limited radiomics effectiveness based only 
on MRI. An 18F-FDG-PET examination can reflect the metabolic characteristics of tumours at the molecular 
level, and it plays an essential role in tumour detection, staging, and efficacy  evaluation20. With the precision and 
personalization of clinical treatment, the application value of 18F-FDG-PET in tumours has been increasingly 
recognized and promoted. Therefore, it is necessary to incorporate 18F-FDG-PET into brain tumour radiom-
ics research. Radiomics based on 18F-FDG-PET has been used to differentiate lymphoma and glioma of the 
central nervous  system21. In a previous study by  Zhang22, different combinations of conventional MRI (cMRI), 
including T1C and T2, diffusion-weighted imaging (DWI) and 18F-FDG-PET images were explored to establish 
different radiomic models to differentiate SBM and GBM and found that the integrated model based on cMRI, 
DWI, and 18F-FDG-PET had the highest discriminative power between the two tumours. However, in the clinic, 
advanced sequences such as DWI are not as readily available as cMRI. Therefore, we hypothesize that the radi-
omics features derived from cMRI and 18F-FDG-PET can also better differentiate the two tumours than MRI 
alone. Some previous studies on radiomics have shown that each classifier has advantages and  limitations23,24. 
It is difficult to choose an absolute optimal model. Therefore, we hope to build a variety of models and jointly 
apply these models to obtain greater benefits.

Materials and methods
Study population. We retrospectively collected the imaging data of brain tumours in 100 patients (50 SBMs, 
50 GBMs) who underwent MRI and 18F-FDG-PET/CT scanning in the First Affiliated Hospital of Chongqing 
Medical University from April 1, 2016, to March 10, 2021. This study complies with the Declaration of Helsinki, 
and research approval was granted from the Biomedical Research Ethics Committee of Chongqing Medical Uni-
versity with a waiver of research-informed consent. To avoid the inconsistency of the acquired image acquisition 
and scanning parameters, which may affect the radiological characteristics and quantitative  analysis25, the MRI 
images of all cases were acquired from only one MRI scanner and the same as the PET.

The inclusion criteria of patients were as follows: (a) glioblastoma or metastasis confirmed by surgery and 
pathology; (b) preoperative cranial MR imaging, including T2 and T1C, and preoperative cranial 18F-FDG-
PET examination; and (c) the interval between preoperative MRI examination and 18F-FDG-PET examination 
was no more than two weeks. The exclusion criteria were as follows: (a) multiple tumours; (b) a history of brain 
tumour biopsy or treatment before MRI and 18F-FDG-PET examination; and (c) unqualified image quality with 
artefacts or tumour size less than 1 cm. The patient selection process flowchart is shown in Fig. S1.

MRI/18F‑FDG‑PET protocol. MR images were obtained from the 3.0 T MRI system (Signa HDXT, GE 
Healthcare, Milwaukee, USA) with an 8-channel head coil. The main parameters of the T1C sequence were as 
follows: repetition time (TR) = 750 ms, echo time (TE) = 15 ms, slice thickness = 5 mm, and slice interval = 1 mm. 
The main parameters of the T2 sequence were as follows: TR = 8,000 ms, TE = 140 ms, flip angle = 90°, slice thick-
nesses = 5 mm, and interval = 1 mm.

A PET/CT scanner (Philips Gemini TF 64 PET/CT scanner) was used for 18F-FDG PET data acquisition. 
The participants fasted for at least 4 h before 18F-FDG (produced by Sumitomo accelerator of Japan with a 
radiochemical purity of > 95%), administered injection intravenously at a dose of 5.55 MBq/kg and then rested 
in a quiet, dim room for 40–60 min before PET/CT scanning. A PET/CT scan of the head was performed for a 
one-bed position (5 min/bed position) with a slice thickness of 2 mm. The 18F-FDG-PET images acquired from 
the PET/CT system were calibrated on the PET/CT workstation, on which the interpolation of the 18F-FDG-PET 
image in DICOM format was performed to double the physical resolution of the image.

Image preprocessing and segmentation. First, MRI and 18F-FDG-PET data were imported into 
DicomBrowser software (https:// nrg. wustl. edu/ softw are/ dicom- brows er) for data desensitization, and the 
desensitized images were loaded into 3D-Slicer (version 4.11, https:// www. slicer. org) for registration. T1C and 
18F-FDG-PET images were registered separately based on the T2 images. A radiologist with 5 years of experi-
ence delineated the tumour and the oedema area around the tumour on the T2 images. After all delineations 
were complete, a neuroimaging doctor with 10 years of experience modified and determined the final delineated 
area. The region of interest (ROI) was copied to the corresponding layers of the registered T1C and 18F-FDG-
PET images. In this way, the mask data for each of the three sequences were formed. The two doctors were 
unaware of the pathological types of all cases.

Feature selection and model building. For all MRI data, the hybrid white-stripe method was used to 
perform signal intensity normalization to avoid data heterogeneity  bias26. Referring to the Image Biomarker 
Standardization Initiative (IBSI), the radiomics features of T2, T1C, and 18F-FDG-PET were obtained by using 
Python’s PyRadiomics package. All features were extracted from the original and derived images. The latter was 
processed by a wavelet filter (Wavelet) and Laplacian of Gaussian filter (LoG). The t test was performed on the 
features extracted from the GBM and SBM cases to eliminate features with no significant difference. The features 
selected by t test were then used to determine effective features using five dimensionality reduction methods as 
follows: linear discriminant analysis (LDA), principal component analysis (PCA), partial least squares regression 
(PLS), near-collar component analysis (NCA), and least absolute shrinkage and selection operator (LASSO)27. 

https://nrg.wustl.edu/software/dicom-browser
https://www.slicer.org
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Both LDA and PCA are linear dimensionality reduction methods that transform the original n-dimensional 
dataset into a new dataset through an orthogonal transformation. The partial least squares method uses the basic 
relationship between the independent and dependent variables to model the covariance structure in the two-
variable space to achieve dimensionality reduction. NCA uses the Mahalanobis distance as the distance meas-
urement. The conversion matrix was obtained through the dimensionality reduction in original data and learned 
by continuously optimizing the classification accuracy. LASSO dimensionality reduction uses the L1 regulari-
zation linear regression method to perform dimensionality reduction and to zero part of the learned feature 
weight, thereby achieving feature sparseness and reducing the data dimensionality. Five classification algorithms 
were chosen: support vector machine (SVM), logistic regression (LR), K nearest neighbours (KNN), random 
forest (RF), and adaptive boosting (AdaBoost). SVM classification performance is excellent in a small sample 
of machine learning  tasks28. The logistic regression (LR) classifier runs faster and has higher requirements for 
feature  engineering29. The idea of the KNN classification algorithm is simple and effective, but there is also a 
large number of calculations during the classification process, which requires considerable  memory30. Random 
forest (RF) reduces the risk of overfitting by averaging decision trees. It is virtually a stable classification method, 
but the calculation is complex and requires more time to train the  model31. Adaptive boosting (AdaBoost) is a 
vital ensemble learning technology that enhances a weak learner with a prediction accuracy only slightly higher 
than random guessing into a strong learner with higher prediction  accuracy32. However, the disadvantage of this 
classifier is that it is more sensitive to outliers.

The entire dataset was split into a training cohort (GBM: n = 39, SBM: n = 41) and a validation cohort (GBM: 
n = 11, SBM: n = 9) by stratified sampling using computer-generated random numbers at a ratio of 8:2, and 25 
models were generated by applying fivefold cross-validation with the five dimensionality reduction methods 
and the five classification algorithms. Nomenclature was adopted by combining the names of the dimensionality 
reduction method and the classification algorithms, e.g., "LASSO_LR": a combination of the LASSO dimension-
ality reduction method and the LR classification algorithms. Three model sets were built, in which 25 models 
with 18F-FDG-PET and MRI data were regarded as the integration set, 25 models with isolated MRI data were 
regarded as the MRI set, and 25 models with 18F-FDG-PET data alone were regarded as the PET set.

Individual and combined application of models. After the three model sets were built, the receiver 
operating curve (ROC) of each mode was drawn, and the area under the receiver operating curve (AUC) was 
also calculated. The differences in the average AUC of the three model sets were compared. The model set with 
the highest average AUC was selected and then ranked the 25 models according to the AUC level. To verify the 
performance stability of models of different AUC levels, 15 models with three levels of AUC were selected and 
equally divided into three groups. To present a certain level of difference in AUC value between the models of 
the three groups, we defined 5 models with the AUC ranking of 1-5th as Group A, 5 models ranked 11-15th as 
Group B, and 5 models ranked 21-25th as Group C.

Individual and combined application of five models in the three groups were performed. The same weight-
ing and a simple majority vote  method33 were used to explore the combination performance of the five models 
in each group. During this process, each model was regarded as a specialist and provided with the same weight 
in the diagnosis. The final diagnosis was made according to the simple majority  rule34,35. For instance, a case 
was determined to be GBM when more than three of the five models predicted it to be GBM. According to the 
consistency of voting results, three agreement patterns were obtained: 3A pattern referring to 3 models reaching 
an agreement that a case was predicted as GBM or SBM by three of the five models; 4A pattern referring to 4 
models reaching an agreement; 5A pattern referring to 5 models reaching an agreement. Accuracy, sensitivity, 
and specificity were used to evaluate the performance of individual and joint voting prediction.

The entire workflow of our research is shown in Fig. 1.

Statistical analysis. Pearson’s chi-square test was used to compare the sex difference between GBM and 
SBMS in the entire data, training cohort, and validation cohort. Student’s t test was applied to compare the age 
difference between GBM and SBM. The Mann–Whitney U test was used to compare the differences in the dis-
tribution of AUC between each two of the three model sets. All statistical analyses above were carried out with 
SPSS 19.0 statistical software (https:www. ibm. com/ produ cts/ spss- stati stics). Delong’s test was performed with 
Python 3.8 (https:// www. python. org/ downl oads/ relea se/ python- 380) for the difference in the AUC values of the 
models. All statistical tests were two-sided, and the statistical significance level was set at 0.05. P values of less 
than 0.05 were considered to be statistically significant.

Statement. This study complies with the Declaration of Helsinki, and research approval was granted 
from the Biomedical Research Ethics Committee of Chongqing Medical University with a waiver of research-
informed consent.

Results
No significant difference between GBM and SBM in age and gender was found in the entire data, the training 
and validation cohort in individual and joint voting prediction. No significant differences were found between 
GBM and MET in anatomical characteristics, necrosis appearance, or oedema appearance. See Table 1 for details.

Seven types of features were extracted from T2, T1C, and 18F-FDG-PET images: 2 shape-based features, 347 
first-order statistical features, 413 GLCM features, 344 GLRLM features, 288 GLSZM features, 285 GLDM fea-
tures, and 62 NGTDM features. Shape-based features were extracted from the original image, and other features 
were extracted from both the original and the derived images processed by a filter on the original image (Table 2).

http://www.ibm.com/products/spss-statistics
https://www.python.org/downloads/release/python-380
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Figure 1.  Workflow of current study. (1) The expert segment the region of interest on the image. (2) Radiomic 
features were extracted for further analysis. (3) Five feature selection methods and five classifiers combined into 
twenty-five models with the help of cross-validation in the training cohort. Part of the model was picked out 
and divided into three groups, five models in each group. (4) Combined application of the five models through 
voting strategies within the group.

Table 1.  Clinical characteristics of the entire data and the sub-dataset. SBM solitary brain metastases, GBM 
glioblastoma. a Student ‘s t-test. b Chi-square test.

Entire data Training cohort Validation cohort

GBM (n = 50) SBM (n = 50) P GBM (n = 39) SBM (n = 41) P GBM (n = 11) SBM (n = 9) P

Age (years) 59.24 61.31 0.211 a 58.98 61.95 0.097 a 60.20 58.11 0.644 a

Sex

Male 26 23 0.689 b 18 19 0.836 b 8 4 0.409 b

Female 24 27 21 22 3 5

Localization

Supratentorial 48 41 0.055 b 37 34 0.182 b 11 7 0.369 b

Infratentorial 2 9 2 7 0 2

Appearance of edema

Yes 46 44 0.738 b 36 36 0.766 b 10 8 0.548 b

No 4 6 3 5 1 1

Appearance of necrosis

Yes 46 43 0.522 b 36 35 0.529 b 10 8 0.548 b

No 4 7 3 6 1 1

Table 2.  Extracted features of image data after the t-test. GLCM grey-level co-occurrence matrix, GLRLM 
grey-level run length matrix, GLSZM grey-level size zone matrix, GLDM grey-level dependence matrix, 
NGTDM neighboring grey tone difference matrix.

Sequence Firstorder GLCM GLRLM GLSZM GLDM NGTDM Shape ALL

PET 63 86 49 46 44 20 0 308

T1c 96 111 124 107 101 9 1 549

T2 188 216 171 135 140 33 1 884

SUM 347 413 344 288 285 62 2 1741
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AUC heatmaps of the integration set, MRI set, and PET set are shown in Figs. 2, 3 and 4. The average AUC 
of the integration set was 0.84, that of the MRI set was 0.80, and that of the PET set was 0.71. Significant differ-
ences were found (P < 0.05) between the integration set and MRI set (P = 0.008), the integration set and PET set 
(P = 0.000005), and the MRI set and PET set (P = 0.003). In Figs. 2, 3 and 4, we found that each of the 25 models 
in the integration set had a higher AUC value than the MRI and PET sets. The results of pairwise comparisons 
of AUC values for all models in the three model sets are shown in Table S2. The pairwise comparisons of the 
models with the highest AUC in each of the three model sets were as follows: integration set vs. MRI set (0.93 vs. 
0.89, P = 0.048), integration set vs. PET set (0.93 vs. 0. 85, P = 0.013), MRI set vs. PET set (0.89 vs. 0.85, P = 0.059).

The integration set was finally selected with an ACC of 0.67–0.89, a sensitivity of 0.66–0.88, and a specificity 
of 0.65–0.92 (Table 3). Specific performance indicators of the fivefold mean value for the validation cohort of 
the 15 models selected from the integration set are shown in Table 3. The results of individual and joint model 
voting prediction in the training and validation cohorts are shown in Table S1. Compared with the individual 
prediction, joint model voting prediction showed that different agreement patterns had different classification 
performances (Fig. 5). In Group A, the 5A pattern showed the highest sensitivity, specificity, and accuracy in the 
training cohort(0.96, 0.97, 0.97) and the same in the validation dataset(1.0,1.0,1.0); in Group B, the 5A and 3A 
pattern showed the highest sensitivity(both 1.0), the 4A pattern showed the highest specificity (1.0), and the 5A 
pattern showed the highest accuracy (0.98) in the training cohort, the 5A, and 3A patterns showed the highest 
specificity (both 1.0), the 4A pattern showed the highest sensitivity (1.0), and the 5A pattern showed the highest 
accuracy (0.90) in the validation cohort; in Group C, the 5A and 4A patterns showed the highest sensitivity (1.0), 
specificity (1.0) and accuracy (1.0) in the training cohort, the 5A pattern showed the highest sensitivity (1.0), and 

Figure 2.  The heat map of Fivefold mean AUC of Integration Set in validation cohort. Created by python3.8 
(https:// www. python. org/ downl oads/ relea se/ python- 380).

Figure 3.  The heat map of Fivefold mean AUC of MRI Group in validation cohort. Created by python3.8 
(https:// www. python. org/ downl oads/ relea se/ python- 380).

https://www.python.org/downloads/release/python-380
https://www.python.org/downloads/release/python-380
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accuracy (1.0), and the 5A, 4A and 3A patterns all showed the highest specificity (1.0) in the validation cohort. 
The proportions of consistent patterns in different model groups were also different (Fig. 6).

Discussion
This study extended most previous radiomics studies that extracted features from cMRI sequences on enhancing 
tumour regions and peri-enhancing oedema regions to differentiate GBM from SBM and further incorporated 
18F-FDG-PET features reflecting tumour molecular metabolism. MRI-based radiomics has been used to dif-
ferentiate GBM from SBM in previous studies. Su et al.36, T1C-based radiomics analysis yielded AUC values of 
0.82 and 0.81 in the training and validation cohorts, respectively. Ortiz et al.37, the AUC of the T1WI-based radi-
omics model was 0.896 ± 0.067. In the study of Bae et al.19, they extracted radiomics features from T1C tumour 
enhancement and T2 peritumoral oedema areas, establishing the best conventional model with an AUC of 0.89. 
We combined 18F-FDG-PET and cMRI features to build 25 multimodal radiomics models. Finally, the result was 
satisfactory in that the best model achieved an AUC value of 0.93, higher than previous studies based on cMRI 
alone mentioned above, although lower than the integrated model with an AUC value of 0.98 in Zhang’s  study22. 
In our study, the multimodal models integrating 18F-FDG-PET and cMRI improved AUC values compared to 
radiomics models derived from only 18F-FDG-PET and cMRI. This is consistent with our previous hypothesis 
that multimodal radiomics would better distinguish GBM from SBM. Unlike most previous studies in which 

Figure 4.  The heat map of Fivefold mean AUC of PET Group in validation cohort. Created by python3.8 
(https:// www. python. org/ downl oads/ relea se/ python- 380) .

Table 3.  The performance of the 15 selected models from Integration Set in validation cohort. AUC  area 
under curve, ACC  accuracy, LASSO least absolute shrinkage and selection operator, LDA linear discriminant 
analysis, PLS partial least squares regression, NCA near-collar component analysis, PCA principal component 
analysis, SVM support vector machine, LR the logistic regression, KNN K nearest neighbors, RF random forest, 
Adaboost Adaptive Boosting.

Group Model AUC ACC Sensitivity Specificity

A

LASSO-SVM 0.93 0.83 0.76 0.92

LDA-SVM 0.92 0.86 0.84 0.91

LASSO-LR 0.91 0.89 0.88 0.9

LDA-LR 0.90 0.87 0.84 0.91

LDA-KNN 0.90 0.85 0.80 0.91

B

PLS-LR 0.86 0.78 0.76 0.82

NCA-KNN 0.84 0.83 0.86 0.81

PLS-RF 0.83 0.80 0.80 0.80

PLS-SVM 0.83 0.78 0.82 0.74

PLS-Adaboost 0.83 0.82 0.82 0.82

C

PCA-RF 0.80 0.72 0.74 0.70

NCA-Adaboost 0.79 0.78 0.82 0.74

PCA-LR 0.78 0.77 0.66 0.88

PCA-Adaboost 0.78 0.77 0.70 0.84

LASSO-Adaboost 0.68 0.67 0.68 0.65

https://www.python.org/downloads/release/python-380
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Figure 5.  The performance of the five individual models and the combined use of each group: (a) the 
performance in training cohort; (b) The performance in training cohort. A, group A; B, group B; C, group C. 
5A, five models reach agreement; 4A, four models reach agreement; 3A, three models reach agreement.

Figure 6.  The ratios of different agreement patterns in each group: (a) the ratios in training cohort; (b) The 
ratios in training cohort. A, group A; B, group B; C, group C.
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the best model was selected from multiple models, in this study, we obtained the best model and found that the 
combination of multiple models was more beneficial.

In the three model sets, almost all the models using the LASSO feature selection method had higher AUC 
values, suggesting that LASSO is a reliable feature selection method. The classifier SVM can filter the most effec-
tive samples for the prediction task in massive feature data. In Group A of the integration set, the top 2 classifier 
is SVM, which proved that it also has strong generalization ability with a small data sample size. LASSO_SVM 
is considered the optimal model in all three model sets in our study (with an AUC of 0.93 in the integration set, 
0.89 in the MRI set, and 0.85 in the PET set). This is consistent with the research results of  Qian38, in which 84 
models were built and LASSO_SVM was selected as the best model for an AUC of 0.9. The performance may be 
different among different models even based on the same data. Therefore, we explored the combined application 
value of different models instead of only choosing the best model. The combined application of multiple models 
is similar to multidisciplinary teamwork (MDT) in clinical practice. The collaboration between specialists in 
clinical practice is significant for making comprehensive and correct  decisions39,40. In this study, the 5A pattern 
of the joint voting has improved accuracy, sensitivity, and specificity to varying degrees compared with the 
individual prediction. The performance of the 4A and 3A patterns all shows a downwards trend, and the aver-
age level of individual prediction outperformed the 3A pattern, which is similar to the results of  Dong41. In the 
combined application of multiple models, it was interesting that the five models in Group A, with higher AUC 
values than Groups B and C, were more likely to reach an agreement (highest 5A pattern, lowest 3A pattern). In 
Groups B and C with lower AUC values of the models, the application of the 5A pattern improved the prediction 
performance more significantly. Similar results can also be found in the MRI and PET sets (Tables S3–S4 and 
Figs. S2–S5). Both this and previous  studies41 have shown that the method of combining multiple models can 
be more beneficial, especially when the model performance is not good. The benefits of applying this method 
will be more obvious. Although the performance of our model is not as good as the optimal model established 
by Zhang’s  study22, our study further confirms that the addition of PET features reflecting tumour metabolism 
can better distinguish SBM and GBM than the radiomics model based solely on cMRI features. On this basis, 
our study also provides a good solution for poor model performance in radiomics studies.

Of course, there are some limitations to this study. First, the image data were obtained by the same MR and 
PET/CT scanner. Therefore, the samples we obtained were relatively few. Although the results performed well, 
the generalization ability of each model still needs a large sample size for further verification. In practical work, 
it is difficult to obtain image data with consistent scanning parameters in different medical institutions or even 
in the same institution. In addition, the simple voting method with the same weight is adopted in the joint 
application of multiple models, and more joint application methods and comparisons with different methods 
can be further explored.

Conclusion
Radiomics derived from cMRI and 18F-FDG-PET can help differentiate GBM from SBM preoperatively, which 
may achieve greater benefits in clinical practice. Multimodal radiomics based on MRI and 18F-FDG-PET is 
expected to become a powerful research method for the differentiation of intracranial tumours. The combined 
application of multiple models inspired by MDT can generate extra benefit, especially when the performance of 
the model is mediocre. The combined application of multiple models can be used as a new method in radiomics 
research.
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