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Machine learning‑based 
model for prediction of clinical 
deterioration in hospitalized 
patients by COVID 19
Susana Garcia‑Gutiérrez1,6,7*, Cristobal Esteban‑Aizpiri2, Iratxe Lafuente1,7, 
Irantzu Barrio3,6,7, Raul Quiros4,7, Jose Maria Quintana1,6,7, Ane Uranga5,8 & COVID‑REDISSEC 
Working Group*

Despite the publication of great number of tools to aid decisions in COVID‑19 patients, there is a 
lack of good instruments to predict clinical deterioration. COVID19‑Osakidetza is a prospective 
cohort study recruiting COVID‑19 patients. We collected information from baseline to discharge on: 
sociodemographic characteristics, comorbidities and associated medications, vital signs, treatment 
received and lab test results. Outcome was need for intensive ventilatory support (with at least 
standard high‑flow oxygen face mask with a reservoir bag for at least 6 h and need for more intensive 
therapy afterwards or Optiflow high‑flow nasal cannula or noninvasive or invasive mechanical 
ventilation) and/or admission to a critical care unit and/or death during hospitalization. We developed 
a Catboost model summarizing the findings using Shapley Additive Explanations. Performance of 
the model was assessed using area under the receiver operating characteristic and prediction recall 
curves (AUROC and AUPRC respectively) and calibrated using the Hosmer–Lemeshow test. Overall, 
1568 patients were included in the derivation cohort and 956 in the (external) validation cohort. The 
percentages of patients who reached the composite endpoint were 23.3% vs 20% respectively. The 
strongest predictors of clinical deterioration were arterial blood oxygen pressure, followed by age, 
levels of several markers of inflammation (procalcitonin, LDH, CRP) and alterations in blood count and 
coagulation. Some medications, namely, ATC AO2 (antiacids) and N05 (neuroleptics) were also among 
the group of main predictors, together with C03 (diuretics). In the validation set, the CatBoost AUROC 
was 0.79, AUPRC 0.21 and Hosmer–Lemeshow test statistic 0.36. We present a machine learning‑
based prediction model with excellent performance properties to implement in EHRs. Our main goal 
was to predict progression to a score of 5 or higher on the WHO Clinical Progression Scale before 
patients required mechanical ventilation. Future steps are to externally validate the model in other 
settings and in a cohort from a different period and to apply the algorithm in clinical practice.

Registration: ClinicalTrials.gov Identifier: NCT04463706.

At 15 months after the declaration of the pandemic, there have been more than 160 M confirmed cases of coro-
navirus disease 2019 (COVID-19) worldwide and nearly 3.5 M in  Spain1. Though vaccines have been available 
since December 2020, vaccination rates are uneven across countries. This fact, together with the emergence of 
new variants of the virus, leads to uncertainty about when global immunity will be  achieved2. On the other hand, 
in clinical settings, physicians face patients arriving at hospitals with markedly different characteristics, prob-
ably influenced by the age groups vaccinated at each point in time and differences in virulence between  strains3.
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One of the main complications of COVID-19 is acute respiratory distress syndrome (ARDS). Clinical mani-
festations may be relatively mild in almost all patients, especially in early stages of the disease. These patients 
might not complain of dyspnea and have no significant increase in respiratory rate or respiratory  distress4. The 
challenge for managers and physicians in this context is to identify patients at risk of developing severe forms 
of the disease with the aim of allocating resources and adequate treatments. Almost all the literature available 
concerning the prediction of prognosis in COVID-19 has used  death5,6 or ICU  transfer7,8 as the main outcome 
for developing models, with the aim of stratifying patients by risk of poor course. Recently, Gupta et al. have 
published the 4C Deterioration model for identifying patients at risk of needing ventilatory  support9.

Our hypothesis is that is possible to predict clinical deterioration in hospitalized patients before the need for 
intensive ventilatory support. Knowledge about the characteristics of such patients must be the basis of decision 
support systems to improve triage systems, allowing physicians to decide advanced treatments and, thereby, 
avoid ICU admission.

Methods
Data collection. COVID19-Osakidetza is a sub-study within COVID19-REDISSEC (clinicaltrials.gov # 
NCT04463706), a prospective cohort study recruiting patients infected by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) confirmed by naso- and/or oropharyngeal swab polymerase chain reaction (PCR). 
We used anonymized patient level data from patients with a confirmed COVID-19 admitted to one of four pub-
lic hospitals in the Basque Country. Participating hospitals serve a population of approximately 1.2 million and 
provide tertiary referral services to the surrounding region.

We excluded any patients admitted to these hospitals in the same period but who died in the emergency 
department or were, immediately or in the first 24 h of the hospital stay, admitted to a critical care unit or reached 
the endpoint. We also excluded patients who arrived at hospital more than 10 days after their first positive PCR 
test or tested positive by PCR later than 7 days after admission.

Data were internally stored and managed by the Osakidetza-Basque Public Health System. After anonymi-
sation and removal of protected health information, the data were released in a text-delimited format for 
research purposes. Patient-level data were collected for the initial analyses in our study. The study protocol was 
approved by the Ethics Committee of the Basque Country (reference PI2020059). The Basque Country Ethics 
Committee (PI2020059) approved the waiver of informed consent. The study was carried out in accordance with 
the relevant guidelines and regulations.

We collected data on demographic variables (age, sex), comorbidities and baseline treatments. Comorbidities 
were assessed based on International Classification of Diseases, Tenth Revision codes that were active on the 
patients’ electronic health records (EHR) on arrival to the emergency department (ED). We categorized them 
according to whether the date of diagnosis was in the previous year or earlier. Baseline treatments were assessed 
based on the Anatomical, Therapeutic and Chemical/Defined Daily Dose (ATC/DDD) index in the EHR, and 
we categorized them into treatments prescribed in the last 6 months, between > 6 and 12 months earlier and 
between > 12 months and 5 years earlier (older treatments being excluded). Patients were considered to have no 
comorbidities or treatments if none were documented in the EHR.

Regarding hospitalization history, we collected information from the ED and up to the first 24 h after admis-
sion. This information was related to vital signs: temperature, blood pressure, respiratory and heart rate, oxygen 
saturation by pulse oximetry and fraction of inspired oxygen, as well as treatments prescribed (ATC/DD). We 
also gathered data on the most recent lab results (for tests performed up to 1 month before admission).

Our outcome was a composite endpoint defined as need for intensive ventilatory support (with at least 
standard high-flow oxygen face mask with a reservoir bag for at least 6 h and need for more intensive therapy 
afterwards or Optiflow high-flow nasal cannula or noninvasive or invasive mechanical ventilation) and/or admis-
sion to a critical care unit and/or death during hospitalization.

All the data we used were structured data.

Datasets. 

1. Development and internal validation dataset We downloaded patient-level data for the period March 1 to 
April 30, 2020. We randomly split this derivation cohort, without replacement and randomly assuming a 
uniform distribution, to create two independent sets of patients, assigning 70% of the sample for develop-
ment of the prediction model and 30% for internal validation. Data were pre-processed to address quality 
issues, such as allowing the elimination of repeated entries for some patients and exclusion of features with 
more than 25% of missing data from the list of potential predictor variables.

2. Validation dataset Furthermore, a prospective validation set of patients, independent from the other datasets, 
referred to as the validation dataset, was composed of other patients with COVID-19 admitted from May 
1 to October 7, 2020. We used this dataset as the external validation sample and it was pre-processed using 
the same process as that used the development and internal validation dataset. Further, the demographic 
and clinical data recorded for these patients were consistent with those of the patients in the development 
and internal validation cohorts.

In all the resulting datasets, we performed univariate analyses of the differences between patients whose 
condition did and did not deteriorate using Student’s t test for continuous features and the χ2 test for categorical 
features. We set the p value threshold for significance at 0.05 in these and other analyses in this study.
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Development and validation of the predictive model. We combined the aforementioned informa-
tion for machine learning analysis using the CatBoost  algorithm10. Since it is a tree-based model, data normali-
zation is not necessary and categorical variables do not need to be pre-processed.

The contribution of each feature to the model’s prediction was assessed using the Shapley Additive 
Explanations (SHAP) approach, which ensures high local accuracy, stability against missing data, and consistency 
in feature  impact11. The SHAP values were calculated using https:// github. com/ slund berg/ shap. This is a unified 
approach for explaining the outcome of any machine-learning model. SHAP values evaluate the importance of 
the output resulting from the inclusion of feature A for all combinations of features other than A. Features being 
shown in blue indicates that their values are less likely to predict the outcome while values of those shown in 
red are more likely to be predictive.

We performed four-fold cross-validation in the training set to identify the optimal hyperparameters through a 
random hyperparameter search and compared the training models through fourfold cross-validation area under 
the receiver operating curve (AUROC). We also used logistic regression implemented using the Scikit-learn 
library as baseline model to evaluate and compare.

Different models obtained in the development set were applied to the internal validation set and the model 
that performed the best based on the AUROC in this latter set was selected. We also calculated the area under 
precision recall curve (AUPRC) in development, internal validation and external validation sets.

We explored the calibration of models by means of a calibration plot and the Hosmer–Lemeshow  Test12, 
which assesses whether or not the observed event rates match expected event rates in subgroups of the model 
population, identifying subgroups as the deciles of fitted risk values. Based on the distribution of the outcome 
across the predicted probability in the development and internal validation dataset, we created five risk groups, 
which were tested in the external validation dataset. We calculated the performance parameters for each risk 
group.

SAS software was used for the univariate analysis and Python to pre-process data and develop the model with 
the CatBoost method. Finally, the model was calibrated using R software.

Ethics approval. The study protocol was approved by the Ethics Committee of the Basque Country (refer-
ence PI2020059).

Consent for publication. The authors give their consent for publication.

Results
Data collection. For the analysis, 1568 patients were included in the derivation set, corresponding to 87% 
of the PCRs selected, while 956 patients were included in the validation set, corresponding to 85% of the PCRs 
selected. The percentages of patients who reached the composite endpoint were 23.3% vs 20.0% respectively (p 
value = 0.05) (Fig. 1).

Datasets. There were differences between cohorts in sex and age, patients in the external validation dataset 
being younger (67.42 [Standard Deviation (SD):16] in the derivation dataset vs 65.75 [SD: 20], p = 0.03). There 
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Figure 1.  Flow chart.

https://github.com/slundberg/shap
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were no differences in comorbidities between cohorts except for dementia (2.36% in derivation vs 4.18 in exter-
nal validation dataset, % in derivation and validation datasets respectively, p = 0.01). There were more patients 
taking chronic medications in the external validation dataset. We encountered statistically significant differ-
ences in all baseline medications considered except for antihypertensives and immunosuppressants. Regarding 
vital signs on arrival, no differences were detected except for temperature and oxygen saturation, being lower 
and higher respectively in the validation sample than in the development sample. We also found differences in 
several lab results, specifically, inflammation makers, namely, lactate dehydrogenase (LDH) and C-reactive pro-
tein (CRP), being lower in the development sample (Table 1). Suplementary Information Table S1 shows more 
information about differences between cohorts.

Table 2 shows the relationship between predictors and the outcome in the development and internal validation 
dataset and external validation dataset. Among patients who deteriorated, the percentage of males was higher 
in the derivation dataset (56% vs 69%, p < 0.0001), while there were no differences in the external validation 
dataset (p = 0.10). Deteriorated patients were older in both datasets. Further, in both datasets, cerebrovascular 
diseases were more frequent in deteriorated patients, as were chronic pulmonary disease, diabetes, kidney disease 
and cancer, and in general, they took chronic medications more frequently and had lower oxygen saturation 
on arrival at the ED. They also presented with higher values of CRP and LDH, lower platelet counts and higher 
values of mean corpuscular volume (MCV) and red blood cell distribution width (RDW) in both cohorts. 
Further, in these patients with a poor course, lymphocyte counts were lower in the external validation dataset, 
while neutrophil counts and D-dimer levels were elevated in both cohorts. Supplementary Information Table S2 
shows univariate analysis.

Development and validation of the predictive model. Figure 2 presents main variables in the Cat-
Boost model. The strongest predictors of clinical deterioration were arterial blood oxygen pressure, followed by 
age, levels of several markers of inflammation (procalcitonin, LDH, CRP) and alterations in blood count and 
coagulation. Some medications, namely, ATC AO2 (antiacids) and N05 (neuroleptics) were also among this 
group of main predictors, together with C03 (diuretics). The predictive performance of the CatBoost model in 
the derivation and validation sets are shown in Fig. 3.

We used SHAP values to provide consistent and locally accurate attribution values for each feature within the 
prediction model. Patients who reached the endpoint obtained the lowest values for partial pressure of oxygen, 
platelets, lymphocytes, monocytes and eosinophils and the highest values for CRP, age, procalcitonin, urea, 

Table 1.  Characteristics of the patients included in derivation and validation cohorts. NSAIDS non-steroidal 
anti-inflammatory drugs, MAX maximun value, MIN minimun value, SpO2 pulse oximetric saturation, PaO2 
partial arterial oxygen concentration, ALT alanine aminotransferase, LDH Lactate dehydrogenase, hs-cTnT 
high-sensitivity cardiac troponin T, RDW red blood cell distribution width, VMK100% standard-high-flow-
oxygen-facemask with reservoir-bag at least during 6 h and need for more intensive therapy afterwards, 
Optiflow (TM) high-flow-nasal-cannula, NIMV nor invasive mechanical ventilation, ICU intensive care unit. 
Data are given as frecuencies and percentages except for *, expressed as means and standard deviation.

Variable Development and internal validation (n = 1568) External validation (n = 956) p-value Missing

Sociodemographics

Sex (male) 0.01

Age* 67.42 (16) 65.75 (20) 0.03

Vital signs*

Temperature MAX 37.28 (0.92) 37.07 (0.87)  < 0.0001 193/160

SpO2 MIN 94.27 (2.87) 95.18 (2.42)  < 0.0001 815/458

Laboratory test*

Glucose 122 (44.29) 131.6 (59.17)  < 0.0001 3/12

Urea 45.55 (35) 45 (34.2) 0.60 4/15

Sodium 137.5 (4.27) 138.3 (4.21)  < 0.0001 10/14

Potassium 4.13 (0.51) 4.06 (0.51) 0.0017 46/36

Dimer D 1777 (4793) 1317 (2590) 0.0049 316/153

Prothrombin time 83.7 (21.07) 85.33 (19.64) 0.05 106/23

LDH 308 (127) 277 (269)  < 0.0001 237/170

C-reactive protein 83 (76) 73.6 (69.35) 0.0022 13/27

Procalcitonine 0.37 (2.58) 0.52 (4.12) 0.37 230/189

Outcome 365 (23.28) 191 (19.98) 0.05

VMK 100% 255 (16.26) 79 (8.26)  < 0.0001

Optiflow 87 (5.55) 73 (7.64) 0.04

NIMV 45 (2.87) 15 (1.57) 0.0374

ICU admission 78 (4.97) 54 (5.65) 0.46

Death 180 (11.48) 110 (11.51) 0.98



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7097  | https://doi.org/10.1038/s41598-022-09771-z

www.nature.com/scientificreports/

LDH, RDW, creatine kinase, creatinine, D-dimer and glucose. In the case of baseline treatments, which were 
dichotomous variables, those who took neuroleptics, antacids and/or diuretics were more likely to deteriorate 
than those who did not.

Calibration plots are shown in Fig. 4, the Hosmer–Lemeshow test p value being < 0.001 in the development 
cohort and 0.3654 in the validation cohort.

We explored the distribution of the outcome across the predicted probability based on the scores from the 
CatBoost classifier. We considered five different cut-off points (> 0.04, > 0.13, > 0.23, > 0.47 and > 0.82) to classify 
patients as reaching or not reaching the endpoint based on predicted values of probability. Table 3 shows the 
performance parameters for each cut-off point, the lowest group being the most sensitive and the highest group 
the most specific. The negative predictive value ranged between 0.81 and 0.99 across the risk groups. In addition, 
the variable representing patients risk stratification was defined considering the cut-off points mentioned above 
and creating complementary risk groups.

Discussion
We have developed and validated a clinical prediction model including routinely available information recorded 
in the EHR. This model includes chronic treatments prescribed at baseline, lab results and vital signs on arrival at 
hospital and predicts poor course in patients with COVID-19 before transfer to an ICU. Therefore, it is expected 
that it could improve triage systems allowing earlier identification of patients who are likely to need intensive 
ventilatory support. These decision support systems must be feasible, and have to be continuously updated to 
detect variations in patients’ characteristics that make them differently vulnerable.

Deciding whether or not to intubate is a critical aspect of caring for patients seriously ill with COVID-1913. 
We excluded patients in which emergent intubation was required, and hence, the algorithm is designed to detect 

Table 2.  Univariate analysis, relationship between predictors and outcome in development-internal validation 
and external validation datasets. NSAIDS non-steroidal anti-inflammatory drugs, MAX maximum value, MIN 
minimum value, SpO2 pulse oximetric saturation, PaO2 partial arterial oxygen concentration, ALT alanine 
aminotransferase, LDH Lactate dehydrogenase, hs-cTnT high-sensitivity cardiac troponin T, RDW red blood 
cell distribution width, VMK100% standard-high-flow-oxygen-facemask with reservoir-bag at least during 6 h 
and need for more intensive therapy afterwards, Optiflow (TM) high-flow-nasal-cannula, NIMV nor invasive 
mechanical ventilation, ICU intensive care unit.

Variable Missing
Deteroration
No (n = 1203)

Deterioration
Yes (n = 365) p-value Missing

Deteroration
No (n = 765)

Deterioration
Yes (n = 191) p-value

Sociodemographics

Sex (male) 681 (56.61) 252 (69.04)  < 0.0001 406 (53.07) 114 (59.7) 0.10

Age* 65.29 (16) 74.53 (14)  < 0.0001 62.94 (19.8) 77 (14.7)  < 0.0001

Vital signs

Temperature MAX 153/40 37.23 (0.9) 37.46 (1) 0.0002 127/33 37.07 (0.83) 37.04 (1.02) 0.75

SpO2 MIN 539/276 94.53 (2.5) 92.3 (4.33)  < 0.0001 322/136 95.35 (2.3) 93.70 (2.62)  < 0.0001

Laboratory test

Glucose 2/1 118.1 (40.33) 134.3 (53.56)  < 0.0001 12/0 128.1 (56.41) 145.5 (67.32) 0.001

Urea 10/4 41 (28) 60.65 (47.33)  < 0.001 3/0 40.21 (27.53) 62.85 (48.89)  < 0.00011/0

Sodium 7/4 137.4 (3.70) 137.5 (5.77) 0.79 2/0 138.3 (3.91) 138.2 (5.24) 0.73

Potassium 33/13 4.11 (0.50) 4.19 (0.55) 0.01 40/6 4.06 (0.49) 4.07 (0.57) 0.70

Dimer D 226/90 1516.2 (3814.6) 2703.2 (7207) 0.0090 133/20 1185.5 (2264.3) 1803.2 (3509.5) 0.03

Prothrombin time 79/27 85 (20.31) 79.33 (23)  < 0.0001 21/2 86.39 (18.94) 81.18 (21.72) 0.0028

LDH 176/61 291 (95.61) 365 (187)  < 0.0001 148/22 269.1 (96.66) 304.6 (130.3) 0.001

C-reactive protein 12/1 71.07 120.6 (87.3)  < 0.0001 15/2 66.90 (65.69) 99.64 (76.93)  < 0.0001

Procalcitonine 182/48 0.30 (2.74) 0.60 (1.95) 0.03 165/24 0.51 (4.56) 0.56 (1.76) 0.81

Red blood cells 3/0 4.63 (0.61) 4.5 (0.68) 0.0017 7/1 4.6 (0.64) 4.42 (0.73) 0.0018

Haemoglobin 3/0 13.74 (1.79) 13.5 (2.02) 0.0467 7/9 13.56 (1.9) 13.11 (2.02) 0.0038

Haematocrit 3/0 42.13 (5.21) 41.79 (6.03) 0.33 7/1 41.21 (5.41) 40.13 (6.03) 0.01

Mean corpuscular 
volume 3/0 91.26 (5.96) 93.11 (6.69)  < 0.0001 7/1 89.94 (6.30) 91.39 (6.6) 0.0052

RDW 3/0 13.18 (1.60) 13.91 (1.89)  < 0.0001 7/1 13.49 (1.73) 14.18 (2.13)  < 0.0001

Platelets 3/0 201.5 (82.43 171.6 (64.93)  < 0.0001 7/1 206.3 (82.70) 174.3 (72.93)  < 0.0001

Leucocytes 3/0 6.71 (2.88) 7.7 (6) 0.0023 7/0 6.81 (3.43) 7.15 (3.57) 0.24

Limphocytes 6/2 1.18 (0.62) 1.33 (4.81)  < 0.0001 22/6 1.22 (0.65) 0.95 (0.60)  < 0.0001

Neutrophils 6/2 4.92 (2.59) 5.85 (3.33)  < 0.0001 22/6 4.86 (2.85) 5.48 (3.16) 0.0098

Basophils 6/2 0.02 (0.02) 0.02 (0.04) 0.86 22/6 0.02 (0.0006) 0.02 (0.00148) 0.17

Monoytes 6/2 0.54 (0.31) 0.48 (0.47) 0.03 22/6 0.52 (0.28) 0.50 (0.47) 0.67

Eosinophils 6/2 0.04 (0.14) 0.02 (0.04)  < 0.0001 22/6 0.05 (0.27) 0.02 (0.03) 0.0009
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poor prognosis in patients who arrive at a hospital ward with severe COVID, requiring oxygen therapy. We 
believe ICU transfer is not a good outcome to consider if seeking to identify all patients who have a poor course 
in COVID-19 as it results in an under diagnosis of severe forms of the disease. We believe that the outcome 
should be a composite endpoint of ICU transfer, mortality, and need for intensive ventilatory support, cor-
responding to a score of 5 or more on the WHO Clinical Progression  Scale14, including patients who will need 
standard high-flow oxygen face mask with a reservoir bag, if we want to identify the whole spectrum of patients 
who develop severe forms of this disease.

Izquierdo et al. have recently published a predictive model of ICU admission of patients with COVID-19 
based on a sample of 10,504 patients in a region of Spain. One of the limitations of that model is that they did 
not include lab results or baseline treatments in their prediction model, their conclusion being that age, fever, 
and tachypnea were the main predictors of ICU  admission8. We believe that these predictors occurred late in 
the presentation of the disease; in contrast, our work provides clinicians and health managers an aid to take 
earlier decisions.

The recently published 4C Deterioration model used a composite primary outcome of in-hospital clinical 
deterioration considering initiation of ventilatory support from the start of noninvasive ventilation (score of 6 
on the WHO Clinical Progression Scale). We defined intensive ventilation as the need for 100% O2, including 
patients not candidates for mechanical ventilation but whose condition deteriorated and this is a main strength 
of our work. We included all data available for each patient related to the information we wanted to enter into 
the model: comorbidities, treatments, lab results and vital signs, without a priori definitions for each variable. 
The goal of Gupta et al. in proposing the 4C deterioration model was that it should be easily  usable9. Our 
main goal was, by contrast, to achieve the greatest possible accuracy in our predictions, since we envisaged its 
implementation in the EHR, and depending on the pre-selected decision threshold, physicians would receive 
the performance parameters automatically to aid their decision-making.

We derived the model in the first months of pandemic, and therefore, differences between patients in the 
derivation and external validation cohorts were expected. While there were differences in sociodemographic 
characteristics, we did not detect differences in comorbidities except for dementia. This could be due to the 
availability of hospital beds beyond the first months of the pandemic, since in the first months, patients with 
dementia were more likely to be treated in care homes. Other differences were encountered in inflammatory 
markers and other lab results, values being slightly better in patients in the validation cohort than in those in 
the derivation cohort; nevertheless, these differences were not clinically significant.

Figure 2.  Main predictors in catboost model in (a) derivation-internal validation and (b) external validation 
datasets. PO2-A partial arterial oxygen concentration, PCR C-reactive proteine, PCT procalcitonine, Edad age, 
LDH lactate dehydrogenase, PLT platelets, ADE RED blood cell distribution width, CREA creatinine, Mon%A 
Total count of monocytes, CK creatine kinase, Dimer D dimer, EOS%A Percentage of eoshinophils, AO2_12 
Antacids in the last 12 months, N05_12 neuroleptics in the last 12 months, MON#A total count of monocytes, 
GLU glucose, EOS#A TOTAL count of eosynophils, lin#A total count of lynphocites, Neu%A percentage of 
neutrophils, CO3_12 diuretics in the last 12 months.
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In any case, our model was sufficiently robust to identify patients at risk of clinical deterioration under new 
conditions, presenting excellent performance properties in other settings/circumstances.

In the literature, there is at least moderate evidence of predictive value in COVID-19 for almost all of our main 
predictors (partial pressure of oxygen, age, PCT, LDH, CRP, BUN, PLT, CK, D-dimer, creatinine, and lymphocyte 
count)15. RDW on admission and an increase therein during hospitalization have been proposed as predictors of 
mortality, especially in younger  patients16. We also found low levels of monocytes and eosinophils to be related 
to poor  course17. Such variations in blood cell counts with the progression of the disease are to be expected, but 
we provide the probability of poor outcomes depending of the magnitude of these variations, adjusted for other 
characteristics of the patients and this is another strength of our work.

A recent meta-analysis indicated that patients with upper gastrointestinal diseases taking omeprazole may be 
more vulnerable to COVID-19, without confirmation of severe disease being associated with other drugs in the 
same ATC  group18. Some authors have hypothesized that psychiatric patients could be protected against COVID-
19 due to being on neuroleptics, but this has not been confirmed in our  study19. Another possible explanation 
for antacids and neuroleptics being among the main predictors is that they were acting as a proxy for the overall 
number of drugs taken by patients. We assessed the number of drugs prescribed among the group of patients 
who took antacids or neuroleptics compared to that in patients who did not take these types of medications, 
and we found significant differences. Specifically, patients who took antacids or neuroleptics took eight drugs 

Figure 3.  Predictive performance of the catboost model in (a) derivation and (b) validation sets.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7097  | https://doi.org/10.1038/s41598-022-09771-z

www.nature.com/scientificreports/

compared to two in the groups of patients who did not take them (data not shown). Oddy et al. identified diuret-
ics as protectors of ICU admission and cardiac arrest as well being associated with lower oxygen  requirements20, 
while Cabezon et al. did not find a poorer prognosis in patients who took  diuretics21.

Our model presented excellent AUROCs and this indicates that the algorithm is sufficiently sensitive to 
identify patients at risk of needing intensive ventilatory support and acceptable AUPRC indicates that the 
algorithm is able to distinguish false positives. We proposed several cut-off points to aid decisions about allocation 
of care to patients. Another advantage of our model is that it takes into account all the comorbidities and baseline 
medications recorded, in a more specific way than models for predicting poor prognosis described to  date9,22,23. 
Indeed, our machine-learning based model is designed to detect which patients in the pulmonary phase at 

Figure 4.  Calibration performance in (a) derivation and (b) validation sets.

Table 3.  Sensitivity, specificity, and positive and negative predictive values according to different cutoff points 
in both, (a) derivation-internal validation and (b) external validation datasets. Risk cut-off values were defined 
by the total point score for an individual, which represented low (< 2% mortality rate), intermediate (2–14.9%), 
or high risk (≥ 15%) groups, similar to commonly used pneumonia risk stratification scores.

Risk groups No patients

Derivation cohort No (%) deteriorated in 
complementary risk 
groupsSensitivity Specificity Positive predictive value

Negative predictive 
value

Score > 0.04 1424 1 0.12 0.26 0.99 1 (0.69%)

Score > 0.13 851 0.98 0.59 0.42 0.99 9 (1.26%)

Score > 0.23 530 0.90 0.83 0.62 0.96 38 (3.66%)

Score > 0.47 227 0.59 0.99 0.94 0.89 151 (11.26%)

Score > 0.82 31 0.08 1 1 0.78 334 (21.73%)

Risk groups No patients

Validation cohort No (%) deteriorated in 
complementary risk 
groupsSensitivity Specificity Positive predictive value

Negative predictive 
value

Score > 0.04 862 0.99 0.12 0.22 0.99 1 (1.06%)

Score > 0.13 525 0.86 0.53 0.31 0.94 26 (6.03%)

Score > 0.23 313 0.65 0.75 0.40 0.90 67 (10.42%)

Score > 0.47 98 0.33 0.95 0.64 0.85 128 (14.92%)

Score > 0.82 13 0.06 1 0.92 0.81 179 (18.98%)



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7097  | https://doi.org/10.1038/s41598-022-09771-z

www.nature.com/scientificreports/

admission are going to need ventilatory support during their hospital stay. Bardley et al. recommended focusing 
on features of respiratory compromise rather than circulatory collapse as almost all the predictive models  do23.

A limitation of our work is the calibration performance of the model in the derivation dataset. Specifically, 
there is some under prediction when the observed probability of experiencing deterioration is greater than 0.5, 
while there is a slight over prediction when the observed probability is below 0.25. Nevertheless, the estimated 
and observed probabilities in the external validation dataset are very well calibrated, which indicates that the 
model has a good fit when applied to an external sample, although it is true that, as might be expected, the 
estimates in the 10 groups do not show a monotonic growth. This could be due to differences in the profile of 
patients across the waves of the pandemic as well as in the response of the health system and medical knowledge 
of the  disease3. This leads us to recommend the use of dynamic models, that is, models should be continuously 
updated after their implementation in clinical practice to adjust them for these differences. Figure 5 outlines dif-
ferences between traditional models and those based on machine-learning systems. Clinicians are provided with 
the result of the model automatically, and the model updates with the change in profiles of patients or changes 
in health system practices, such as changes in treatment protocols. Preprocessing code plus model training will 
be available on specific request in clinical trials.gov.

Conclusions
In conclusion, we present a machine-learning based prediction model with excellent performance properties 
to be implemented in EHRs. Our main goal was to predict progression to a score of 5 or higher on the WHO 
Clinical Progression Scale prior to patients requiring mechanical ventilation. Future steps are to externally 
validate the model in other settings and in a cohort from a different time period and to apply the algorithm in 
clinical  practice14.

Data availability
Data available on request from the authors.
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