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Feedlot diets containing different 
starch levels and additives change 
the cecal proteome involved 
in cattle’s energy metabolism 
and inflammatory response
Leone Campos Rocha1,7*, Andrey Sávio de Almeida Assunção1, Renata Aparecida Martins1, 
Victor Valério de Carvalho2, Alexandre Perdigão2, Marília Afonso Rabelo Buzalaf3, 
Jiri Adamec4, Camila Pereira Braga4, Danilo Domingues Millen5, 
José Cavalcante Souza Vieira6 & Pedro de Magalhães Padilha6

Diets for feedlot cattle must be a higher energy density, entailing high fermentable carbohydrate 
content. Feed additives are needed to reduce possible metabolic disorders. This study aimed to 
analyze the post-rumen effects of different levels of starch (25%, 35%, and 45%) and additives 
(monensin or a blend of essential oils and exogenous α-amylase) in diets for Nellore feedlot 
cattle. The cecum tissue proteome was analyzed via two-dimensional polyacrylamide gel 
electrophoresis (2D-PAGE) and then differentially expressed protein spots were identified with 
liquid chromatography–tandem mass spectrometry (LC–MS/MS). The use of blends of essential 
oils associated with α-amylase as a feed additive promoted the upregulation of enzymes such as 
triosephosphate isomerase, phosphoglycerate mutase, alpha-enolase, beta-enolase, fructose-
bisphosphate aldolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
l-lactate dehydrogenase B, l-lactate dehydrogenase A chain, l-lactate dehydrogenase, and ATP 
synthase subunit beta, which promote the degradation of carbohydrates in the glycolysis and 
gluconeogenesis pathways and oxidative phosphorylation, support pyruvate metabolism through 
the synthesis of lactate from pyruvate, and participate in the electron transport chain, producing 
ATP from ADP in the presence of a proton gradient across the membrane. The absence of proteins 
related to inflammation processes (leukocyte elastase inhibitors) in the cecum tissues of animals fed 
essential oils and amylase may be because feed enzymes can remain active in the intestine and aid in 
the digestion of nutrients that escape rumen fermentation; conversely, the effect of monensin is more 
evident in the rumen and less than 10% results in post-ruminal action, corroborating the hypothesis 
that ionophore antibiotics have a limited effect on the microbiota and intestinal fermentation of 
ruminants. However, the increase in starch in these diets promoted a downregulation of enzymes 
linked to carbohydrate degradation, probably caused by damage to the cecum epithelium due to 
increased responses linked to inflammatory injuries.

Among the limitations to enhancing meat production is its large energy requirement, which means that feedlot 
cattle have a higher net energy demand (NE)1. Dietary strategies are adopted to increase energy metabolism, 
mainly through the fermentation of carbohydrates in the rumen. This is mostly accomplished by supplying 
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hexoses (glucose) from starch. Thus, with increased starch in the diet, physiological limits to animals’ ability to 
digest a large amount of fermentable carbohydrates in the rumen and ruminal escape increased.

In the rumen, the fermentation of glucose from starch occurs and it is converted mainly into volatile fatty 
acids (AGV) and lactate2, which are metabolized in the liver and provide the greatest source of energy for 
ruminants3,4. However, the use of large amounts of starch can lead to disorders and metabolic diseases due to the 
accumulation of organic acids in the ruminal fluid, especially acidosis and bloat (NASCEM5). Thus, feed addi-
tives that decrease harmful ruminal fermentation processes are employed, such as sodium monensin, which is 
a polyester carboxylic ionophore used in growth and finishing diets5. It acts bacteriostatically on Gram-positive 
ruminal bacteria but may leave residues in products of animal origin and result in microbial resistance6. Alter-
native additives have shown the potential to replace monensin, such as blends of essential oils associated with 
the exogenous enzyme α-amylase, which has led to demonstrable gains in performance and carcass weight, in 
addition to reducing hepatic abscesses and fecal starch in animals with high-starch diets7–9.

With high levels of starch in the diet, the rate of passage and post-ruminal digestion increases5. The rumen 
microbiota can digest around 70–80% of the starch consumed5,10–13; however, the digestion and absorption of 
post-rumen starch are partially impaired as enzymatic digestion via pancreatic α-amylase in the duodenum is 
limited to the small intestine14,15. Others have postulated that glucose cannot be absorbed and transported in 
large quantities from the lumen into the bloodstream due to insufficient levels of the glucose transporters SLGT1 
and GLUT25,16,17, which favors the escape of some starch to the large intestine and increases the potential for the 
digestion and use of this starch in the cecum. Therefore, feedlot diets that offer increased amounts of energy due 
to high levels of concentrates18 can cause excessive fermentation in the cecum, contributing to the metabolizable 
energy ruminants can access19,20 but potentially resulting in hindgut acidosis, which may generate inflammatory 
reactions in the cecal epithelium. Large amounts of starch in the cecum may contribute to the fermentation of 
AGV, NH3, and lactic acid as well as a decreased pH5. Additionally, the cecum has limited buffering capacity 
compared with the rumen, where saliva and protozoa modulate pH fluctuations21. Feed additives that can increase 
the use of starch in the rumen, reducing starch escape to the intestines, as well as lower starch levels in feedlot 
cattle diets can avert the risk of cecal acidification. Most studies with feed additives focus only on the rumen 
effects; however, the effects of feed additives on the post-rumen digestive tract are important to understand.

Understanding how the digestion and absorption sites act when high proportions of starch are included in 
feedlot diets is essential. Due to the levels of starch in cattle diets and the effects on the extent of the gastroin-
testinal tract associated with different feed additives, this study aims to map the proteome of feedlot cattle’s ceca 
and to elucidate how protein expression acts on metabolism when different nutritional strategies are applied.

Results
Image analysis and protein expression.  In the workspace, classes were created to analyze differences 
in protein expression; an analysis of variance (ANOVA) was used to test the hypothesis (Hθ) that the expressed 
spots are identical. When testing all classes, protein spots were differentially expressed, as shown in Table 1. 

Supplemental Figure S2 shows the distribution of proteins and their biological processes, molecular func-
tions, and cellular components.

Proteins associated with glucose metabolism and energy synthesis (Table 2) and macromolecules involved 
in the degradation of carbohydrates through the glycolytic pathway, gluconeogenesis, and oxidative phospho-
rylation were detected in cecal tissue. The expression of seven enzymes participating in the glycolysis and glu-
coneogenesis pathways was verified: triosephosphate isomerase (Step 1); phosphoglycerate mutase (Step 2); 
alpha-enolase (ENO1), beta-enolase (ENO3), and fructose-bisphosphate aldolase (ALDOB) (Step 4); pyruvate 
kinase (PKM) (Step 5); and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Three enzymes linked to 
pyruvate metabolism or catalytic activities participating in the synthesis of lactate from pyruvate were verified 
as well: l-lactate dehydrogenase B, l-lactate dehydrogenase A chain, and l-lactate dehydrogenase. ATP synthase 
subunit beta participated in the electron transport chain, producing ATP from ADP in the presence of a proton 
gradient across the membrane. 

Pathways enrichment and Reactome analysis.  The pathway enrichment and Reactome analysis 
yielded similar results showing that specific pathways were affected. The differential expression found in all 
groups displayed changes in metabolic pathways as carbohydrate metabolism, pyruvate metabolism, the citric 

Table 1.   Differentially expressed spots in Nellore beef cattle cecum fed with diets containing increasing 
starch levels (25, 35, and 45%) and additives (Monensin, Blend of essential oil + exogenous α-amylase). UP 
up-regulated spot, Down down-regulated spot, + spot present in the first group in relation to the second, ∅ spot 
absent in the first group in relation to the second. *P ≤ 0.05.

SPOT (n)

MON × BEO* MON* BEO*

25 × 25 35 × 35 45 × 45 25 × 35 35 × 45 25 × 45 25 × 35 35 × 45 25 × 45

Up 9 3 7 14 3 8 5 0 1

Down 11 16 5 6 28 4 10 6 13

 +  10 59 14 22 65 35 34 16 27

∅ 37 11 14 81 19 42 18 8 16

Total 67 89 40 125 115 89 67 30 57
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acid (TCA) cycle, respiratory electron transport, innate immune system, and the immune system were affected 
in cecum tissues by different feeding strategies (Fig. 1). The data from the Reactome pathway analysis have been 
provided in Supplemental Table S1. 

Additionally, the differential expression indicates similar encoding enzymes in the glycolysis and gluconeo-
genesis pathways in cattle’s large intestines under different feeding strategies (Fig. 2).

The expression values ( P ≤ 0.05 ) (Table 3) were grouped with hierarchical cluster analysis (Fig. 3) and ordered 
by homogeneity between the treatments tested. Animals fed with identical levels of starch but subjected to dif-
ferent feed additives showed differentiation in proteins that contribute to energy metabolism.

The animals fed low-starch diets (25%) associated with BEOα exhibited increased expression of pyruvate 
kinase (EC 2.7.1.40), beta-enolase (EC 4.2.1.11), triosephosphate isomerase (EC 5.3.1.1), and l-lactate dehydro-
genase (EC 1.1.1.27) compared with those treated with monensin; all of these proteins are enzymes catalyzing 
the synthesis of pyruvate, which is responsible for the degradation of carbohydrates. Animals fed diets with 
the highest level of starch tested (45%) exhibited greater synthesis of l-lactate dehydrogenase (EC 1.1.1.27), 

Table 2.   Proteins identified by LC–MS/MS in protein spots differentially expressed in Nellore bovine cecum 
fed on diets containing increasing levels of starch (25, 35 and 45%) and additives (monensin, blend essential 
oil + exogenous α-amylase).

Protein Access Score pI/MM theoretical (Da) pI/MM experimental (Da)

Glucose and energy metabolism

Alpha-enolase Q9XSJ4 1783.3310 6.37/47,326.13 6.70/56,906

Beta-enolase Q3ZC09 440.2993 7.60/47,096.01 6.43/48,539

Triosephosphate isomerase Q5E956 193.3130 6.45/26,689.51 7.24/25,458

l-lactate dehydrogenase B Q5E9B1 4599.0320 6.02/36,723.64 6.37/39,211

l-lactate dehydrogenase A chain P19858 1327.3960 8.12/36,597.64 6.37/39,211

Pyruvate kinase A5D984 98.4805 7.96/57,948.91 5.9/57,613

Fructose-bisphosphate aldolase A6QLL8 1850.8330 8.45/39,436.12 6.37/39,211

Phosphoglycerate mutase F1N2F2 427.2343 9.01/28,699.04 6.37/39,211

l-lactate dehydrogenase F1MK19 70.7983 5.72/36,724.58 6.37/39,211

Glyceraldehyde-3-phosphate dehydrogenase P10096 11,907.1000 8.51/35,868.09 8.12/29,321

ATP synthase subunit beta_ mitochondrial P00829 533.0471 5.15/56,283.53 5.49/47,920

Inflammatory response

Leukocyte elastase inhibitor Q1JPB0 300.0084 5.70/42,235.75 5.70/38,338

Figure 1.   Affected pathways generated from KEGG ID input using Reactome show that immune system and 
metabolism is impacted (A), which, glycolysis and gluconeogenesis (B) and metabolism of carbohydrates (C).
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Figure 2.   Expression protein profile encoding enzymes in glycolysis and gluconeogenesis pathway. KEGG 
key: EC 4.1.2.13: Fructose-bisphosphate aldolase (ALDOB); EC 5.3.1.1: Triosephosphate isomerase (TPI); EC 
1.2.1.12: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH); EC 5.4.2.4: Phosphoglycerate mutase (PGAM); 
Alpha-enolase (ENO1); EC 4.2.1.11 Beta-enolase (ENO3); EC 2.7.1.40 Pyruvate Kinase (PKM); EC 1.1.1.27 
L-lactate dehydrogenase (LDH).
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fructose-bisphosphate aldolase (EC 4.1.2.13), and phosphoglycerate mutase (EC 5.4.2.4). Meanwhile, animals 
fed the intermediate starch level exhibited a higher expression of triosephosphate isomerase (EC 5.3.1.1) and 
glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12).

Table 3.   Expression values (test t, P ≤ 0.05) in Nellore cattle cecum protein profile fed starch levels (25, 35 
and 45%) and additives (monensin and blend essential oil + α-amylase). The values are presented in the form 
log2FC (Fold Change) calculated in relation to the type of additives used, and subsequently the level of starch 
with the respective additives. NS not significant, +/∅ spot present in the first group in relation to the second, 
∅/+ spot absent in the first group in relation to the second.

Protein

MON × BEOα MON BEOα

25 35 45 25 × 35 35 × 45 25 × 45 25 × 35 35 × 45 25 × 45

Glucose and energy metabolism

Alpha-enolase  +/∅ NS 1.55  +/∅  − 1.48  +/∅ 1.65 NS  +/∅

Beta-enolase ∅/+  NS 1.55 ∅/+   − 1.48 ∅/+  NS NS NS

Triosephosphate isomerase  − 3.55  − 2.55 NS  +/∅  − 2.39 NS NS NS  − 1.84

l-lactate dehydrogenase ∅/+  NS  − 1.47 ∅/+  NS NS NS NS NS

l-lactate dehydrogenase B
∅/+  NS NS NS NS NS NS NS NS

l-lactate dehydrogenase A chain

Pyruvate kinase ∅/+  NS NS NS ∅/+  NS  − 2.54 NS NS

Fructose-bisphosphate aldolase
NS NS  − 1.47 NS NS NS NS NS NS

Phosphoglycerate mutase

Glyceraldehyde-3-phosphate dehydrogenase NS  − 1.49 NS ∅/+   +/∅ ∅/+  NS NS NS

ATP synthase subunit beta_mitochondrial NS NS NS NS NS NS ∅/+   +/∅ NS

Inflammatory response

Leukocyte elastase inhibitor  +/∅ NS  +/∅ NS NS  − 1.22 NS NS  − 1.29

Figure 3.   Heatmap of the differentially expressed proteins (ANOVA, P ≤ 0.05) among the diets contending 
different starch levels and additives. Color-coded matrix showed the correlation coefficient of the spots 
expression values. Each row and column represent one group and protein, respective.
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Discussion
When evaluating the tested additives, we found that the use of BEOα with intermediate levels of starch (35%) 
resulted in greater expression of glycolysis intermediates, thus, this additive may have a greater effect on the 
post-rumen tract. A companion study (data under review) reported that the optimum level of dietary starch 
for cattle fed MON was 25%; however, the optimum level of dietary starch for cattle receiving BEO was 35%, 
commensurate with protein expression synthesis. In summary, feed intake decreased when MON- and BEO-fed 
cattle were fed more than 25% and 35% starch, respectively, which resulted in decreased average daily gain and 
proteins linked with carbohydrate degradation. The diets with 45% starch may have caused excessive ruminal 
fermentation that may have resulted in increased inflammation of the ruminal epithelium, agreeing with the 
proteins leukocyte elastase inhibitor. The literature reports that increasing levels of starch play an important role 
in reducing feed intake (observed in a companion study); however, this effect was more evident in cattle that 
were fed MON as it is a feed additive that depresses intake.

In the protein spots of groups 25BEOα and 45BEOα compared with those fed MON, leukocyte elastase inhibi-
tor, a serine protease inhibitor that is essential for the regulation of inflammatory responses and limits the activity 
of inflammatory caspases, was not expressed22 aligning with the results of the above-mentioned authors, who 
reported reduced ionophore effects in the hindgut. When comparing diets with 25% or 45% starch, regardless of 
the additive used, leukocyte elastase inhibitor was expressed more, corroborating previous studies demonstrat-
ing that inflammatory injuries are caused by the increased use of concentrates in the diet23,24. Additionally, we 
observed reduced expression of proteins that participate in energy metabolism in animals on high-starch diets, 
which can damage the epithelium of the cecum.

In a similar study, Toseti et al.9 observed a reduction in fecal starch using BEOα, suggesting a greater deg-
radation of carbohydrates because the feed enzymes can remain active in the intestine and aid in the digestion 
of nutrients that escape rumen fermentation25. As Thomas et al.26 demonstrated, the effect of monensin is more 
evident in the rumen, mainly in the diversity of microorganisms, but less than 10% results in post-ruminal 
action, corroborating the hypothesis that ionophore antibiotics have a limited effect on ruminants’ microbiota 
and intestinal fermentation.

Protein expression differs depending on the dietary starch level ( P ≤ 0.05 ); the cluster analysis shows dif-
ferentiation in the profile of the identified proteins involved in energy metabolism (Fig. 3) but the effect is 
greater when contrasting 25% and 35% starch or 35% and 45%, mainly when using monensin as a feed additive. 
In summary, high concentrations of starch may result in inflammatory responses due to the greater supply of 
undegradable starch in the rumen, thus decreasing the expression of proteins linked to the glycolytic pathway 
through tissue damage and inflammation. Higher concentrations of carbohydrates (starch) in the intestine along 
with the low effects of monensin on the cecum may contribute to a greater accumulation of organic acids. Addi-
tionally, the intestinal epithelium is much more vulnerable to pH variation than the rumen21,27, corroborating 
our identification of proteins linked to immune responses. Notably, this was not observed when assessing the full 
range of starch levels (25% vs. 45%) but the proteins involved in inflammatory responses were expressed more 
(Fig. 3). We attribute this to the greater increase in dietary carbohydrate, which may have increased epithelial 
injury (indicative damage)21,28 and upregulated inflammatory response, subsequently reducing the expression 
of proteins associated with energy metabolism.

Fructose-bisphosphate aldolase (ALDOB), an enzyme that converts fructose-1,6-bisphosphate to fructose 
6-phosphate, catalyzed by triosephosphate isomerase (TPI), is a precursor of glyceraldehyde-3-phosphate 
(GA3P), which is acted upon by the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during 
glycolysis. Alpha-enolase (ENO1) and beta-enolase (ENO3) are isoforms of enolase that are involved in Step 4 
of glycolytic metabolism. Phosphoglycerate mutase (PGM) is a catalytic enzyme that converts 3-phosphoglycer-
ate to 2-phosphoglycerate and, finally, pyruvate kinase (PKM) synthesizes pyruvate in the last step of glycolysis 
(UniProt29). In ruminants, a high concentration of starch enables the fermentation of carbohydrates in the cecum 
with lactate production, which increases glucose metabolism in the intestine and leads to the observed expression 
of the enzyme l-lactate dehydrogenase and its isoforms l-lactate dehydrogenase B and l-lactate dehydrogenase 
A, which synthesize lactate from pyruvate (UniProt29).

The dietary manipulation verified the expression of the leukocyte elastase inhibitor protein, associated with 
the inflammatory response (Table 2); this plays an essential role in regulating the innate immune response, 
inflammation, and cellular homeostasis, and mainly acts to protect cell proteases released into the cytoplasm 
during stress or infection29.

Methods
The experiment was conducted according to the standards issued by the National Council for Animal Experi-
mentation Control (CONCEA) and approved by the Ethics and Use of Animals Committee of the São Paulo 
State University (UNESP, Botucatu-SP), under protocol no 0107/2019 and in compliance with ARRIVE (animal 
research: reporting of in vivo experiments) guidelines30.

Animals, facilities, feeding and animal care.  The animal experiment was conducted at the feedlot 
facilities of the Innovation and Applied Science Center of DSM Nutritional Products (I & AS Beef Center; Rio 
Brilhante, Mato Grosso do Sul, Brazil). Nellore bulls (n = 210) (Bos taurus indicus) from the grazing system 
with an average body weight of ± 380 kg were used. The animals were randomly allocated to pens (7 animals/
pen) with 12 m2/animal and collective troughs (50 cm linear/animal). The program for receiving the animals 
consisted of weighing, deworming, and vaccinating according to the annual prophylactic calendar. The animals 
underwent a pre-experimental adaptation period of 10 days to standardize their rumen population and allow 
them to adapt to the facilities and management. The diets were formulated with the LRNS system (large rumi-
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nant nutrition system31), level 2, meeting the nutritional requirements for daily weight gain between 1.5 and 
1.7 kg/animal. Animals were fed for 92 days and diets were offered ad libitum twice daily at 8 a. m. and 3 p.m.

Experimental design.  A factorial 3 × 2 arrangement was used, with starch level (25%, 35%, or 45%) and 
additives (monensin or the essential oil blend CRINA® with the exogenous α-amylase Rumistar®) as the factor. 
The sodium monensin (MON; Rumensin, Elanco Animal Health, Indianapolis, IN) used was included in the 
diet at a dose of 26 mg/kg of dry matter. The blend of functional oils (CRINA RUMINANTS®; DSM Nutritional 
Products, Basel, Switzerland) containing thymol, eugenol, limonene, and vanillin32 and the exogenous enzyme 
α-amylase (RONOZYME RUMISTAR™; DSM Nutritional Products, Basel, Switzerland), referred to as BEOα 
were added to the diet at a dose of 90 mg/kg of dry matter and 560 mg/kg of dry matter, respectively. The pens 
were distributed in a randomized block design, totaling 6 treatments with 5 repetitions or 30 experimental units 
overall. The treatments were distributed within the blocks as follows: T1 (25MON), T2 (25BEOα), T3 (35MON), 
T4 (35BEOα), T5 (45MON), and T6 (45BEOα). According to the statistical model:

where Yijk is the dependent variable; µ is the overall mean; Bk is the block effect; Ci is concentrate; AJ is additive; 
(C × A)ij is the interaction between concentrate and additive effects; and εijk is the residual error.

Diets and their chemical composition.  The experimental diets were composed of natural bagasse sug-
arcane, ground corn, soybean hulls, cottonseed, soybeans, core minerals and vitamins, urea, and additives. The 
transition to the finishing diet was managed as follows: for 14 days, two diets with 65% and 75% concentrate 
were provided for 7 days each. From the 15th day of the experiment until slaughter, a finishing diet containing 
85% concentrate was provided (Table 4).

Dietary energy content was calculated according to the LRNS system31 and Total digestible nutrients (TDN) 
were determined by the equation: TDN = digestible CP + (digestible EE × 2.25) + digestible NDF + digestible non-
structural carbohydrate (NSC). Crude protein was determined by assessing the nitrogen content of the samples 
with the Kjeldahl method33. The NDF concentration was assessed with the methodology described by Van Soest 
et al.34 and corrected for CP and ashes. Starch was determined by the equation: NSC = 100 − CP − EE − NDF − as
h, where ash content was determined by incinerating samples at 550 °C for 2 h in a muffle furnace35. Physically 
effective neutral detergent fiber (peNFD) was determined according to Kononoff et al.’s methods36. Samples of 
diets were collected to determine particle-size distribution by sieving with the Penn State particle-size separator 
and reported on an as-fed basis.

Proteomics sample collection and preparation.  The animals were transported to a commercial 
slaughterhouse where they were stunned by brain concussions with a captive dart gun. After bleeding hide 

Yijk = µ+ Bk + Ci + AJ + (C × A)ij + εijk ,

Table 4.   Aining increasing starch levels (25, 35, and 45%) and additives (monensin, blend of essential 
oil + exogenous α-amylase) in diets for Nellore cattle feedlot. Adap 1 adaptation 1, 0–7 days, Adap 2 adaptation 
2, 7–14 days, 14–92 days, CP Crude protein, TDN total digestible nutrients, DPI digestible protein intake, NDF 
Neutral detergent fiber, peNFD physically effective neutral detergent fiber, Ca calcium, P phosphor, NE net 
energy.

Starch level (%)

Diets

25 35 45

Adap. 1 Adap. 2 Finishing Adap. 1 Adap. 2 Finishing Adap. 1 Adap. 2 Finishing

Ingredients (g/kg)

Sugarcane bagasse 350 250 150 350 250 150 350 250 150

Corn grain grind 300 330 360 300 400 500 300 470 640

Soybean meal 90 55 20 90 65 40 90 75 60

Whole cottonseed 60 80 100 60 80 100 60 80 100

Soybean hulls 150 235 320 150 155 160 150 75 0

Mineral and vitamin supplement 50 50 50 50 50 50 50 50 50

Nutrient content (dry matter, g/kg)

CP 146 147 146 146 147 146 146 145 145

TDN 660 680 690 660 690 730 660 720 770

DPI 510 510 500 510 510 520 510 520 530

NDF 437 424 412 437 382 330 437 316 252

peNFD7 360 300 250 360 290 230 360 280 220

Ca 7.7 7.5 7.3 7.7 7.5 7.3 7.7 7.6 7.5

P 3.1 2.8 2.5 3.1 3.1 3.1 3.1 3.6 3.7

Starch 209.5 230.8 254.6 209.5 284.0 355.0 209.5 372.8 458.0

NE Mcal/kg DM 2.4 2.4 2.4 2.4 2.5 2.6 2.4 2.6 2.7
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removal and evisceration, cecum samples about 4 cm square were collected and washed with phosphate-buffered 
saline (PBS), transferred to 15 mL polypropylene bottles, and placed in liquid nitrogen (− 196 °C) for later pro-
tein extraction. Each pen was considered an experimental unit, so a pool of samples was made by homogenizing 
cecal tissue from animals given the same treatment; three animals per experimental unit (N = 5) were used, i.e., 
15 animals/group or 90 animals total (15 animals from each of six groups).

Extraction, precipitation and quantification of proteins.  To extract the protein fraction, the tissue 
was macerated with a mortar and pestle in the presence of liquid nitrogen. The extracting solution was added 
at a rate of 1 mL ultrapure water per 1 g tissue and then the samples were homogenized with an OMMI-BEAD 
RUPTOR4 cell disruptor (Kennesaw, Georgia, United States) over three 30-s cycles. The samples were then 
separated into protein extracts and the supernatant was collected after refrigerated centrifugation (− 4 °C) with 
a UNIVERSAL 320R HETTICH (Tuttlingen, Baden-Württemberg, Germany). The proteins were precipitated 
in 80% (v/v) acetone (J.T. Baker, Phillipsburg, New Jersey, United States), using 300 μL of supernatant and 600 
μL of 80% acetone. The samples were stored at 2 °C for 1.5 h and then centrifuged at 14,000 rpm for 30 min; 
the supernatant was discarded and the protein pellet was solubilized in 1  mL of 0.50  mol/L NaOH (Merck, 
Darmstadt, Germany). The protein concentrations were determined by the Biuret method37, using an analytical 
curve with a concentration range of 0–100 g/L of standard bovine albumin solution (Acros Organics, NJ, United 
States) at 100 g/L.

Electrophoretic separations of protein fractions using 2D‑PAGE.  For isoelectric focusing, about 
375 µg of proteins from each group were applied to individual strips; the sample was resolubilized with a solution 
containing 7 mol/L urea, 2 mol/L thiourea, 2% CHAPS (m/v) (GE Healthcare, Uppsala, Sweden), ampholytes at 
a pH of 3 to 10 at 0.5% (v/v) (GE Healthcare, Uppsala, Sweden), and 0.002% bromophenol blue (GE Healthcare, 
Uppsala, Sweden), in addition to 2.8 mg of dithiothreitol (USB, Cleveland, Ohio, United States). Approximately 
900 µL of mineral oil was added at room temperature for 12 h to rehydrate the strips and prevent evaporation 
and urea crystals. After this period, the strips were added to the EttanTMIPGphorTM3 isoelectric focusing 
system (IEF) (GE Healthcare, Uppsala, Sweden). The electrical voltage used was established by the protocol 
described by Braga et al.38. At the end of the focusing period, the strip was balanced in two 15-min stages. First, 
10 mL of a solution containing 6 mol/L urea, 2% SDS (w/v), 30% glycerol (v/v), 50 mmol/L Tris–HCl (pH 8.8), 
0.002% bromophenol blue (w/v), and 2% DTT (w/v) was used to keep the proteins in their reduced forms38,37. 
In the second stage, a solution in which DTT was replaced with 2.5% (w/v) iodoacetamide was used to alkylate 
the thiol groups of the proteins and prevent possible reoxidation. After strip balancing, the second portion of the 
electrophoretic process (SDS-PAGE) occurred.

The strip was applied to a 12.5% (w/v) polyacrylamide gel previously prepared on a glass plate 
(180 × 160 × 1.5 mm). The gel was placed next to the strip with a piece of filter paper containing 6 µL of a 
molecular mass standard (GE Healthcare, Uppsala, Sweden), with proteins of different molecular masses 
(β-phosphorylase [97.0 kDa], albumin [66.0 kDa], ovalbumin [45.0 kDa], carbonic anhydrase [30.0 kDa], 
trypsin inhibitor [20.1 kDa], and α-lactalbumin [14.4 kDa]). The strip and filter paper were sealed with 0.5% 
agarose solution (w/v) to ensure contact with the polyacrylamide gel. The run program was then applied at 
100 V for 30 min and a further 250 V for 2 h. After the run period, the gels were immersed in a fixative solution 
containing10% acetic acid (v/v) and 40% ethanol (v/v) for 30 min. Then, the proteins were revealed with col-
loidal Coomassie G-250 (USB, Cleveland, Ohio, United States) for 72 h and removed by washing with ultrapure 
water38–41.

The gels obtained (Supplemental Fig. S1) were scanned and their images analyzed with the image processing 
program ImageMaster 2D Platinum 7.0 (GeneBio, Geneva, Switzerland; www.​gelif​escie​nce.​com), which allows 
the estimation of the isoelectric points and molecular masses of the separated proteins and calculation of the 
number of spots obtained via gel electrophoresis. Three replicates of each gel were used to evaluate the reproduc-
ibility of each protein spot obtained in the replicates of the gels by overlaying the image from one gel over the 
other in the image treatment program39–42.

Protein identification by mass spectrometry (LC–MS/MS).  The differentially expressed spots were 
characterized via mass spectrometry after the identification was standardized according to the highest protein 
score, pI, and molecular mass (MM) closest to the theoretical and experimental results. Among the proteins 
identified, 12 were classified as functional for this study as they are related to energy metabolism and inflamma-
tory responses.

The protein spots were characterized with LC–MS/MS after being subjected to tryptic digestion and peptide 
elution according to the methodology Shevchenko et al.43 described. The aliquots of the solutions containing 
the eluted peptides were analyzed to obtain the mass spectra with the nanoAcquity UPLC system coupled to the 
Xevo G2 QTof mass spectrometer (Waters, Milford, MA, United States). Proteins were identified by searching 
in the UniProt database (www.​unipr​ot.​org) within the Bos taurus species. Proteins were considered depending 
on their theoretical and experimental isoelectric points, molecular masses, and scores (> 60). After identifying 
FASTA sequences in the proteins, their sequences were analyzed with OMICSBOX software (BLAST2GO)44 and 
they were categorized by their molecular function, biological processes, and biochemical activities with gene 
ontology (GO).

Proteomic statistical analysis.  The starch level and additive were the fixed effects analyzed in a factorial 
design; thus, the groups were compared through contrasts to verify differentially expressed protein spots. Only 
proteins with significantly altered levels were selected for identification by MS. The images were analyzed with 
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ImageMaster Platinum software version 7.0, which establishes correlations (matching) between groups. For this 
correlation, three gel replicates were compared for volume, distribution, relative intensity, isoelectric point, and 
molecular mass in an analysis of variance (ANOVA) with a t-test to determine the significance of differentially 
expressed protein spots.

Following the average mode of background subtraction, individual spot intensity volume was normalized 
with total intensity volume (the summation of the intensity volumes obtained from all spots in the same 2-DE 
gel). The normalized intensity volume values of individual protein spots were then used to determine differen-
tial protein expression among experimental groups. A heatmap showed the correlation coefficient of the spot 
expression values and, after checking the differentially expressed spots (t-test, P < 0.05), the log2 FC values were 
used for hierarchical cluster analysis.

Pathways enrichment analysis.  The same KEGG-IDs were used to analyze metabolic pathways using 
the Kyoto Encyclopedia of Genes and Genomes function (KEGG pathways)45–47 and Reactome pathway enrich-
ment analysis yielded similar results about the specific pathways affected, allowing the expressions of proteins 
encoding enzymes found in the database to be mapped.

Conclusions
In verifying the differential expression of the cecal proteome in cattle, our results show that the blend of essential 
oils associated with α-amylase incorporated as a feed additive for beef cattle increased the expression of enzymes 
at dietary starch levels of 25%, 35%, and 45% compared with monensin. The higher expression of proteins related 
to carbohydrate degradation that participate in glycolysis and gluconeogenesis depended on increased feed intake 
and reduced protein synthesis expression. The optimum starch level was 35% for both feed additives; higher 
concentrations of starch (45%) increased the expression of inflammatory responses and reduced the expression 
of proteins involved in energy metabolism, probably due to damage to the cecum epithelium.

Data availability
The datasets used can be made available by the corresponding author on reasonable request.
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