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Evaluation of eco‑environmental 
quality for the coal‑mining region 
using multi‑source data
Huan Jiang, Gangwei Fan*, Dongsheng Zhang, Shizhong Zhang & Yibo Fan

The contradiction between the exploitation of coal resources and the protection of the ecological 
environment in western China is becoming increasingly prominent. Reasonable ecological 
environment evaluation is the premise for alleviating this contradiction. First, this paper evaluates 
the eco‑environment of Ibei coalfield by combining the genetic projection pursuit model and 
geographic information system (GIS) and using remote sensing image data and other statistical 
data of this area. The powerful spatial analysis function of GIS and the advantages of the genetic 
projection pursuit model in weight calculation have been fully used to improve the reliability of the 
evaluation results. Furthermore, spatial autocorrelation is used to analyze the spatial characteristics 
of ecological environment quality in the mining area and plan the specific governance scope. The 
geographic detector is used to determine the driving factors of the eco‑environment of the mining 
area. The results show that Ibei Coalfield presents a spatially heterogeneous eco‑environment 
pattern. The high‑intensity mining area (previously mined area of Ili No.4 Coal Mine) has the worst 
ecological environment quality, followed by the coal reserve area of Ili No.4 Coal Mine and the 
planned survey area of Ili No.5 Coal Mine. The eco‑environment quality (EEQ) of the study area is 
affected by both human and natural factors. Mining intensity and surface subsidence are the main 
human factors affecting the ecological environment in the study area. The main natural factors 
affecting the ecological environment in the study area are annual average precipitation, elevation, 
annual average evaporation, NDVI and land use type. Meanwhile, the interaction effect of any two 
indicators is greater than that of a single indicator. It is also indicated that the eco‑environment of the 
mining area is nonlinearly correlated to impact indicators. The spatial autocorrelation analysis shows 
three areas that should be treated strategically that are the management area, close attention area 
and protective area. Corresponding management measures are put forward for different regions. 
This paper can provide scientific references for mining area eco‑environmental protection, which is 
significant for the sustainability of coal mine projects.

Human activities are closely tied to ecology and the environment. Understanding and assessing the eco-envi-
ronment level is not only an important research focus in the field of energy and environment, but also critically 
needed by the sustainable economy and  civilisation1. Coal is a key component of China’s energy structure, 
accounting for 60% of the total annual energy  consumption2. It has been identified that long-term and high 
intensive underground mining can lead to a series of problems such as surface subsidence, water level drawdown 
and vegetation deterioration, further affecting localized ecology and  environment3,4. Reasonable evaluation of 
eco-environment in mining area is helpful to analyze the sustainable development of mining area and put forward 
corresponding countermeasures for eco-environment management in mining  area5.

The evaluation of the eco-environment is based on the development characteristics of the ecosystem, mainly 
based on ecological carrying capacity  model6, landscape pattern  model7 and remote sensing ecological index 
model (RSEI)8, to build different eco-environmental assessment systems to evaluate specific regions. Ecological 
carrying capacity refers to the support and capacity of regional resources and environment to social economy and 
human activities, the most representative methods are energy value analysis, ecological footprint method and life 
cycle assessment (LCA). Although the energy value analysis method can convert the indexes of different types and 
units of measurement into the same standard energy value for analysis, it is difficult to put forward the threshold 
value of the evaluation  system9. The ecological footprint method is simple and feasible in the evaluation of the 
ecological environment, but it could not fully consider the impact of human technological progress and social 
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 development10. LCA can be used to evaluate the capacity of the ecosystem coordinated development. However, 
it is difficult to confirm the dividing standard of the starting and ending points of each stage of the system life 
 cycle11. Landscape pattern models can reflect the instrumental value of the ecosystem services through different 
landscape types, but the selection of landscape pattern indicators is hard to reflect the spatial heterogeneity and 
complexity of landscape pattern  evaluation12. In recent years, the development of remote sensing technology 
provides a new model for ecological environment assessment. Remote sensing (RS) technology has the charac-
teristics of simple information acquisition and large coverage. Xu et al.13 proposed a remote sensing ecological 
index (RSEI) based on RS data and integrated multiple ecological factors. RSEI uses four environmental elements 
(greenness, moisture, dryness, heat) to reflect the ecological environment of the region, and the results obtained 
are objective and stable. However, the indicators selected by RSEI are inadequate and the assessment results do 
not fully reflect the ecological conditions of the region.

When choose eco-environmental assessment indicators in mining areas, the most commonly used indica-
tors include normalized difference vegetation index (NDVI)14, vegetation coverage (VFC)15 and soil adjusted 
vegetation index (SAVI)16. However, the supervision and evaluation of a single indicator can only explain the 
characteristics of the eco-environment in one aspect, which cannot truly and comprehensively reflect the EEQ 
of the whole mining area. Wang et al.17 evaluated the eco-environment of the Gongyi mining area by combining 
natural factors, climate factors and mineral types. It’s based on the factors of the geo-ecological environment 
and social development, Saedpanah and  Amanollahi18 used the analytic hierarchy process (AHP) to construct 
the eco-environment evaluation system of the Qhorveh mining area. However, these comprehensive evaluation 
methods also have some shortcomings, such as not considering the mining type, mining intensity of and the 
significant negative impact of mining. In addition, in the construction of an ecological environment evaluation 
system, most studies adopt the indictor-weight method, including  AHP19, fuzzy evaluation  method20, principal 
component analysis (PCA)21, support vector machine (SVM)22 and random forest  method23. AHP can select 
different indexes and evaluation levels according to the characteristics of the regional ecological environment, 
but it has subjective factors. The fuzzy evaluation method is simple in the calculation but not sensitive enough 
in response to the ecological environment. PCA can objectively determine the weight of the evaluation index 
and avoid subjective arbitrariness. However, this method also has some information deficiencies. SVM can deal 
with nonlinear data well, but it is uncertain in the process of eco-environment evaluation and requires a large 
amount of memory and time for computation. The random forest method does not require the assumption of 
ostensive factors and could analyze the interaction between indicators, but it may overfit in some noisy clas-
sification or regression problems.

The projection pursuit model projects the high-dimensional data onto the low-dimensional space, constructs 
the objective projection function, and finds the best projection that can reflect the structure or features of the 
original high-dimensional  data24. This method avoids subjective factors and masses of missing pieces, by which 
objective results can be obtained, and has achieved great application effect in water resource  evaluation25, land 
use  evaluation26 and watershed flood  analysis27. Driving force analysis of evaluation results is also an important 
part of the eco-environment assessment. At present, most studies mainly analyze driving factors through linear 
regression  fitting28, grey correlation  analysis29 and other quantitative methods. However, it is pretty limited 
for statistical methods of spatial heterogeneity. The geographic detector is a statistical method that reveals all 
driving forces behind dependent variables by detecting spatial diversity, and could determine the quantitative 
interpretation capacity of independent variables to dependent variables by statistical analysis of spatial distribu-
tion similarity between independent variables and dependent variables, also could detect the interaction of two 
factors on the dependent variable.

Ibei Coalfield is one of the four largest coalfields in Xinjiang Province, China, and this is the unique oasis 
mining area. It has been observed that underground coal deposited in Ibei Coalfield are of shallow depth, great 
thickness and simple geological conditions. In the future, large-scale mining activity may lead to a sequence 
of environmental problems, potentially threatening the stability of the desert-oasis ecosystem. Therefore, it is 
necessary to make a quantitative scientific evaluation of the EEQ in this region, explore the driving factors of the 
eco-environment, and provide a reference for the subsequent eco-environment management and coal resources 
development.

Based on this, the research content of this paper is as follows: (1) Taking Ibei coalfield as an example, analyz-
ing the natural geographical conditions, geological mining conditions and ecological environment conditions, 
constructing the indicators evaluation system of EEQ in the mining area. (2) Based on the advantages and 
objectivity of the projection pursuit model in solving high dimensional nonlinear data, combined with mod-
ern optimization algorithm (genetic algorithm), set up eco-environmental quality evaluation (EEQE) model, 
evaluated Ibei coalfield EEQ. (3) The study zoned the Ibei coalfield by spatial autocorrelation, analyzed driving 
factors of eco-environment by geographic detector model, discussed the response mechanism of each evaluation 
indicators to the eco-environment system of the mining area under the disturbance of the mining area. (4) Based 
on the above, this paper proposes the corresponding mining environmental governance plan.

Study area
The study area is in Ili Kazak Autonomous Prefecture, Xinjiang Province, China. As shown in Fig. 1, the area 
spans 31.1–50.0 km longitudinally and 5.6–11.1 km latitudinally, with a total area of about 450  km2. The study 
area is divided into three areas: the previously mined area of Ili No.4 Coal Mine, the coal reserve area of Ili No.4 
Coal Mine, and the planned survey area of Ili No.5 Coal Mine. In the previously mined area of Ili No.4 Coal 
Mine adopts top-coal caving method. Due to the expanding mining scale year by year, the previously mined area 
of Ili No.4 Coal Mine is facing environmental problems such as vegetation destruction, soil erosion, and other 
environmental problems. The coal reserve area of Ili No.4 Coal Mine and the planned survey area of Ili No.5 Coal 
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Mine are still in the mine planning stage, and there are only scattered industrial sites on the surface. The study 
area is located in inner Eurasia, determining its temperate semi-arid continental climate where the annual aver-
age temperature is 10.4 ℃, precipitation is 368.5 mm, and evaporation is 1500 mm. Tianshan is just on the east, 
giving rise to extremely uneven topography and deeply incised valleys. The maximum altitude difference of the 
area reaches 633 m. Regional surface water is mainly valley streams formed from meltwater and seasonal rainfall.

Data and methodology
Data collection and processing. To evaluate the EEQ of the study area, the following information needs 
to be extracted from the obtained data: terrain, climate, land, river system, population, vegetation, and mining 
area. The data used in this article are as follows: Landsat 8 Operational Land Imager (OLI) remote sensing image 
was acquired on August 7, 2020, which were used to extract normalized difference vegetation index (NDVI) and 
Land-use type. A digital elevation model (DEM) with a resolution of 30 m in the Geospatial Data Cloud was 
used to extract slope, aspect, and river system distance. Interpolation data of precipitation and evaporation in the 
study area in 2020 are from Yining Meteorological Bureau. The population data of the study area came from the 
statistical Yearbook of Xinjiang Uygur Autonomous Region in 2020. Geomorphology data were obtained from 
the Chinese Geomorphology Database, which was provided by the Institute of Tibetan Plateau, Chinese Acad-
emy of Sciences. Table 1 lists the collected data. Before further spatial analysis, these original data are uniformly 
processed and projected onto the WGS1984 coordinate system with ArcGIS software.

Evaluation methodology. Figure 2 exhibits the procedures and methods of constructing an EEQE evalu-
ation system of the mining area. We select the indicators that can reflect the ecological environment level of the 
mining area and then use the genetic projection pursuit model to calculate the weight of the indicators. After 
evaluating and mapping the regional ecological environment, the characteristics of EEQ and driving factors are 
analyzed by spatial autocorrelation and geographic detector to guide local environmental protection and mine 
design.

Indicator selection. Indicators for assessing the eco-environment levels of a coal mine are rather complicated, 
and an appropriate choice indicator is critical for EEQE. In accordance with the principle of evaluation indictor 
system construction, also taking practicality and accessibility into account, 13 indicators are selected in regard 
to geomorphology, climate, hydrology, land resource, vegetation, and human activity factors.

Geomorphology is closely related to hydrology, soil, vegetation, and creature; its impact on the ecological 
environment is characterized using elevation, terrain slope, terrain aspect and geomorphic  type30. Annual average 
precipitation and average annual evaporation are used to describe regional climatic conditions. Comparatively, 

 

Ili Kazak Autonomous Prefecture

Elevation (m)
High:1254

Low:621

Previously mined area of 

   Ili No.4 Coal Mine

Coal reserve area of

  Ili No.4 Coal Mine
Planned survey area of

   Ili No.5 Coal Mine

0 8 16 244
km

Legend
Country Main river Study area

±Xinjiang Uygur 
Autonomous Region

Figure 1.  Location and elevation of the study area. The Figure is created using ArcGIS ver.10.2 (https:// www. 
esri. com/).
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Table 1.  Data collection and processing.

Data use Data processing approaches Source Date type

Terrain Extraction or calculation using DEM data Geospatial Data Cloud
http:// www. gsclo ud. cn ASTERDEM, spatial resolution 30 m

Landform Cutting from vector map
National Tibetan Plateau
Environment Data Centre
http:// data. tpdc. ac. cn/ zh- hans/

Climate Interpolation of long-time average value using Kriging Yining Meteorological Bureau Monthly data of precipitation and evaporation

River system distance Analyzing river system by DEM data and solving with Euclidean 
distance

Geospatial Data Cloud
http:// www. gsclo ud. cn ASTERDEM, spatial resolution 30 m

Vegetation Inversion of remote sensing satellite imagery Geospatial Data Cloud
http:// www. gsclo ud. cn Landsat 8 OLI image, spatial resolution 30 m, 2020/8

Land utilization Interpretation of remote sensing satellite imagery Geospatial Data Cloud
http:// www. gsclo ud. cn Landsat 8 OLI image, spatial resolution 30 m, 2020/8

Population Interpolation using Kriging Statistical Yearbook of Xinjiang
Uygur Autonomous Region Population spatial distribution data

Coal mines Data spatialization using ArcGIS Field measurement Mining, surface subsidence spatial data

Digital elevation model
China geomorphic 

database

Remote sensing image Statistical data

Field measurement data

Climate factors
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Figure 2.  Research framework.
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adequate rainfall results in higher vegetation coverage. In contrast, with greater the evaporation, the lower the 
moisture content of surface soils, possibly leading to water loss and land  salinization31. Shallow aquifer is a key 
hydrological factor underpinning ecosystem stability and characterized by specific yield; the greater the specific 
yield, the stronger the ability of an aquifer in water  release32. River system distance represents the situation of 
surface waters, reflecting the impact of flows on surrounding soil  erosion33 and on the circumstance of flora and 
fauna  community34. As a factor affecting water and soil conservation as well as the stability of the ecosystem, 
vegetation coverage is represented via  NDVI35. Also, land resource utilization and layout are considered because 
of their eco-environmental impact; for example, the regional ecology of the land for construction can be dam-
aged to a great  extent36.

In generally, the impact of underground coal mining on the ecological environment is positively correlated 
to mining  intensity37. The indicators representing mining intensity include positive external indicators (listed in 
Table 2) and negative external  indicators38. The negative ones refer to the consequences resulting from coal seam 
extraction, include overburden strata movement and eco-environmental damage. According to the classifica-
tion standard, the previously mined area of Ili No.4 Coal Mine can be classified into the high-intensity mining 
area. In contrast, the coal reserve area of Ili No.4 Coal Mine and the planned survey area of Ili No.5 Coal Mine 
should be unmined area. Within the whole area of the case, surface subsidence induced by coal exploitation can 
decrease available land resource, accelerate soil erosion, alter runoff and catchment conditions, and deteriorate 
ecological environment. Figure 3 shows the data map of the 13 indicators.

Methods configuration. 

1. Genetic projection pursuit model
  The weight of 13 indicators is calculated using the genetic projection pursuit model. For this purpose, 

high dimensional data are projected onto a lower-dimensional space to construct objective functions and 
identify the best projection path capable of reflecting the structural feature of high dimensional  data39,40. The 
configuration of the genetic projection pursuit model requires three procedures that are, data standardiza-
tion, projection indicator function construction, and projection indicator function optimization.

  The first procedure is data standardization. The indicators are different in dimension and order of mag-
nitude, which makes them lack comparability. The 13 indicators in this paper are divided into quantitative 
indicators and qualitative indicators. Quantitative indicators include elevation, slope, aspect, annual average 
precipitation, annual average evaporation, specific yield of aquifer, river system distance, NDVI, and popula-
tion. The raster calculator in ArcGIS is used to normalize the data.

  For the indicators which have a positive correlation with the ecological environment, the equation is 
expressed as  follows41

:

  For the indicators which have a negative correlation, the equation is:

where Xi is the normalized value of the variable i,xi is the initial value of the evaluation indicator.
  The qualitative indicators are graded according to the previous  studies42,43. To determine the degree 

of influence of each indicator, We divided the qualitative indicators into five levels referring to the 
"five-equal division"44 method. Accordingly, V = {V1,V2,V3,V4,V5} corresponded to the five grades: 
V = {worse, bad, medium, good, better} . Assign a value to each grade to turn qualitative evaluation into 
quantitative evaluation, that is V1 = 1 , V2 = 2 , V3 = 3 , V4 = 4 , V5 = 5 . Finally, we use the range method to 
normalize qualitative indicators. The evaluation grade of each qualitative indicator is evaluated by experts, 
and the evaluation grade results are shown in Table 3.

  After data standardization, the functions for projection indicators should be constructed. The sample-set 
is 
{

x(i, j)|i = 1, 2 . . . , n; j = 1, 2 . . . ,m
}

 , where m refers to the number of evaluation indicators and n is 
the number of samples. The one-dimensional projection ( Vi ) of m-dimensional data along the direction 
c = {c(1), c(2) , c(3), . . . , c(m)} is expressed as:

  To meet two requirements that (i) local projection points should aggregate to the greatest extent and (ii) 
overall the projection should disperse as much as possible, a projection indicator function is established:

(1)Xi = [xi −min(xi)]/[max(xi)−min(xi)]

(2)Xi = [max(xi)− xi]/[max(xi)−min(xi)]

(3)Vi =

m
∑

j=1

cj · x(i, j), i = 1, 2 . . . , n

Table 2.  Positive external indicators of large-scale underground longwall mining.

Indicators Parameter Indicators Parameter

Coal seam thickness  ≥ 3.5 m Mine output 500–1000 Mt/a, or ≥ 1000 Mt/a

Panel width  ≥ 200 m Ratio of depth to the thickness H/M < 100

Retreat rate  ≥ 5 m/d
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Figure 3.  Eco-environmental quality evaluation indicators. The Figure is created using ArcGIS ver.10.2 (https:// 
www. esri. com/).
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where S(c) is inter-class distance, D(c) is within-class density,  E(Vi) is the mean of {Vi |i =1, 2 . . . , n} , rij is 
inter-sample distance, rij = |Vi − Vj

∣

∣ , R is the window radius of local density, and f [R − rij] is step func-
tion where it R is greater than rij , f [R − rij] equals one but if not, f [R − rij] equals zero. D(c) represents the 
aggregation level of projection points; much greater the value of D(c) , more aggregated the points.

  The primarily constructed functions can be further optimized. The change of projection index function 
Q(c) is determined by projection direction c . Different projection directions can reflect different structural 
characteristics of data, so it is necessary to figure out the optimal projection direction. The maximized objec-
tive function and the corresponding constraint condition are expressed as:

(4)Q(c) = S(c) · D(c)

(5)S(c) =

√

∑n
i=1 (Vi − E(Vi))2

n− 1

(6)D(c) =

n
∑

i=1

n
∑

j=1

[R − rij] · f [R − rij]

(7)Max: Q(c) = S(c) · D(c)

(j)NDVI

0-0.13 0.13-0.19 0.19-0.29 0.29-0.42 0.42-0.61

(k)Mining intensity

High-intensity exploitation Unmined area
(l)Population
   (person/km²)

High:131

Low: 50

(m)Surface subsidence

Surface subsidence area Unsettled area

Figure 3.  (continued)

Table 3.  Determination of evaluation grade of qualitative indicators.

Assessment indicators

Assessment grades

1 2 3 4 5

Geomorphic type Middle-high elevation flood 
alluvial platform Low elevation hill

Land use type
Construction land

Desert land Cultivated land Grassland Woodland
Unused land

Mining intensity High-intensity exploitation Unmined area

Surface subsidence Surface subsidence Unsettled area
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  Considering that the best projection direction calculation is a complicated nonlinear optimization prob-
lem, we use the genetic algorithm to identify the optimal projection direction. The steps are shown in Table 4.

2. Eco-environmental quality evaluation modeling
  Based on the optimal projection direction vector obtained above, the eco-environmental quality of the 

coal mining area is quantified using the mining area eco-environmental quality index (MAEEQI), in which 
the direction vector is as the weight of each evaluation indicator. The weighted summation of all indicators 
is calculated:

where ui represents the weight of each indicator, wi is the standardized value of each indicator, and n is the 
number of evaluation indicators.

3. Spatial autocorrelation
  As an approach to analyze the distribution characteristics of data, spatial autocorrelation is helpful for 

testing the significance of an attribute value of variables and verifying the relevance of attributes between 
adjacent points. In this paper, spatial autocorrelation analysis is used to study the aggregation characteristics 
of the eco-environment conditions in Ibei  Coalfield45,46.

  Global autocorrelation characterized the aggregation and dispersion degree of eco-environmental quality 
within the whole space and expressed using Global Moran’s I ranging between − 1 and 1. There is:

where I is the indicator of global autocorrelation, n is the total amount of elements, xi and xj are the eco-
environmental quality level of spatial unit i and j respectively, x is the average value of eco-environmental 
quality, and wij represents spatial weight coefficient  matrix47.

  Further, local spatial autocorrelation (expressed as Local Moran’s I, ranging from − 1 to 1) can be used to 
analyze the aggregation and dispersion of eco-environmental quality in a localized area. There is:

4. Geographic detector
  As a statistical method to analyze the spatial heterogeneity of data, the geographic detector can identify 

the causality of different elements within a localized scale. The advantage is that this method can not only 
detect both quantitative and qualitative data but also determine the interactive effect of two factors on the 
dependent variable, even without any prior assumptions and constraint  conditions48,49. Geographic detectors 
are divided into three detection methods, including factor detection, interactive effect detection and risk 
detection.

  Factor detection is used to identify the spatial heterogeneity of eco-environmental quality in Ibei Coalfield 
and to analyze the impact degree of various indicator factors (X) on eco-environmental quality (Y). The result 
is measured using q value, which can be expressed as:

(8)s.t.

m
∑

j=1

cj
2 = 1

(9)MAEEQI =

n
∑

i=1

wi · ui = w1u1 + w2u2 + · · · + w2u2

(10)ui = cj
2

(11)I =
n
∑n

i=1

∑n
j=1 wij(xi − x)(xj − x)

∑n
i=1

∑n
j=1 wij(xi − x)2

(12)Ip =
n(xi − x)

∑n
j=1 wij(xj − x)

∑n
i=1 (xi − x)2

Table 4.  Steps for determining the best projection direction.

Steps Operations

I Generate X group of initial unit projection direction vectors randomly, and calculate the projection eigenvalues of each group 
according to Eq. (1)

II According to Eqs. (5) and (6), we calculate the inter-class distance and within-class density in the projection direction of X group 
respectively, and substitute it into Eq. (4) to calculate the objective function Q(c) in the projection direction of X group

III According to genetic algorithm (selection, mutation and crossover) operation, generate several groups of new projection direction 
vectors

IV According to Formula Eq. (6), since R is a continuous data with spatial distribution, a new projection direction vector is selected 
from multiple sets of projection direction vectors only to meet the principle that the larger the maximum value of R is, the better

V
Repeat the above operations until the maximum value of Q(c) does not increase and the corresponding projection direction vector 
is the optimal projection direction. Each component of the optimal projection direction represents the contribution of the related 
indicator to the EEQ for the study area
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where L is the layer of variable Y or factor X, Nh is the number of units in the hth layer, N is the number of 
units in the whole area, σh2 is the variance of Y in the hth layer, σ 2 is the variance of Y in the whole area, 
SSW and SST represent the sum of the variance of one layer and the whole area, respectively. Figure 4 shows 
the principle of factor  detection50.

  The principle of interaction detection is to identify the interaction between different indicators, that is, to 
evaluate whether the cooperation of evaluation indicators X1 and X2 will enhance or weaken the explanatory 
power of variable Y  (eco-environmental quality), or the influence of these indicators on Y  is independent.

  q that is corresponding to a single indicator is calculated, and so does q under the interaction of two indi-
cators. Then comparisons are conducted among q, q(X1 ∩ X2) , and the sum of q , and the results are divided 
into five categories. The types of interactions are shown in Table 5.

  Risk detection is to estimate whether the attribute means the value of two subareas has a significant dif-
ference, expressed as t statistics.

where Yh is the attribute mean value of area h, nh is the number of samples in the area, and Var represents 
variance.

Results
Evaluation indicator weight. The calculation of indicator weight is achieved using Matlab programming, 
with the total process including the optimization solution of the model via genetic algorithm and then cross 
iteration. The initial population size of the parent generation is 400, the crossover probability is 0.8, the mutation 
probability is 0.3, and the number of excellent individuals is 200. The optimized direction vectors obtained via 
the above procedures are the weight of various indicators, as listed in Table 6.

(13)q = 1−

∑L
h=1 Nhσh

2

Nσ 2
= 1−

SSW

SST

(14)t(yh=1 − yh=2) =
Yh=1 − Yh=2

[

Var(Yh=1)
nh=1

+
Var(Yh=2)

nh=2

]1/2

Figure 4.  Fundamentals of factor detection.

Table 5.  Classification of interaction type.

Criteria Interaction type

q(X1 ∩ X2) < min(q(X1), q(X2)) Nonlinear attenuation

q(X1 ∩ X2) > max(q(X1), q(X2)) Bilinear enhancement

min(q(X1), q(X2)) < q(X1 ∩ X2) < max(q(X1), q(X2)) Single-linear attenuation

q(X1 ∩ X2) = q(X1)+ q(X2) Mutual independence

q(X1 ∩ X2) > q(X1)+ q(X2) Nonlinear enhancement

Table 6.  Indicators weight.

Indicators Weights Indicators Weights

Elevation (X1) 0.026 River system distance (X8) 0.086

Terrain slop (X2) 0.027 Land use type (X9) 0.075

Terrain aspect (X3) 0.069 NDVI (X10) 0.084

Geomorphic type (X4) 0.076 Mining intensity (X11) 0.089

Annual average precipitation (X5) 0.125 Population density (X12) 0.070

Annual average evaporation (X6) 0.076 Surface subsidence (X13) 0.121

Specific yield of aquifer (X7) 0.076
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Eco‑environmental quality feature. Based on the above-calculated weights of 13 indicators, an EEQE 
model for Ibei Coalfield can be obtained:

For the mining area, its eco-environmental quality index are determined by Eq. (15). Further conformity 
and classification are successively conducted on the indicators by using ArcGIS analytical tool, followed by 
visualization of mining area eco-environmental quality index (MAEEQI) by combining Eq. (15) and weighted 
summation tool. The standard adopted in this paper for eco-environmental quality evaluation and grading 
sources from Technical Criterion for Ecosystem Status Evaluation and currently existing research  results51,52. 
The EEQ of the study area is graded into five levels from worse to better by using natural break (Jenks), with 
results listed in Table 7.

In Fig. 5, the area with bad and worse eco-environmental quality accounts for 40.4% of the whole area, the 
regions of the other three levels are 59.6% (Table 8). Overall, the eco-environmental quality of Ibei Coalfield 
tends to be the medium level. Compared with the districts of Ili No. 4 Mine, the EEQ of the planned survey area 
of Ili No.5 Coal Mine is better, especially in the south and east of the planned survey area as there is sufficient 
precipitation and greater vegetation coverage. In addition, No. 5 Coal Mine is still under planning, currently 
without high-intensity coal mining activity and strong engineering disturbance on the local ecology and envi-
ronment. However, the middle area of Ili No. 5 Coal Mine exhibits bad to worse eco-environmental conditions 
for urbanization and human activity.

The overall eco-environmental quality of No. 4 Coal Mine is not as good as No.5 Coal Mine (Fig. 6); the 
worse area is up to 68.5% of the total No. 4 Coal Mine area, and good to better areas only account for 5.6% 
(Table 9). Up to now, the No. 4 Coal Mine has worked shallow longwall mining for many years, causes a series 
of eco-environmental problems such as localized surface subsidence (Fig. 6) and vegetation degradation. Despite 
taking land and environmental treatment, mining impact is more than the intrinsic eco-environmental bearing 
capacity, mining-induced damage is faster than ecological rehabilitation.

(15)
MEEQI =

13
∑

i=1

wi · ui

= 0.020w1 + 0.027w2 + 0.068w3 + 0.076w4 + 0.084w5 + 0.125w6 + 0.076w7

+ 0.076w8 + 0.072w9 + 0.070w10 + 0.089w11 + 0.121w12 + 0.086w13

Table 7.  Mining area eco-environmental quality evaluation and grading.

Grade Worse Bad Medium Good Better

Numerical scope  < 0.501 0.501–0.552 0.552–0.606 0.606–0.668  > 0.668
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Figure 5.  Eco-environmental quality evaluation and grading. The Figure is created using ArcGIS ver.10.2 
(https:// www. esri. com/).

Table 8.  Statistical area and proportion of each grade.

Grades Area  (km2) Proportion (%)

Worse 66.56 12.3

Bad 151.98 28.1

Medium 165.66 30.7

Good 98.82 18.3

Better 54.58 10.6

https://www.esri.com/
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In the coal reserve area of Ili No.4 Coal Mine, about 51.1% of the area is graded into medium to better, indi-
cates a critical state. In this area, low-altitude hilly topography prevails, with large population density, scattered 
grasslands and low vegetation coverage. Environmental treatment and appropriate mine arrangement have just 
begun. Some infrastructural project for underground mining activity in the future leads to eco-environment 
deterioration, which should be a focus for the follow-up engineering operations.

Spatial pattern of eco‑environmental quality. Under the premise that the scale information is com-
plete and the evaluation result is accurate, the eco-environment feature of the study area is graphically resampled 
using 500 × 500  m grid meshes, totally outputting 2294 sampling points. Then the spatial autocorrelation of 
eco-environmental quality is computed using GeoDa. GeoDa provides a user-friendly interface and a wealth of 
methods for exploratory spatial data analysis, such as spatial autocorrelation statistics and basic spatial regres-
sion analysis. The results pass the 95% confidence test and are plotted into Moran scatter diagram (Fig. 7) and 
LISA index spatial aggregation diagram (Fig. 8). The calculation shows that the Moran’s I of Ibei Coalfield equals 
0.865, suggesting a significantly positive correlation in eco-environmental quality and distinguished spatial 
aggregation phenomenon and that the area with low eco-environmental quality can impact the adjacent area.

In Fig. 7, most data points are scattered along the regression line, featuring an eco-environmental quality 
pattern that homogeneity aggregates and heterogeneity disperses. Combining the spatial adjacency character-
istics, shows that two quadrants H-H and L-L exhibit spatial heterogeneity; in H-H and L-L the data points are 
concentrated, indicating that the area with high eco-environmental quality and area with low-quality aggregate 
separately and show a significantly positive correlation. Differently, in quadrants H-L and L-H the data points 
are rather lesser and scattered and witness negative correlation, indicating that high eco-environmental quality 
area and low-quality area are surrounded mutually.

It is analyzed from Fig. 8 that H-H aggregation takes 574 spatial units in the southwest of the coal reserve 
area of Ili No.4 Coal Mine, southwest and east of Ili No.5 Coal Mine. L-L aggregation takes 661 spatial units 
mainly in the previously mined area of Ili No.4 Coal Mine and partial area of the coal reserve area of Ili No.4 
Coal Mine, and further coal mining activity can deteriorate the ecology and environment of these two areas. 
Meanwhile, some regions have outliers of eco-environmental quality, which is represented by H-L outliers. The 
outliers are mainly the grassland and forest surrounded by construction land and desert, which makes them 
exhibit higher quality than their surrounding areas. L-H aggregation only takes one spatial unit, thus showing 
weak autocorrelation and random distribution.

 

± 0 2 4 6 81

km

Legend
Worse Bad Medium Good Better

��
��

�� ��2020/8/13 2020/8/13

Figure 6.  Eco-environmental quality grading for Ili No. 4 Coal Mine and eco-environmental problems, ➀ 
Surface subsidence and ➁ Vegetation degradation. The Figure is created using ArcGIS ver.10.2 (https:// www. 
esri. com/).

Table 9.  Statistical area and proportion of each grade of the previously mined area of Ili No.4 Coal Mine.

Grades Area  (km2) Proportion (%)

Worse 33.48 28.4

Bad 46.45 39.6

Medium 31.12 26.4

Good 5.83 4.96

Better 0.75 0.64

https://www.esri.com/
https://www.esri.com/
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Eco‑environmental driving factors. The geographic detector model requires independent variables to 
be type data and dependent variables to be numerical data, so the zoning grades and zoning methods may affect 
detection results. To decrease errors, various indicators are zoned using the natural break (Jenks) method, giving 
rise to nine types in terms of surface elevation, terrain slope, terrain aspect, NDVI, annual average precipitation, 
annual average evaporation, aquifer specific yield, population density and river system distance, six types for 
land utilization, and two types for mining intensity, surface subsidence and landforms.

Driving factor detection analysis. Figure 9 shows the eco-environmental factors detected in Ibei Coalfield. The 
q value can reflect the difference of various indicators in driving local ecology and environment. The p-value 
corresponding to the q value of each type variables X (independent variable) in the geographic detector repre-
sents the statistical significance of this factor. Mining intensity (X11) ranks the first in terms of the interpretation 
ability, followed by annual average precipitation (X5), surface elevation (X1), annual average evaporation (X6), 
NDVI (X10), land use type (X9), surface subsidence (X13), population density (X12), terrain slope (X2), terrain 
aspect (X3), aquifer specific yield (X7), river system distance (X8) and landform type (X9). The current eco-
environmental quality in Ibei Coalfield results from the interaction of natural conditions and human activities. If 
checking the interpretation ability, mining intensity is the primary factor driving the change of eco-environment 
level, with interpretation ability greater than 30%. Annual average precipitation, surface elevation and annual 
average evaporation are higher than 20%, and NDVI, surface subsidence and land use type are higher than 
10%. The other indicators are of relatively weaker ability in interpretation. Aquifer-specific yield, river system 
distance, and landform type have high P values, so the impact is weak.

Indicator interaction analysis. The results of interaction detection are shown in Fig. 10. Figure 10 shows the 
interaction of terrain, climate, hydrology, land utilization, vegetation coverage and human activity is stronger 
than any single factor among them, suggesting that various factors are closely related and interactively affect 
coal mine eco-environmental quality. The interactive effect of various indicators on eco-environmental qual-
ity includes two forms, linear enhancement and nonlinear enhancement, and the forms account for 35.9% and 
64.1% respectively. In detail, the combination of mining intensity and other indicators has stronger interpreta-
tion ability; X11 ∩ X10 (mining intensity and NDVI) shows the highest interpretation ability (q = 0.655), indi-
cating that mining activity enhances the interpretation ability of NDVI as the single independent variable. The 

Figure 7.  Moran scatter diagram of mining area eco-environmental quality (MAEEQ).
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Figure 8.  LISA aggregation diagram of eco-environmental quality. The Figure is created by GeoDa ver.1.20 
(http:// geoda center. github. io/).

http://geodacenter.github.io/
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interaction of mining intensity (X11) with indicators including NDVI (X10), terrain slope (X2), annual average 
evaporation (X6) and land utilization (X9) sees a nonlinear enhancement effect, whereas sees linear enhance-
ment with other indicators. In addition to mining intensity, the interaction of terrain slope (X2), annual aver-
age precipitation (X5) and annual average evaporation (X6) with other indicators also enhance their ability in 
interpreting the eco-environmental quality of the study area. Overall, the interactive effect of various factors on 
eco-environmental quality cannot be considered a simple superposition but a linear or nonlinear enhancement.

Impact of linearity and nonlinearity of indicators. Risk detection can reflect the linear and nonlinear variation 
of mining area ecology and the environment with a specific indicator. As shown in Fig. 11, the horizontal axis 
represents the zone levels of each indicator. The eco-environmental quality changes linearly with the zoning 
grades of geomorphology, mining intensity and surface subsidence, but nonlinearly with other indicators.

Surface elevation and terrain slope share similar nonlinear characteristics; with the increase of zoning levels, 
mine eco-environmental quality experiences a decrease-increase process, as shown in Fig. 11a,b. In terms of 
terrain aspect, the less sunny side of a slope tends to show higher eco-environmental quality because of lesser 
evaporation and stronger ability to retain moisture, as shown in Fig. 11c. Figure 11e,g,j show wavelike increases 
in eco-environmental quality with annual average precipitation, aquifer specific yield and NDVI, indicating suf-
ficient precipitation, shallow water resource and high vegetation coverage are conducive to the development of 
ecology and environment. Annual average evaporation and population density show a negative effect, indicated 
by Fig. 11f,l. Also, Fig. 11h,i exhibit that eco-environmental quality is closely related to river system distance and 
land utilization; when the area is 458.9 to 618.4 m away from a river and used as forestry land, it shows higher 
eco-environmental quality.
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Discussion
Spatial pattern and driving factors of eco‑environmental quality. Previous studies mainly focused 
on the impact of natural and human factors on the ecological environment of mining areas and seldom con-
sidered the driving factors and the interaction among factors on the same spatial scale. Therefore, this paper 
combined the factors of topography, meteorology, hydrology and land use, integrated the mining parameters 
into the mining intensity, and added them into the evaluation system. Through GIS, spatial autocorrelation and 
geographic detector, we not only studied the characteristics of EEQ in Ibei coalfield but also analyzed the driving 
factors hidden in detail.

In terms of the spatial pattern, the previously mined area of Ili No.4 Coal Mine has the worst ecological 
environment quality, followed by the coal reserve area of Ili No.4 Coal Mine and the planned survey area of Ili 
No.5 Coal Mine. In the whole study area, elevation and annual average precipitation show a gradient descent 
from east to west. Average annual precipitation is positively correlated with elevation, and more precipitation 
occurred in high-altitude areas and less in low-altitude areas. Sandy saline-alkali land is widely distributed in the 
study area, which seriously affects the growth of vegetation. In general, the distribution of NDVI is consistent 
with the average annual precipitation and elevation, while annual average evaporation and aquifer specific yield 
increase from east to west. The inhomogeneous distribution of these geomorphological, climatic and hydrologi-
cal indicators should be the primary cause for the spatial heterogeneity of eco-environmental quality. Google 
satellite images before planning and mining were selected, as shown in Fig. 12. Google image clearly reflects the 
spatial heterogeneity of EEQ in the study area. We selected five representative regions in Fig. 12, area (b) and 
area (d) have high vegetation coverage and a better ecological environment. Areas (e) and (f) are dominated by 
grassland, with large slope changes and little human disturbance. Its ecological environment is second only to 
the area (b) and area (d). The soil type of region (a) and region (c) is sandy land, with little vegetation coverage 
and a poor ecological environment.

Mining intensity is the primary factor for the change of eco-environment level in coal mining area, with q 
value reaching 34.8%, in accord with the results obtained by Yang et al.53. The mining intensity of the previously 
mined area of Ili No. 4 Coal Mine is much higher than the coal reserve area of Ili No.4 Coal Mine and the planned 
survey area of Ili No.5 Coal Mine. High-intensity mining will affect the growth of surface vegetation and cause 
serious damage to the ecological environment, thereby affecting the spatial distribution of ecological quality, as 
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15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6623  | https://doi.org/10.1038/s41598-022-09795-5

www.nature.com/scientificreports/

shown in Fig. 13a. In addition, the surface subsidence alters the integrity of the earth’s surface, accelerates soil 
erosion and negatively affects the ecological environment. However, the surface subsidence in the previously 
mined area of Ili No. 4 Coal Mine has been controlled, just a small part of the surface subsidence exists, where 
it has small spatial distribution, as shown in Fig. 13b. So the response of the ecological environment to surface 
subsidence is not obvious. Land-use type ranks second only to NDVI in explaining the ecological environment. 
The study area is mainly sandy land, and the construction land is mainly a mining industrial site, which signifi-
cantly affects the soil and water conservation function of the land.

The natural factors have a significant impact on eco-environment levels. The ability of surface elevation, 
annual average precipitation and annual average evaporation to interpret eco-environmental quality is 26.3%, 
27.2% and 20.6% respectively. In general, high elevation region tends to be cold, topographically fluctuated 
and with low soil quality, which has a great impact on the local ecological environment. However, in this study, 
eco-environmental quality enhances with elevation. It is speculated that high elevation regions experience less 
disturbance from human activities such as underground coal mining and construction projects. In addition, there 
can be a threshold for the elevation impact on ecological  environment49; considering that the case area is not in 
the extremely high altitude area, the case area does not reach the threshold. Ibei Coalfield is in the northwest 
inland of China and less affected by monsoon, featuring greater evaporation than precipitation. Because ecologi-
cal environments are relatively sensitive to  rainfall54, annual average precipitation has a stronger interpretation 
ability than annual average evaporation. NDVI is closely related to the ecological environment. Areas with high 
vegetation coverage can resist rainfall erosion and other physical erosion, which has a positive promoting effect 
on the ecological environment, so its explanatory ability is also strong.

Mining area eco‑environment management strategy. The above conducted spatial autocorrelation 
analysis helps to identify the region that needs to be managed, and the geographic detector analysis indicates the 
factors driving the change of eco-environment. By combining the two analyses, an appropriate strategy for coal 
mining area eco-environment management is developed.

The low eco-environmental quality area (L-L) is classified as the management area, requiring multi-layer 
and intensive treatments such as ecological rehabilitation. The government should develop the corresponding 
protective strategies to motivate and compensate the coal mines by implementing eco-environmental protec-
tion  policies55. Also, coal enterprises should control the intensity of land utilization and building density, and 
strengthen green infrastructure design, for example, filling topsoil cracks and growing special plants with drought 
tolerance since developed roots to prevent water and soil erosion. In addition, the core of scientific mining is to 
control the level of subsurface water since damaged plants and soil can restore in the short term by implementing 

Figure 12.  Google satellite image of Ibei coalfield before mining. The Figure is created using Google Earth Pro 
ver.7.3.4 (http:// www. googl ediqiu. com/).
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land rehabilitation, declined water levels may need a longer period to  recover56. From the engineering point of 
view, the groundwater level can be regulated by adjusting the mining parameters so as to protect the ecological 
environment. For example, reducing mining height is effective in preventing mining-induced fractures from 
reaching the shallow aquifer. Increasing the mining speed can reduce the permeability of overlying strata and 
maintain the groundwater level. Similarly, protective mining measures are also available, such as filling  mining57,58 
and slice  mining59. Filling mining can effectively prevent surface subsidence. Slice mining can ensure the water 
isolation performance of aquicludes and slow down the water loss of aquifer. However, how to adjust the mining 
parameters and mining methods to maximize the output of coal resources while protecting the mining environ-
ment will be the key research in the future.

H-H area has better eco-environmental quality. Considering that the future coal mining activity may lead to 
localized deterioration, the H-H area is classified into a close attention area. On the one hand, coal enterprises 
should consider the eco-environment situation and combine the "3S" technique to construct an eco-environ-
mental database and update by conducting continuous field measurement. On the other hand, new mines can 
take references from previous ones in production, implement the appropriate pre-mining design, and strengthen 
technical innovation over eco-environmental management.

Anomalous areas L-H and H-L can be used to predict and prevent eco-environmental risks as the localized 
low quality may propagate to the surrounding under the effect of spatial polarisation. So the areas labeled with 
L-H and H-L are classified into the protective area. In protective areas, it is necessary to designate a warning 
line for eco-environmental protection, required to preserve the grassland and forest, control urbanization rate 
and optimize land utilization patterns. Also, the above-designed policies are accompanied by financial support 
from the local government to construct an accountability strategy with the cooperation of government and coal 
enterprises.

Strength and limits. By adopting the projection pursuit model, the paper analyses the data with high 
dimension, nonlinearity and nonnormal index to identify the optimal projection direction, which effectively 
solves the problem regarding complicated structures and features of high dimensional data in a nonlinear sys-
tem. Compared with the conventional approaches like AHP, fuzzy comprehensive evaluation and PCA, this 
method analyses with data more objectively and avoids subjective  factors60 and masses of missing pieces, thus 
to get the objective results. Further, the geographic detector method is of significant strength in analyzing the 
driving factors of eco-environmental quality variation; it can not only quantify the interaction within a sin-
gle indicator and between various indicators but also reflect the nonlinear relationship between indicators and 
results if compared with conventional statistical analyses. In addition, the mining area eco-environment quality 
evaluation (MAEEQE) method developed in this paper can be relatively flexible in designing evaluation proce-
dures and selecting evaluation indicators. The MAEEQE method can provide strategic guidance for ecological 
protection and environment management, allowing managers to conduct reasonable pre-mining design and 
post-mining rehabilitation.

The research also has some limitations. For evaluation indicator and model selection, it is unavoidable to be 
impacted by noisy data and data incompleteness; for example, it is pointed out that soil pattern can also affect 
the localized ecological environment to some  extent61,62, which is not included into in this paper considering 
the difficulty in relevant data gathering. In addition, the evaluation on some systems, especially the terrestrial 
ecosystem, mainly takes normalized differential vegetation index (NDVI) and dominant plant community as 
the representative indicator, possibly lacking the indicators capable of reflecting the dynamic variation of a com-
munity, such as population competition. At present, identifying indicators that represent the dynamic process 
of eco-environmental quality fluctuation and its tendency is still a key study.

Conclusion
Aiming to scientifically and accurately evaluate the eco-environmental quality of mining areas, we propose a 
new method that can quantitatively assess the eco-environmental quality. 13 indicators can reflect the ecologi-
cal environment of mining area are selected from five factors, including topography, geomorphology, climate, 
hydrology, land use and human activities, and the ecological environment evaluation system of the mining area 
is improved. On this basis, combining genetic algorithm with projection pursuit model, an evaluation model 
of ecological environment quality in mining area is established, which can objectively evaluate the ecological 
environment quality in the mining area. The results show that the high-intensity mining area (previously mined 
area of Ili No.4 Coal Mine) has the worst ecological environment quality, followed by the coal reserve area of Ili 
No.4 Coal Mine and the planned survey area of Ili No.5 Coal Mine. Secondly, taking the eco-environmental qual-
ity evaluation results as dependent variables and 13 indicators as independent variables, the driving factors are 
analyzed by using the geographic detector. The results of geographic detector analysis indicate that both natural 
and human factors have a significant impact on the quality, one of the human factors about mining intensity 
shows the strongest ability to interpret the eco-environmental quality situation. The impact of two interactive 
indicators is greater than that of a single indicator, and there is a nonlinear relationship between each index and 
the ecological environment. Spatial autocorrelation analysis shows that Moran’s I of the whole study area equals 
0.865; eco-environment represents positive correlation and is of significant concentration and spatial hetero-
geneity feature. With the H-H, L-L, H-L and L-H in the LISA aggregation diagram as references, three areas 
were designated, including management area, close attention area and protective area, for which three different 
strategies are designed considering the results of driving factor analysis. This study provides a possible method 
for quantifying the ecological environment in the mining area and quantifying the driving forces of the ecological 
environment in the mining area. More importantly, it is necessary to advocate for comprehensive multifactor 
measures based on the intensity of the interaction between indicators.
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