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In.To. COVID‑19 
socio‑epidemiological co‑causality
Elroy Galbraith1, Jie Li1,2, Victor J. Del Rio‑Vilas3 & Matteo Convertino4,5*

Social media can forecast disease dynamics, but infoveillance remains focused on infection 
spread, with little consideration of media content reliability and its relationship to behavior‑driven 
epidemiological outcomes. Sentiment‑encoded social media indicators have been poorly developed 
for expressed text to forecast healthcare pressure and infer population risk‑perception patterns. 
Here we introduce Infodemic Tomography (InTo) as the first web‑based interactive infoveillance 
cybertechnology that forecasts and visualizes spatio‑temporal sentiments and healthcare pressure 
as a function of social media positivity (i.e., Twitter here), considering both epidemic information and 
potential misinformation. Information spread is measured on volume and retweets, and the Value 
of Misinformation (VoMi) is introduced as the impact on forecast accuracy where misinformation 
has the highest dissimilarity in information dynamics. We validated InTo for COVID‑19 in New 
Delhi and Mumbai by inferring distinct socio‑epidemiological risk‑perception patterns. We forecast 
weekly hospitalization and cases using ARIMA models and interpolate spatial hospitalization using 
geostatistical kriging on inferred risk perception curves between tweet positivity and epidemiological 
outcomes. Geospatial tweet positivity tracks accurately ∼60% of hospitalizations and forecasts 
hospitalization risk hotspots along risk aversion gradients. VoMi is higher for risk‑prone areas and 
time periods, where misinformation has the highest non‑linear predictability, with high incidence and 
positivity manifesting popularity‑seeking social dynamics. Hospitalization gradients, VoMi, effective 
healthcare pressure and spatial model‑data gaps can be used to predict hospitalization fluxes, 
misinformation, healthcare capacity gaps and surveillance uncertainty. Thus, InTo is a participatory 
instrument to better prepare and respond to public health crises by extracting and combining salient 
epidemiological and social surveillance at any desired space‑time scale.

“‘Not everything that can be counted counts and not everything that counts can be counted”’
Albert Einstein.

COVID‑19 and infoveillance. The spread and magnitude of COVID-19 is reflected in social media pro-
duction and sentiments with the lowest ever recorded trend in population positivity (see the Hedonometer at 
https:// hedon ometer. org/ times eries/ en_ all/). Not only are social media messages the saddest they have been since 
happiness monitoring began (see Dodds et al.1), but the volume of misinformation has grown  exponentially2,3. 
These observations provide evidence of the relevance of socio-technological systems like social media to predict 
epidemiology. Empirical evidence for many diseases before COVID-19 and previous analytical findings made 
clear the linkage between risk perception and infection  patterns4; thus, highlighting the co-causality of social and 
epidemiological information beyond their predictability.

Aware of these linkages, global response to COVID-19 by health authorities includes risk communication 
messages, e.g. on increasing social distancing and using masks to reduce inter-person transmission. Similarly, 
messages on enhancing early identification, isolation and care for patients all in a bid to “flatten the curve” shed 
light on the importance of surveillance and public health  capacities5. The search for social surveillance tools that 
could help public health officials to monitor, forecast, plan, evaluate and prepare for public health demand started 
well before COVID, e.g. with seasonal influenza in USA coupled to predictive multimodeling (see Paul et al.6, 
Santillana et al.7 and McGowan et al.8), due to the recognition of the limitations—e.g. delays, misreporting—of 
traditional epidemiological surveillance systems. In analogy, social media signals are also used to forecast, a priori 
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or in near real-time, extreme environmental phenomena such as  earthquakes9, which highlights the relevance 
of temporal and spatial social media for surveillance.

Concurrently to the spread of COVID-19 epidemic, health authorities are combating an infodemic, strictly 
defined as the rapid exponential increase in the volume of potentially misleading information about an  event10. 
Misinformation, considered as objectively false or inaccurate information, is of difficult detection and classifica-
tion because it is highly affected by perception bias. Misinformation can tangibly and negatively impact response 
strategies and health-seeking  behaviors11,12,13 which may lead to increased infections and hospitalization. Against 
this background, infodemiology and  infoveillance14 are strong public health responses to the COVID-19 pan-
demic and its simultaneous infodemic. Infodemiology is the study of the emergent volume, spread, and quality 
(among other features) of socially-produced information—both accurate and inaccurate—usually related to 
public health. Infoveillance is the surveillance of such social information with health saliency, with the additional 
aim of detecting and forecasting disease outbreaks that is also the core aim of traditional epidemiological surveil-
lance by using epidemiological  data14. Both disciplines take behaviors and messages (in text, image, video and 
sound data) on electronic media, such as the internet as their focus of analysis, along with additional data such 
as metadata and message sentiments extracted from the primary information. Prior to COVID-19, scientists 
have been able to use internet dynamics and message sentiments measured as categorical emotions to monitor 
public health related phenomena and forecast disease  spread15,16,14,17,18,7. Our work improves on the previous by 
incorporating a model and information system that uses social media sentiments to forecast sentiments as con-
tinuous variables and healthcare pressure (cases and hospitalization) together, over space and time; we combine 
epidemiology and information patterns, and quantify the effective impact of information, and misinformation 
alike, on populations.

Information‑prediction nexus. A different perspective on public health forecasting is brought by propos-
ing an assumption-free minimalist model that is focused on patterns rather than processes of the phenomena 
considered. The employed information-theoretic models (perfectly fitting the general aims of infoveillance) are 
using the necessary and sufficient social data as sentinels of change, coupled to epidemiological information, 
to maximize prediction accuracy for the patterns investigated. Information theoretic models like the one pro-
posed here are the least biased models (mechanisms-free) for capturing which set of information is relevant for 
predicting patterns. Other underlying causal factors, such as local language and socio-environmental factors of 
the population considered, are certainly important in the domain of physical reality but not in the information 
domain of predictions. Therefore, the focus is on predictive causality rather than true  causality19; a principle that, 
however, should be associated to any model considering the fundamental reality of any model as a microscope 
of reality rather than its utopian replica.

With the aforementioned reasoning in mind, social and epidemiological processes (and yet data about them) 
are linked by information and misinformation that is revealing patterns of people behavior in terms of sentiments 
(informative of risk perception) and cases, respectively. Additionally, strong predictive causality in process-
related variables has been shown to coincide with physical causality; yet, computation that screens and weights 
information can be used to infer co-causality between two signals robustly, without imposing any assumption 
a priori on model structure.

In the current COVID-19 context, we are interested in knowing whether modern social media are predictive 
of explosive epidemics, and more precisely which social chatter features are the most predictive of epidemiologi-
cal patterns. Moreover, whether social chatter features can be accurately used as early warning predictors of risk 
before cases occur, and how early can forecasts be made. Motivated by these questions we developed InTo as an 
exploratory tool to quantify how much perceived risk inferred from social chatter in advance was predictive of 
actual observed risk in cases and extreme cases (or hospitalization) reported by official public health surveillance. 
This modus operandi and modern infoveillance tool, beyond assessing how much waves in socio- and health-
scapes copredict each other via joint “infoscapes”, can validate classical surveillance systems (which provide 
data that are byproducts of behavioral models, oftentimes affected by strong bias) considering the temporal 
gap between model and data for multiple surveillance  criteria20. Theoretically, the smaller the gap over time the 
higher the surveillance accuracy.

InTo: infodemic tomography. Infodemic Tomography (In.To. or InTo hereafter) was developed as a 
cybertechnology to forecast one week in advance COVID-19 related cases, hospitalizations, population positiv-
ity, misinformation impact and spreading, healthcare satisfaction and space-time surveillance uncertainty by 
leveraging geospatial Tweets and epidemiological data in New Delhi and Mumbai as case studies. InTo analyzes 
and visualizes “tomograms”, as snapshots of epidemiological and information dynamics, for the selected geog-
raphies. Thus, InTo is proposed as a pattern-oriented Digital Health platform for Participatory, Predictive, Per-
sonalized, Preventive and Precise Health (“P5”), that is an “upgrade” with respect to the “P4” purview of health, 
such as in Alonso et al.21, via the precise identification and provision of systemic health-related information to 
individuals and populations alike. Weather forecasting is the general epitome of InTo considering its focus on 
predicting patterns of healthcare pressure as a function of dynamically updated information; thus the InTo dash-
board is ideally like an App visualizing the most updated weather forecasts.

Previous efforts have focused on internet-based social media for incidence surveillance and outbreak 
 forecasting22. Some of these efforts incorporated hospital visit data in their  models23 but none of them coupled 
social and epidemiological or healthcare information together. Other process-based models, e.g. Kastalskiy 
et al.24, have numerically explored the linkage between social stress and COVID-19 infections, but these models 
explored hypothetical mechanisms through assumed analytics that is not inferred a priori from assumption-free 
models. Therefore, prediction accuracy of these models is not a ”gold standard” to claim their representativeness 
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of real processes. InTo goes beyond temporal incidence predictions because it aims to investigate changes in 
socio-epi patterns over time and space, and the value of spatial ”social chatter” by dynamically calibrating 
the model as data from social and epidemiological surveillance is updated. Note that InTo does not make any 
assumption but the choice of the model (e.g. ARIMA) is based on inferred socio-epidemiological relationships. 
In this optic and in relation to the early forecasting nature of InTo, the predicted hospitalization is informative 
of people potentially in need of hospitalization one week in advance. Gradients of hospitalization over space are 
indicative of patient hospital loads. In an hydroclimatological analogy, gradients of healthcare pressure are like 
gradients in atmospheric pressure dictating where ill people/rain will likely flow, and exceedance of pressure 
over healthcare capacity are like floods.

Considering previous efforts, InTo is the first cyberinfrastructure to forecast COVID-19 specific healthcare 
pressure (as difference between point- and city-scale predicted cases and hospitalization) as a function of text 
positivity where the latter is a variable quantifying potential happiness in words shared via social media, i.e. 
Twitter in this context. Although InTo is not the first to examine the relationship between Twitter sentiments 
and diseases, previous efforts were based on extracting few categorical emotions or using volume of social media 
entries as predictive  functions16,25,26,27. InTo instead is the first effort, set of models and participatory dashboard 
to use quantitative measures of continuous sentiments (associated also to potential misinformation) as positivity 
to forecast healthcare pressure over space and one week in advance, coupled to the evaluation of those forecasts 
within an information-theoretic framework.

In the development of InTo we chose to call happiness, introduced by Dodds et al.1. as positivity because it 
is semantically a more general word that does not imply happiness (strict sensu) and relates more effectively to 
risk behavioral patterns (related to the objective relative risk conditional to the geographical area considered), 
at least conceptually. Gradients in positivity as a function of cases or hospitalizations define risk perception pat-
terns on which predictive models are calibrated to produce forecasts. Linear predictive models (selected upon 
linear socio-epidemiological relationships inferred on weekly data) are used to perform infection case and 
hospitalization forecasts whose predictive power is tested via non-linear predictability indicators (i.e., Transfer 
Entropy, TE, measuring the time-delayed uncertainty reduction between positivity and epidemiological infor-
mation (see Li and  Convertino28 for details of TE as information flow), as discussed in the Material, Methods 
and Implementation section). These indicators are based on probability distribution functions of the variables of 
interest and yet they implicitly consider uncertainty distributions that are also attributable to other unexplained 
uncertainty sources. In this broad framework, properly calibrated positivity fluctuations are good sentinels of 
relative hospitalization risks—and yet good predictors—as much as heat index fluctuations are good sentinels 
of extreme temperature  hospitalization29, to mention an analogous public health effort focused on detecting 
optimal indicators for risk communication.

The paper presents the workflow in Fig. 1 and implementation of InTo by using the case study of New Delhi 
and Mumbai to demonstrate its applicability and utility for COVID-19 and in general for any disease. Part of 
the demonstration includes results of validation exercises conducted to evaluate the developed models. We then 
discuss limitations of InTo, especially in terms of data availability, representativeness and model complexity. We 
conclude by outlining future work for InTo.

Case study results
Here we present InTo as an infoveillance system for the case of New Delhi and Mumbai during the COVID-19 
pandemic between April and July 2020. New Delhi is chosen as the prototypical city to display because of its 
highly coupled social and epidemiological dynamics as empirically found from data (see Figs. 2, 3, 4, 5, 6). We 
included Mumbai to explore the external validity of our system when applied to a different city (see Supp. Figs. 1-
4). In InTo, once the user selects their city of interest, results of analyses are displayed as a series of visualizations 
divided into four main sections corresponding to tabs of the dashboard: Healthcare Pressure, Emotions and 
Misinformation, Predictability and Tweet Spread (Figs. 2, 3, 4, 5, 6).

Healthcare pressure. The layout and meaning of the Healthcare Pressure tab is displayed in Figs. 2 and 
3, respectively. In Fig. 8 we present the results of using positivity from all tweets to forecast daily new hospi-
talization and daily new cases. Spatial forecasts related to misinformation are not shown spatially. The numbers 
displayed on the top of the dashboard refer to expected new hospitalization and hospitalization change from 
ARIMA (Eq. 5.3) for the entire city. Figure 3 illustrates, for New Delhi, how healthcare pressure HPi can be 
interpreted as spatial gradients of hospitalization (meaningful of potential mobility gradients of people in need 
of hospitalization mediated by the presence of healthcare facilities), which is calculated as the difference between 
locally expected hospitalization and average hospitalization (E.q. 5.8). HPi is visualized in a green-red color shade 
(where red is for the highest HPi ) for M randomly generated points (10,000) over the city which are interpolated 
using the geokriging model (Eqs. 5.4–5.7) using the semivariogram of positivity. Positivity fluctuates around the 
same city-specific mean, while cumulative hospitalization grows exponentially over the course of the epidemic. 
Theoretical Gaussian and exponential variograms were the best fit for positivity and for cumulative hospitaliza-
tion, as expected considering their time dynamics (left plots in the dashboard in Fig. 2). The area encompassed 
by each point is in the range 0.5–1.0 km2 , depending on the spacing between points; thus, our forecasts provide a 
high spatial resolution compared to other surveillance systems. The total number of hospitalizations in a selected 
area can be calculate as sum of new hospitalizations for all the points in that area. Figure S1 shows healthcare 
pressure for Mumbai.

For example, the user is shown that in New Delhi between April 15 and July 30 public positivity cap-
tured from COVID-19 related tweets ranged between 5.6 and 6.0 with a slight downtrend from 5.85 at 
the beginning of the period to 5.73 at the end. Meanwhile, there was a trend reversal in new cases and the 
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Figure 1.  Conceptual and computational workflow of InTo. The process begins with downloading both 
social media content and epidemiological data. Social media data is then disaggregated into content related to 
healthcare and misinformation, with the aggregated content retained for analysis as well. As for epidemiological 
data, the dashboard makes use of hospitalization and cases data for the disease considered. The next process 
is the extraction of features from social media content: for each subset, bi-grams, count information and 
sentiments are quantified. Metrics quantifying the relationships between sentiment and epidemiological data 
are then calculated. Once the linear regression coefficients are estimated (considering the linearity found at 
the weekly scale between positivity and hospitalization as well as cases; however further non-linear models 
can be used), these are used to forecast the spatial and temporal variation of healthcare pressure, which is then 
visualized for users on the dashboard. To illustrate the process and output of InTo we examine the case of New 
Delhi and Mumbai in India.
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cumulative hospitalization, with new hospitalizations showing an increase in the magnitude of fluctuations closer 
to the end of the period. Positivity was at its lowest in June when cumulative hospitalizations was at its highest 
but positivity was highest in July when hospitalization began to increase again. By using the linear relationship 
between hospitalization and positivity (see ARIMA model at Eq. 5.3), on July 30th we predicted the next week’s 
hospitalization to decrease by 381 hospitalizations (i.e. new hospitalizations displayed in the left plot of the 
dashboard), and cases to increase by 549. Cumulative hospitalization and cases were about 20,000 and 1500 on 
July 30th (left plots in the dashboard). Considering the spatial distribution of positivity and hospitalization in the 
two weeks before forecasting, via geostatistical kriging we forecasted two large clusters of hospitalization in the 
North-West and South-East and a smaller cluster in the center of New Delhi. In the high healthcare pressure areas 
colored in red, we estimated that there would be almost 200 new individuals in need of hospitalization (see color 
bar in the dashboard screen). The 200 newly predicted hospitalizations displayed in the dashboard constitute the 
peaks above the average (or the maximum healthcare pressure) in the entire city. The average is ∼ 12 according 
to the geokriging, and that corresponds to the ARIMA average shown on the top of the dashboard (see Fig. 2). 
The average new hospitalizations matches matches very closely the observed hospitalizations from surveillance 
(i.e. 11). Note that ∼200 hospitalizations are for few areas in the city and these extreme values are well above the 
average value for the period considered. For New Delhi, considering these results for the week displayed, hos-
pital managers may wish to focus their attention to the North-West and South-East areas of New Delhi (lacking 
healthcare capacity as displayed by the geolocated and visualized hospitals in Fig. 2) where individuals in need of 
hospitalizations are potentially looking for treatment in other areas, and thus establishing hospitalization fluxes.

In Mumbai (Fig. S1), between mid-April and early-August 2020, tweet positivity from COVID-19 related 
tweets ranged between 5.6 and 6.1, but trended downwards over the period from 5.9 at the beginning to the 5.8 
by the end. This downtrend occurred as new hospitalizations and cumulative cases increased, with large fluctua-
tions in positivity coinciding with large fluctuations in new hospitalizations. Positivity was at its lowest in August 
when cumulative cases was at its highest, and new hospitalizations ended a downtrend and restarted increasing. 
We forecasted an increase of 140 new hospitalizations and over 2000 new cases for the week following August 
8. At that time, cumulative hospitalizations and cases were 500 and 30,000 respectively. The spatial forecasts 
identified three clusters of cases hospitalizations located in the South, North, and East of Mumbai, with as many 
as 400 new individuals potentially in need of hospitalization. The cluster to the North appeared to have many 
more facilities to deal with the coming need than the cluster in the South and East (hospitals are indicated by a 
red H retrieved from a Google Map search of “hospital”). Consequently, managers could focus more resources 
to the north and east to maintain service levels.

Emotions, top words, and misinformation. In the Emotions and Misinformation tab (Fig. 4), emo-
tions—from emotion inference algorithms (see Sect. 5.3)—are extracted from the systemic information (all the 
tweets), misinformation-related tweets, and healthcare-specific tweets throughout the epidemic. Tweets for each 
category are reported on the right of the tab and some of these tweets can be directly reported to InTo as mis-
information by social media (Twitter) users. Below we report results that can be inferred by using InTo, such as 
specific events, word pairs, users and associated emotions for New Delhi and Mumbai. These emotional catego-
ries were not included in the forecasting process, but assist users with interpreting high or low positivity scores.

In New Delhi, when considering all tweets, the dominant emotion over time was trust, followed by fear and 
anticipation; joy and sadness were the next most frequent; surprise and disgust were expressed the least. This 
distribution was observed for the subset of tweets related to misinformation as well; however there was one day, 
June 10th, when these tweets expressed more fear than they did trust. Tweet positivity was low on this day (see 
Fig. 2). As for tweets related to healthcare, trust was usually most expressed, but it was not as dominant as in 
the case of all tweets or misinformation. Furthermore, sadness seemed to be expressed much more among these 
tweets, especially in early June. June 10 was the saddest day considering healthcare tweets. On July 22nd, the most 
frequent pairs of words referenced were about “public health advice” and “self-quarantine at home”. A review of 
the raw tweets showed that many of the tweets were actually tweets of news articles made by organizations rather 
than individuals. Such tweets tended to be “neutral” in their positivity (i.e. centered around 5 without an increas-
ing or decreasing trend), with values ranging between 4 and 6. This emphasizes the tendency of organizations, 
versus individuals, in manifesting risk-neutral perception patterns corresponding to average values of positivity.

In Mumbai (Fig. S2), the dominant emotion in the unfiltered set of tweets was trust, following by fear and 
anticipation; surprise was least abundant. A similar pattern was observed for tweets about healthcare, but the 
misinformation tweets appeared to harbor more sadness and fear. The top words in Mumbai referenced govern-
ment advisories for social distancing and testing. Tweets with the lowest positivity were about a suicide believed 
to be associated with the societal stress (isolations, job losses, deaths, etc.) associated with the pandemic. Among 
the healthcare tweets were many messages related to increased testing at the facilities, but that those found posi-
tive were being sent home to quarantine nonetheless. The misinformation tweets largely contained accusations 
or identifications of false claims being spread on Twitter, and other social media platforms like Facebook, as yet 
unfulfilled promises of the government.

Predictability and forecasting. Predictability indices (Sect.  5.5) are reported in the Predictability tab 
(Fig. 5) for both cases and hospitalizations as values over 100; yet, percentage changes are easily quantifiable. 
These metrics aid users in monitoring the accuracy of the model using all tweets and only misinformation-
related tweets, as well as the value of misinformation-related tweets. The risk index in particular will show the 
same trend for the full tweet and misinformation-related datasets because it is based on the same data (the time 
series are reported twice to compare infection and hospitalization trends against systemic information and mis-
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information indices). A model-based risk indicator can be calculated to visualize the risk in terms of predicted 
values rather than data only.

For New Delhi, the risk index confirmed that cases were declining over time, despite momentary increases. 
Between May and June tweet positivity was under-predicting cases but then began to over-predict cases in July. 
Tweet positivity and cases showed a mostly moderately negative correlation (mean corr= −0.24). Although the 
value of the correlation was constant, suggesting a reliable model or stable dynamics, predictability was not stable 
until late June, when the predictability indicator became very small indicating lack of non-linearity, and thus 
implying high reliability in the linear forecasting of cases via the ARIMA model. All results suggest that tweet 
positivity from all downloaded tweets was most meaningful for forecasting the spatio-temporal spread in July, 
with relatively high uncertainty earlier. July has the highest correlation coefficient (in magnitude), lowest gap and 
non-linear predictability, as well as the lowest VoMi (Eq. 5.13). The subset of tweets related to misinformation 
showed a similarly negative though much weaker correlation with cases (mean corr = −0.01). This is concordant 
to the much higher non-linear predictability of misinformation manifesting the decreasing forecasting accuracy 
of ARIMA for this tweet subset. When considering all tweets, the model mostly under-predicted hospitaliza-
tions in New Delhi, with its largest under-prediction occurring in late June after hospitalization became the 
largest in the end of May (bottom left plot of Fig. 5). The largest over-prediction was observed in late July after 
hospitalization risk became very large. Yet, very large spikes in risk seemed to produce very large gaps in pre-
dictions. These large gaps are driven by misinformation as shown by the VoMi assessment that is higher at the 
end of the monitored period. The value of misinformation (Eq. 5.13) showed a gradual uptrend, indicating that 
tweets related to misinformation were decreasing the forecasting accuracy (based on linear correlation) of all 
tweets for cases and hospitalization as time progressed. Tweet positivity was mostly negatively correlated with 
hospitalization but predictability was low, especially for hospitalization.

For Mumbai (Fig. S3), the risk index displayed a decline in cases between the beginning and end of the period, 
while the hospitalization risk remained relatively stable, notwithstanding the decline closer to the end of the 
period. The accuracy of the model when predicting all cases trended upwards as indicated by the uptrend in the 
gap index, which varied around zero, slightly under-predicting cases. The predictability index when forecasting 
hospitalization was stable for the entirety of the series; it trended downwards until July, when it stabilized as well. 
Positivity was negatively correlated with cases (mean corr. ∼ −0.3). Using the positivity from all tweets tended 
to under-predict hospitalizations, despite two periods of relatively large over-predictions in May and July; the 
gap between predicted and observed hospitalizations was mostly close to zero. These large over-predictions 
coincided with spikes in the VoMI index, implicating the misinformation-related tweets as the source of this 
inaccuracy. Tweet positivity showed a slightly negative correlation with hospitalizations (mean corr. ∼ −0.01), 
with a predictability of index very close to zero indicating high linearity between positivity and hospitalizations.

The results from both cities underline the fact that there is more linearity between new hospitalization and 
positivity than cases and positivity, such that the ARIMA forecasts are more reliable for new hospitalization. 
Despite this average result we observe that larger fluctuations in indicators are seen for hospitalization than cases, 
likely underlying the necessity to include other predictors for extreme hospitalization events. Lastly, time series 
of indicators for all tweets and misinformative tweets are quite similar due to the low detection of misinforma-
tion; nonetheless time-point values are different as manifested by VoMi because misinformation, although small, 
exist and impact forecasts.

Tweet spread. The Tweet Spread tab (Fig. 6) shows the volume of tweets and retweets, as well as their posi-
tivity, for the systemic information and misinformation set. Users are also able to identify the most popular tweet 
from the full set and the misinformation-related subset.

There were between 10,000 and 100,000 tweets per week related to COVID-19 in New Delhi. The volume 
of retweets was much lower in comparison, not exceeding 10 retweets, and had positivity values approach 6 
meaning they were more positive than the average neutral value of 5. Additionally, both tweet volume, retweets 
and positivity are slowly decreasing over time which manifest the lower COVID information production and 
decreasing positivity. The number of misinformation-related tweets was the highest in the early days of the 
pandemic descending relatively rapidly as time progressed. The retweet volume was very low compared to the 
full tweet set (the difference is about three orders of magnitude) and most of the popular misinformative tweets 
had low positivity.

From Mumbai (Fig. S4) we observed between 1000 and 100,000 COVID-19 related tweets per weeks, with 
less than 10 retweets per week measuring between 5.7 and 5.9 positivity. The misinformation set contained 
between 10 and 400 tweets per week, with less than 5 retweets per week of positivity 5.0 to 5.4. The number of 
misinformation related tweets was highest in May and mid-June.

The most popular misinformation-related tweets underline the fact that misinformation is not necessarily 
carrying deceiving information but also information about perceived wrong behavior in populations. Thus, 
misinformation can capture more the dichotomy between common and divergent groups in the area analyzed. 
Additionally, the large difference in volume of all tweets ( ∼ 105 ) and misinformative tweets (that are less than 103 , 
two orders of magnitude less than all Tweets) explains why time series dynamics of predictability indicators for 
the systemic information and misinformation predictors (Fig. 5) is very similar but time point values are different.

Model calibration and validation. Results of the model validation over space (for the optimal predictor 
set) are displayed in Fig. 7. Plot A shows the forecast of spatial hospitalization based on geospatial tweet positiv-
ity and city scale hospitalization. Predicted hospitalization based on Tweet positivity suggested there would be 
high hospitalization pressure HP (Eq. 5.8) in areas, such as Narella, Gurugram and Dwarka (SW part of the city), 
which were unaccounted for by the monitoring system just focused on bed occupancy (and yet on models based 
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on that occupancy shown in plot C and D). The highest peak of HP is 160 and the average of healthcare pressure 
over space is very close to the average of hospitalization at the city scale. However, the geographical distribution 
of healthcare pressure is different from the distribution of hospitals because geokriging is extending spatially 
the positivity-hospitalization relationship (that shows an inverse proportionality between these variables) that 
is beyond hospital locations. Nonetheless, tweet locations highly predict hospital locations as binary variables 
(Fig. 7B).

When performing interpolation via geokriging based on hospital-scale data alone (Fig. 7D), high hospitaliza-
tion was predicted in the center of the city, with gradients of hospitalization decreasing outwards. This predicted 
hospitalization reflects ( ∼ 80% ) the distribution of bed occupancy as expected. The predicted hospitalization 
considering hospital-scale occupancy and positivity (Fig. 7C) matches 85% the hospitalization based on hospital 
data only (Fig. 7D). The former is however predicting higher hospitalization in other areas beyond hospital areas, 
and this emphasizes the fact that the model is also predicting healthcare pressure as individuals likely in need 
of hospitalization. Note that the range of hospitalization for predictions of plots C and D in Fig. 7 are the same 
with maximum cumulative hospitalization equal to ∼ 65 for the period 21 July–11 August 2020.

Figure 8 shows the calibration and validation of the ARIMA model which is useful for selecting the optimal 
set of predictors. The results of ARIMA forecasts with different models in terms of predictors are shown for cases, 
cumulative and new hospitalizations for New Delhi. ACF is ARIMA based on epidemiological data only, while all 
other ARIMA models are based on positivity, Tweet volume, Tweet volume and positivity combined. The model 
that minimizes the mean absolute percentage error (MAPE, in insets) is based on positivity only because of its 
highest predictive power for fluctuations in healthcare pressure (cases and hospitalization). However, the model 
with volume and positivity has similar MAPE because of the ability of volume to predict the largest extreme 
variations in hospitalization. MAPE is larger for new hospitalization than cumulative hospitalizations due to the 
larger stochasticity of the former than the latter over time. The departure of forecasted values from observations 
is the gap index in the dashboard (Fig. 5).

The (p, d, q) parameters of the ARIMA model (Sect. 5.4.1) manifesting seasonality, memory and fluctuations 
are on average [0, 1, 1] for all models including ACF, [0, 1, 2] toward the end of the monitored period that high-
lights the increase importance of fluctuations, and [1, 1, 2] for volume and positivity that highlights the higher 
seasonality of tweet volume and ability to capture larger extremes. (p, d, q) parameters increase if misinforma-
tion is used when predicting hospitalization and cases, and this is in synchrony with our findings that evidence 
how non-linear predictability (via TE) increases because of the higher memory due to long-range time-delayed 
effects of misinformation. Average results of social and epidemiological variables for New Delhi and Mumbai 
are in Table 1 considering different city areas and time periods.

Discussion
We have demonstrated the use of InTo to calculate tweet positivity to forecast and predict the spatio-temporal 
spread of COVID-19 healthcare pressure. However, the model can be applied to any disease or public health 
phenomena of interest via properly tuning the forecasting models. In New Delhi we inferred that the population 
was relatively positive in the messaging, expressing mostly trust, despite the high case load and hospitalization. 
This weak negative correlation manifesting risk aversion—due to the expected decrease in positivity for increases 
in hospitalization—was statistically useful for predictability purposes considering both geostatistical kriging and 
ARIMA models that use correlation values (Eqs. 5.3. and 5.7).

We showed that hospitalizations could be expected to concentrate in certain areas of the city, suggesting those 
clusters to be the focus of additional public health surveillance and healthcare resources since new hospitaliza-
tions may occur. We found that misinformation does affect the accuracy of the model and provides another 
illustration of the impact of misinformation: it can impact even our ability to properly forecast healthcare pres-
sure but not necessarily negatively (in terms of reduction of prediction accuracy) throughout the pandemic. This 
impact was found to be positive, yet improving prediction accuracy, at the beginning of the epidemic (despite 
the higher volume of misinformation) and negative at the end of the epidemic likely because the delayed effect 
of misinformation spreading.

Table 1.  Average socio-epidemiological values for the New Delhi and Mumbai. Average weekly values for 
hospitalization H, cases I, tweet volume, retweet and positivity (V, R, and P), as well as Pearson correlation 
between positivity and hospitalization. Average VoMi also provided. The Pearson correlation is proportional 
to the first regression coefficient of the ARIMA forecasting model and the geokriging factor of hospitalization 
predictions. The higher corr (P,H) the higher the potential risk aversion for the city (areas and time periods) 
considered. It is empirically observed that the higher the risk aversion the lower the social (Twitter) generation 
of information and the healthcare pressure defined by combined case and hospitalization magnitude. VoMi 
is expected to be higher for less risk-averting city areas (and time periods) with higher incidence (thus 
misinformation is more predictive of cases and hospitalization) and these areas/time periods should appear 
more local in terms of circulating information.

City H̄t Īt V̄t R̄t P̄t corr(P, H) VoMi

New Delhi 100 1000 10,600 9 5.75 −0.5 0.00

Mumbai 500 1250 10,500 10 5.85 −0.1 0.10
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Figure 8.  Hospitalization and case forecasting for different predictive models. The results of ARIMA forecasts 
with different models in terms of predictors are shown for cases, cumulative and new hospitalization (top to 
bottom) for New Delhi. ACF is ARIMA based on epidemiological data only, while all other ARIMA models are 
based on positivity, Tweet volume, Tweet volume and positivity combined (red, blue, yellow, and green curves). 
Black dots are from observations at the city scale. All curves are at the daily resolution.
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Data uncertainty and model transferability. The success of any infoveillance tools rests also on the 
availability of data. Better quality data can likely support more accurate and more meaningful forecasts. Better 
data refers not only to the representativeness of the data but also to the granularity and compatibility of the data 
as well in relation to what is predicted. In terms of granularity, this could be hospital level rather than state or 
national level hospitalization data for example. We showed in Fig. 7 that the geostatistical kriging model per-
forms much better—in terms of predicted hospitalization—when spatially explicit hospital data are provided, 
particularly when the objective is also to capture reported bed occupancy rather than average expected hospi-
talization at the city scale solely. Compatibility would mean not only using universally accepted terminology, 
but formatting the data in the same way to ease data processing. Certainly a huge discrepancy exist between 
social and epidemiological data (considering spatial and temporal resolutions as well as data volume), and then 
data processing becomes a time consuming process potentially carrying systematic uncertainties. Technology 
exists to translate data which is formatted differently, but it remains important that data stewards communicate 
with epidemiologists, “infodemiologists” and decision makers to determine a usable design. This is particularly 
important in the context of pandemics and emerging infectious diseases although localized.

Our concern is directed more towards epidemiological data rather than social media data, at least in terms 
of predicted patterns, i.e. temporal dynamics of cases and hospitalization. Social media users generate terabytes 
of data and many platforms have policies that allow restricted access to data, especially for academic purposes 
or some other public good purpose. Additionally, social information is country specific, for instance dependent 
on available and popular social media as well as local language, and yet it is much more ”subjective” and with a 
very high degree of uncertainty. Vice versa, despite epidemiological data has proven to be more difficult to collect 
and share, they are more objective data to compare among countries since one case or one hospitalization is one 
incidence unit everywhere. Officials must also decide on what data is important to collect or monitor, as there 
are several epidemiological metrics that are important or valuable for different reasons. For example, whereas a 
hospital manager may find hospitalizations or cases most relevant, a public health official may wish to focus on 
the ratio of deaths to cases. Our tool can be designed to accommodate as many metrics as are deemed relevant, 
although the predictability of these additional metrics would first need to be established (see Sect. 3.3 for more 
on this). Beyond these aspects, we emphasize that it would take effective coordination as hospital managers and 
public health officials collate and share data via application programming interfaces (API) for highest efficiency 
and timeliness in generating results.

The paper methodology is universally applicable to any geographical area of interest at any desired scale 
(e.g. from cities, regions and countries) and independently of administrative boundaries. We point out that the 
mathematical and computational model infer distinct patterns (in the form of case-positivity and hospitalization-
positivity patterns) potentially underpinning social patterns in terms of risk perception and information flow 
that are highly linked to each  other30,31. This is evident considering the case of New Delhi and Mumbai. This 
type of modeling, focused on pattern inference, has been widely adopted in many areas of science, particularly 
when using probabilistic approaches (such as statistical physics and information-theoretic ones; see Li and 
 Convertino28) that are not tight to specific socio-ecological processes but characterizing propagation of prob-
ability distribution functions (or their statistical moments) in order to capture macro-features or mechanisms. 
For instance, see Convertino et al.32 in the context of Leptospirosis to link epidemiological and environmental 
dynamical patterns. Recently, in relation to COVID-19 Chan et al.33 inferred patterns of intervention effective-
ness from incidence curves over time and portfolio sets of other interventions: risk communication was found 
as the most important intervention independently of the media used in spreading risk information as well as 
other country specific social features. This stresses even more the applicability of our model (related to spread 
information) and the findings of macro-risk perception patterns, by keeping in mind that these patterns are 
bounded by the social media used. Certainly, another aspect is related to how much social information is reveal-
ing realistic risk perceptions but that is another issue related to representativeness of social information that 
requires further investigations.

Population representativeness of socio‑epidemiological data. An issue connected with data avail-
ability is the matter of representation, that is, the extent to which the data include enough heterogeneity to 
reflect the complexity of the population for which the data set is assembled. This is particularly relevant to social 
media data such as Twitter data. The demographics of users can differ significantly by biology, socio-cultural and 
economic class, location and the availability of technological  infrastructure34,35,36,37 so individual/community 
experiences and perspectives can differ from the wider  population38. Even the choice of language might limit 
the representativeness of data used in the model: InTo currently uses English, which is spoken in India, but not 
by a majority. One also has to consider the inclusivity of the search term. Our use of ’OR’ instead of ’AND’ made 
our search more inclusive rather than restrictive thereby increasing the potential volume of tweets returned. 
Other choices would have certainly provided other predictability indices; and then one of the future improve-
ments would be extracting the set of constraining hashtags that maximize predictions overall among all possible 
choices of hashtags. However, this choice would require a much higher computational cost and, in addition, fit-
ting data the closest (versus providing the full range of feasible predictions in a Maximum Entropy perspective) 
is not always the optimal choice due to the presence of systematic uncertainty in data. Therefore, our current 
InTo version is not necessarily bounding the model-data gap considering all feasible factors (from language 
to hashtags), nor a fully causal investigation, but a model defining the simplest and most informative inputs 
and outputs to represent dynamics of population patterns. Further work will define more clearly importance of 
underlying factors and the absolutely optimal model form.

Tweets in a city contain information of spatially separated events about the same process; thus spatial spread 
of COVID and top tweeted pairs can be calculated over geolocated Tweets. Posting time and content (related to 
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volume and positivity) is very weakly dependent on the social media platform. Additionally, social media users 
tend to interact outside of their usual social networks or real-world socio-economic class much more on these 
 platforms36, creating opportunities for groups absent from these platforms to be heard in a latent way. Further-
more, tweets report information that may not be reported by official media and/or that may circulate in real life 
events (e.g. just spoken information). This is also the reason for which InTo can be used by users as a reporting 
information/misinformation tool via registering their Twitter account. We suggest this “Digital Health” feature 
particularly relevant for healthcare workers.

Twitter penetration can differ between and within countries, but tweets still show high relevance for predict-
ing spatio-temporal patterns of infections and hospitalization. Additionally, emotional affects are highly linked 
to local non-Twitter media and languages, as we see high volumetric correlation with local newspapers articles 
and retweets of English tweets in local languages. Certainly, demographic and other features of the tweeting 
population are relevant for how the virus spread but not the whole complexity is needed for forecasting purposes 
in the short and long term. Nonetheless, this version of InTo is a proof of concept version and will likely inves-
tigate and include other social media platforms, languages, information features, visualization options, diseases 
and socio-environmental phenomena in future versions for investigating processes and practical applications.

The model is certainly sensitive to the choice of the social media considered and that is also a country-specific 
factor. Thus, in principle, one should use the most popular social media in the country analyzed in order to 
gather the highest resolution social information to characterize risk perception patterns. However, in terms of 
predictions, predictive accuracy is not necessarily related to the most popular social media because even a smaller 
volume of information can maximize prediction accuracy. A distinction should be made between predictive 
patterns versus patterns reflecting real processes. For instance, for the country analyzed (India) the predictive 
accuracy is relatively high ( ∼60% of hospitalizations). As for realistic risk perception patterns it makes sense 
to discuss about how much one social media is representative of the whole population rather than what is pro-
portion of users in one social media, since volume of users does not necessarily correlate with representativity. 
For instance, Twitter users may report the vast majority of events occurring in a population, considering also 
retweets of local newspapers in local languages. Just for statistical information we report that Twitter (during the 
study period, i.e., April–July 2020) is used by 6 % of the population in India (source https:// gs. statc ounter. com/ 
social- media- stats/ all/ India). It should be noted that these penetration rates are relative to each country’s total 
population; in a global perspective India is the 3rd largest countries in terms of Twitter users (https:// www. stati 
sta. com/ stati stics/ 242606/ number- of- active- twitt er- users- in- selec ted- count ries/). Further studies are however 
necessary to understand the variability and representativeness of positivity across social media and its relationship 
with usage also for certain social demographies. An important information non-linearity that should be consid-
ered when establishing effective representativeness is also: (i) the interdependence of Twitter with other social 
media (where Tweets carry information of these media; e.g. in India Tweets can be found or relate to Facebook, 
WhatsApp, Instagram, YouTube, Snapchat, Twitter, LinkedIn, and Quora information that are the other social 
media in terms of usage); and (ii) geographical dependencies related to users in a country that are connected to 
many other countries’ users, and yet strongly influenced by other countries’ social media production.

Predictive causality versus forecasting, and non‑linearity. Even when considering the issues of data 
availability and representativeness, the advantage of InTo is that it focuses on patterns rather than causation. InTo 
does not purport to have found nor to be exploiting a causal relationship between tweet positivity and healthcare 
pressure. Rather, it exploits spatio-temporal patterns and correlations that might not be physically significant 
(although arguable in an information dynamic sense), but that are nonetheless practically useful probabilisti-
cally. The relationship between sentiments and behaviors are quite complex, and there are many other variables 
in the complex reality of phenomena considered that are however not all needed when forecasting population 
outcomes. There are population factors such as sex, socio-economic status, proximity to affordable healthcare 
facilities and the availability of insurance or some other means of paying that certainly impact real processes of 
individuals. There may even be socio-political realities at play that force individual behavior. However, the key 
goal of InTo—in a complex system science purview—is the prediction of population patterns considering the 
most essential predictors without making any assumption on the underlying processes. Complicating the model 
comes at a cost, not just in the acquisition of data—because such data may not be available or costly to acquire—
but also in the applicability of the resultant model that would be highly sensitive, extremely hard to calibrate and 
full of unchartable uncertainties. A model that enables reliable forecasts with a reasonable level of accuracy given 
a variety of scenarios should be the aim of any information system model.

In InTo a forecast refers to the estimation of future outcomes (in short term) which uses data from previous 
outcomes, combined with recent or future trends. Forecasts like those from the application of ARIMA models 
imply time series and future point estimates, while predictions do not. A prediction is based on probabilistic 
patterns (e.g. probability distributions, trends, and total uncertainty reductions) and yet of “possible outcomes” 
in the long-term. This is the case of geokriging and the pattern that can be obtained by using the predictability 
indicator (Eq. 5.12). Forecasting does not imply predictability nor the contrary, but in principle, optimized fore-
casting implies strong predictability for the whole time period considered. Vice versa, predictability of patterns 
does not guarantee the ability to have highly accurate time point estimates. InTo is providing both in order to 
support public health in almost real-time decision making and long term sensitivity of social surveillance for 
epidemiological outcomes.

The accuracy of this system must be monitored if it is to be trusted to inform meaningful public health 
measures. Although the general form of the model as described in Eqs. 5.3–5.8 remains the same, additional 
parameters, such as p, d, and q for the ARIMA model, were allowed to vary. Also, as the entire history of data 
is used for forecasting, an ever-increasing data set is available for training which provides more from which to 

https://gs.statcounter.com/social-media-stats/all/India
https://gs.statcounter.com/social-media-stats/all/India
https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
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learn. For example, our system applies the ARIMA model in an evolutionary way rather than as a static model: 
as new data is added, the ARIMA model is recalibrated considering the extended data. This reduces (yet does not 
eliminate) concerns like overfitting, which would be more problematic if we used an unchanging model imputed 
from an immutable training set. Furthermore, our model does not attempt to make forecasts for values too far 
out-of-sample: we make predictions for a single week ahead as longer horizons typically reduces the accuracy 
of models. Notwithstanding this, our inclusion of the Gap Index in the Predictability tab provides sufficient 
caution to the user: as the Gap index increases, users are alerted to potential issues with the model as designed.

Social stress certainly impacts epidemiological dynamics (as widely reported, e.g.  see39 and Campo-Arias and 
De  Mendieta40) but this aspect was not analyzed in our research. Social stress can be considered as a population-
level factor inducing changes of positivity and social media production over time after prolonged hazard exposure 
(in this case the COVID-19 epidemic and controls). Yet, social-stress, likely measurable by consistent decrease 
in positivity, may lead to non-linearity such as time-delayed changes in hospitalization. In Kastalskiy et al.24 a 
model for the COVID-19 epidemic was proposed by combining the dynamics of social stress (as sociophysical 
phenomenon in the form of alarm-ignorance-resistance-exhaustion dynamics reflecting populations’ adapta-
tion syndrome) with a classical susceptible-infected-recovered “SIR” epidemic model, where the susceptibles 
are split into three social-stress groups. This integrated model described with high accuracy the available epide-
miological data for 13 countries and highlighted the country-dependent non-linear dynamics (driven by social 
vs. biological dynamics of the virus) for the whole period considering overall temporal trends and distribution. 
However, we emphasize that non-linear dynamics of processes does not imply non-linear patterns and patterns 
are scale-dependent. For instance, in our study at the weekly scale we do not observe non-linearity in the socio-
epidemiological relationships (fitted by the ARIMA model), despite real processes are obviously non-linear, but 
these relationships and their probability distributions over longer time-scales than a week are non-linear and 
non-normal, respectively. Thus, a critical distinction should always be made between patterns and processes and 
models are tendentially always pattern-oriented tools even when discretize analytically some selected mecha-
nisms under hypothesized  assumptions41,42.

Value of misinformation. Identifying misinformation is a chief concern in infodemiology via infoveil-
lance, not to mention in other areas of society like sociology and politics. Methods that use the probabilistic 
and lexical features of text in order to determine whether they represent  misinformation43 abound. These meth-
ods depend on datasets that contain messages which have already been labelled misinformation by experts a 
priori. Keyword-based strategies, as we employed, are  problematic44 so it would be more accurate to describe 
our results as the value of the topic “misinformation” rather the value of specific misinforming messages. This 
notwithstanding, we recommend validating the outcome of any keyword to ensure that the value of the proper 
messages are being evaluated (e.g. truly misinforming messages rather than accusations misinformation). The 
set of misinforming messages considered by InTo includes tweets already directly labelled as or questioned to 
be misinformation by users, having most likely already gone through a vetting process. The advantage of this 
approach is the use of a human- and crowd-based classification which overcomes the challenges of assumption-
driven lexical analysis by model. Interestingly, a posteriori we confirmed (via reviewing Tweets one by one and 
considering their incorrect or false information) that the vast majority ( ∼ 95% ) of misinformative tweets are 
truly misinformation and this misinformation set showed much larger dissimilarity—in terms of word diversity, 
volume divergence and asynchronicity—with respect to cases and hospitalization than the full tweet set. This 
emphasizes how dynamical properties of information are essential in categorizing different types of information, 
as well as how crowd-based self-reporting is relevant. In the literature there are still some debates about this topic 
but those seem platform dependent. For example, Jiang, S. and Wilson, C.45 suggested that user comments do 
not provide sufficient predictive power when attempting to classify misinformation, but a recent study (see Ser-
rano et al.46) successfully utilized user comments on YouTube videos instead of parsing these videos to classify 
misinformation with high accuracy. Nonetheless, our attempt at measuring the value of these messages exempli-
fies another useful and customizable feature of our system. For example, a user may be interested in the value of 
other topics, such as vaccines. Future versions of this system can enable users to measure the value of any topic or 
a set of topics that accompany their disease of interest. Further research may detect keywords in an autonomous 
in term of their salience for the investigated topic and/or for increasing prediction accuracy.

Our results found that misinformation-related tweets provided at times more time-point accurate forecasts of 
healthcare pressure than forecasts based on all tweets. We observe that misinformation positivity shifts the fore-
cast error based on all tweets to higher positive values (implying positive VoMi); yet, misinformation is slightly 
contributing to overprediction but considering its magnitude this overprediction is positive in consideration 
of surveillance underreporting and other systematic errors. This is not to say that misinformation is good in an 
absolute sense; in fact, it remains important that accurate facts are disseminated to people as the consequence 
of acting on incorrect information could imply wrong behavior leading to higher cases and hospitalization. 
Rather these findings show that misinformation—in its positivity rather than volume or messages—is useful for 
forecasting. This is related to the use of positivity as a novel aspect in characterizing social media content and to 
the fact that positivity fluctuations of quickly generated misinformation tend to have long-term consequences 
on the predictability of the unfolding epidemic (misinformation that of course can have impact on the social 
behavior of populations). This is manifested for instance by a higher predictability indicator of misinformation 
(Fig. 5) as well as the higher (p, d, q) parameters of the ARIMA model (Sect. 5.4.1). Additionally, the full tweet 
information may contain too much “entropy” of messages that do not quite reflect people sentiments about the 
epidemic despite not being misinformation. Thus, public health organization could use positivity embedded in 
misinformation to protect the public, and then seek to eradicate.
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Social value of InTo. The most immediate value to society of InTo is through appropriate social media sig-
nal monitoring and by complementing traditional epidemiological surveillance which allows optimal healthcare 
planning during public health crises. As a novel and innovative infoveillance cyberinfrastructure (because avail-
able online and systematized in its function), apart from monitoring the spread of social chatter, InTo enables the 
public health system to properly plan for inevitable fluxes of people in need of care.

Public health officials and healthcare institutions need a way to cost-effectively determine whether they are 
able to meet the impending healthcare demands via considering both information and disease epidemics that 
we showed to be non-trivially and strongly coupled. Additionally, InTo enables public health officials to evaluate 
customer satisfaction of the healthcare system during the epidemic/pandemic. This is performed by evaluating 
sentiments of words related to healthcare in terms of emotions, positivity and specific content of social chatter. 
Content that can point out specific hospitals, physicians and treatments, as well as users. Thus, individuals are 
able to review what the general public posts as problems on social media about the local healthcare infrastruc-
ture and global issues. Also, information about which institutions are operating beyond their capacity, and what 
particular department may be operating poorly or successfully is available. Yet, InTo responds the need of pre-
dictive, personalized and precise health in an unprecedented way by both capturing information-driven salient 
population patterns and individual needs.

By monitoring public expressions, InTo provides some insights into emotional affects of the population in 
response to disease spread. This can also illuminate the importance of psychological states in response to these 
crises, which may be precursors to post traumatic stress disorders (PTSD). Other  studies47,48 showed how word 
choices reflect mental health states in long term and these may be predicted by performing a systemic functional 
network analysis of the tweet text extracted by InTo. This would also further link latent social and epidemiologi-
cal outcomes explicitly.

Finally, InTo enables to monitor the spread of misinformation during public health and social crises, as 
well as evaluate the impact of any intervention, in the form of risk communication, they enact. InTo provides 
volumetric measures of misinformation generation on social media over time and geographical domain, as well 
as quantifies how misinformation affects forecasts of case and hospitalization (i.e. VoMI) that potentially relate 
to real-world misbehavior dependent on circulating misinformation. Therefore, the performance of interven-
tions against misinformation can be measured by the volume of misinformation that is reduced as well as by the 
uncertainty reduction in forecasts. In this sense, InTo provides an extra evaluation of the surveillance system by 
considering misinformation as extra uncertainty or uncertainty reduction, depending on its negative or posi-
tive impact, on prediction accuracy. Comparison of multiple information sources and model predictions across 
multiple criteria over time time, is a rigorous and efficient way to evaluate surveillance systems and likely detect 
the most reliable source of  data20.

Conclusions
Infodemic Tomography (InTo) is proposed as a cybertechnology to monitor and visualize the spatio-temporal 
co-causal variability of social media positivity and healthcare pressure (as cases, hospitalization and misinfor-
mation separately) during epidemics and public health crises. The most salient points to mention about InTo 
are listed below.

• A clear linkage between epidemiological and information dynamics (in terms of positivity) is detected via 
linear and non-linear patterns, inferred through via linear regression and transfer entropy models, respec-
tively—that are potentially revealing risk perception and information randomness in populations. These pat-
terns are useful for predictions of epidemic dynamics, complementing traditional surveillance, and analyses 
of social media dynamics (generation, absorption, spreading, diversity and positivity) that have the potential 
to design risk communication strategies which aim to enhance or correct information shared in the target 
populations. Combined socio-epidemiological patterns can reveal risk perception patterns. For instance, 
Mumbai and New Delhi are shown to have the lowest and highest potential risk aversion considering the 
average positivity-hospitalization correlation (that is negative in sign, where, vice versa, a positive correlation 
would have implied risk seeking behavior).

• Location of tweets is deemed relevant to predict hospitalization where it is officially reported (interestingly, 
∼60% of predictions of hospitalizations coincide with the reported total bed occupancy (in the test cities of 
New Delhi and Mumbai) and in locations where people are potentially in need of hospitalization. Yet, geo-
spatial tweets (and associated positivity) are convenient transfer functions of epidemiological information to 
small space-time scales and inform about potential fluxes of healthcare demand that are useful for dynamic 
healthcare management. Forecasts of cases and hospitalization are provided at very high resolution ( ∼ m2 ) 
one week in advance by using a linearized ARIMA model. Risk and gap indicators are provided to measure 
the trend and model-gap difference of the epidemic weekly. A predictability indicator (normalized transfer 
entropy TE over the maximum TE across time) is developed to monitor the uncertainty reduction of Twitter 
positivity for epidemiological dynamics, thus to test the non-linear predictive causality in contrast to the 
linear forecasting of the ARIMA model. The lower TE the higher the forecasting accuracy due to the low 
non-linearity between positivity and cases.

• Misinformation is extracted by directly mining population-reported misinformation (via misinformation-
related hashtags) and can be tested a posteriori via manual classification with public health officers coopera-
tion and automated model-driven testing of dissimilarity (divergence, asynchronicity and diversity) from 
the systemic COVID-19 information over time. The Value of Misinformation (VoMi) is introduced as the 
impact on forecast accuracy calculated as the difference of gap indices (potentially negative over time) for the 
systemic and misinformation datasets. VoMi trends are city-specific and negative if they are increasing over 
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time because they imply high impact of misinformation on short-term forecasting. VoMi is typically low or 
negative because it is highly non-linear, and yet not very informative for forecasting sudden events; however, 
it carries higher predictability (as uncertainty reduction) for delayed long-term extremes and probabilistic 
patterns as shown by high values of transfer entropy.

In conclusion, InTo encapsulates the future of public health management with the the fusion of multiple surveil-
lance streams: from traditional epidemiological and healthcare data to model-inferred social sentiment data. 
As technology develops and the public creates and consumes information via internet, epidemiology will need 
to consider the spread of social information not only as a problematic element but as a solution for disease 
tracking and optimal risk communication. For instance, ad-hoc social messages by authorities can counteract 
misinformation that is sensed online, as well as social media inferred cases (or model predicted) can comple-
ment traditional public health surveillance. InTo shows that sentiments from digital messages can forecast the 
incidence and spread of healthcare pressure for areas besieged by a public health crisis. In terms of forecast, it 
is near-real time, accurate, reasonably inexpensive and easy to use in a computational sense. Infoveillance tools 
like InTo can only get better with higher quality data from traditional surveillance systems on which validation 
should be performed, but more importantly with the collaboration between developers and stakeholders to 
effectively create solutions that are useful for effective decision and policy making. Future work will potentially 
entail expanding social media platforms and diseases to be monitored. Other validation experiments to improve 
InTo accuracy and utility are needed in data-rich areas. Via collaborations with public health officers, stakehold-
ers and volunteers with interests in social computing we will seek for releasing InTo as a globally implemented 
cyberinfrastructure for public health research and practice.

Material, methods and implementation
Twitter data mining and preprocessing. Data collection occurred weekly beginning in April 2020. 
Only English language tweets within a geographical bounding box (reflecting the target geographical area of the 
city considered) were retrieved from Twitter using the rtweet  package49. The choice of English was dictated 
by the lack of robust computational tools usable for other language translations (also considering the big-data 
size of tweets) and the complexity of the languages for the country considered (i.e., Hindi and Marathi for New 
Delhi and Mumbai, respectively); the latter would make the uncertainty in positivity scoring of words very high.

Search terms are hashtags that were identified given their rank on a list of the most popular Twitter terms on 
a daily and weekly scale (the search was done by comparing https:// getda ytren ds. com/ and https:// trend s24. in/). 
Our search query for the COVID systemic information was constrained to the hashtags “covid OR coronavirus 
OR quarantine OR stay home OR hospital OR covid OR covid19 OR covid-19 OR coronavirus OR quarantine 
OR stayhome OR hospital”. Thus, we downloaded close to 30,000 tweets daily between April 15 and July 30, 2020 
for New Delhi (defined as “National Capital Territory of Delhi” by Twitter in the box 28◦41′25.9′′N , 76◦83′80.7′′E 
to 28◦88′13.4′′N , 77◦34′84.6′′E ). We identified the misinformation dataset by extracting a subset of our down-
loaded tweets that contained the terms “misinformation”’, “false”, “fake” or “lie”, directly reported by people in 
their tweets. These were tweets in which a user either identified information or other messages as misinforma-
tion or questioned whether that message or information was misinformation. We also identified tweets related 
to healthcare information by extracting those tweets containing the key terms “hospital” or “test”. To preprocess 
these data we removed punctuation marks and uniform resource locators (urls) using the tidytext  package50, 
and we replaced abbreviations, symbols, contractions, ordinals and numbers with the words they represent using 
the qdap  package51. tidytext was also used to unnest the unigrams (single words) and bigrams (sequen-
tial word pairs) from each tweet. Lastly, word stemming was conducted using the wordStem function of the 
SnowballC package (https:// cran.r- proje ct. org/ web/ packa ges/ Snowb allC/ Snowb allC. pdf) for being able to score 
affine words in terms of positivity rather than disregarding these words.

Epidemiological data mining and preprocessing. At the time of our study, epidemiological data was 
not available for New Delhi specifically (i.e. the case study shown in this paper) nor for local hospitals within 
the analyzed domain, but rather for the state of Delhi, i.e. the National Capital Region (NCR). The  dataset52 
contained both crowd-sourced and official data from the Ministry of Health and Family Welfare. It included the 
number of cases and cured, discharged or migrated individuals in the state since March 15, 2020 when India 
registered its first case. For these motivations we calculated the new daily cases �I = I(t)− I(t − 1) where I 
stands for cases, and new hospitalization as �H = H(t)−H(t − 1) where hospitalization H(t) = I(t)− R(t) 
are cases minus the number of patients cured, discharged or migrated. Later we located hospital level data from 
information reported by the New Delhi from the Ministry of Health and Family Welfare (https:// coron abeds. 
janta samvad. org) which indicated the daily number of hospital beds occupied within a geo-located area. The 
vast majority of these hospitals resulted to be private hospitals. We conducted validation of our spatio-temporal 
forecasting model by comparing city-scale calculated hospitalization versus hospital-scale data for the same city. 
As for Mumbai, the situation was analogous to New Delhi; data of cases and hospitalization was only available at 
the state scale, i.e. Maharashtra. Thus, cases and hospitalization of Mumbai was calculated as ∼ 50% of the whole 
state as evidence supported.

Sentiment quantification. Sentiment analyses performed for InTo involved quantifying both categori-
cal emotions and positivity of each text corpus given unigrams (words) within extracted tweets. The labtMT 
 lexicon1, accessed via the qdap package, was used to measure the positivity and the nrc  lexicon53, accessed via 
the tidytext package, was used to evaluate emotional affects (or categories) in a tweet. The continuous (real 
number) positivity of a tweet (P) was quantified as:

https://getdaytrends.com/
https://trends24.in/
https://cran.r-project.org/web/packages/SnowballC/SnowballC.pdf
https://coronabeds.jantasamvad.org
https://coronabeds.jantasamvad.org
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where pavg (wi) is the positivity value of each word (wi) as indicated in the labMT lexicon, and fi is the frequency 
of each word. The daily positivity ( P̄t ), given Nt number of tweets on day t is calculated by

where j is indicating all tweets in the day considered. The emotion of a tweet was considered to be the distribution 
of the affect categories (for example, anger, surprise, joy, etc.) associated with each word of a tweet. We noted 
the affect categories associated with each unigram and then counted the number of times each affect category 
appeared in a tweet and in a day. Weekly calculations of positivity and emotion categories are calculated consid-
ering average value of sentiments at the weekly scale.

Forecasting. ARIMA temporal forecasting. InTo perform weekly temporal forecasts of new cases and hos-
pitalizations as a function of tweet positivity and historical epidemiological events. A two-step non-seasonal 
ARIMA(p, d, q) model is used for temporal forecasting where parameters p, d, and q are non-negative integers; 
p is the order (number of time lags) of the autoregressive model considering long term trends (e.g. seasonality), 
d is the degree of differencing (the number of times data are subtracted to past values) that considers memory 
for non-seasonal events, and q is the order of the moving-average model for errors establishing their temporal 
impact. The ARIMA model was selected due to the validated linear patterns between positivity and hospitaliza-
tion as well as positivity and cases at the weekly scale. Because (p, d, q) parameters and coefficients are updated 
weekly in order to optimize forecasts, the model can be considered dynamically ”non-linear” in the parameter 
space despite its linear formulation. Temporal forecasts were calculated using a non-seasonal ARIMA model as 
implemented in the fable  package54. The two-step forecast is done because first positivity is forecasted for the 
week following the one considered and after cases and hospitalization are forecasted based on future positivity. 
The analytic form of the ARIMA model is written for y = �H as new hospitalization that is the primary target 
of InTo; however, y can generally be positivity or cases based on the selected predictand. Thus, hospitalization 
is forecasted as:

where �H is differenced to an order of d (not that d is an index and not a power exponent), β0 is a constant, β1 
is the regression coefficient for average positivity P̄t , φ1ydt−1 + · · · + φpy

d
t=p is an autoregessive model of order 

p and θ1εt−1 + · · · + θqεt−q + εt is a moving average model of order q. The error terms εt of �H are assumed 
to be independent and identically distributed sampled from a normal distribution with zero mean. Thus, εt is 
a white noise factor.

Default settings of the ARIMA function in the fable package was selected as it automatically determines 
the values of p, d and q that minimize the Akaike Information Criterion (AIC). We retrained our model weekly, 
using the entire history of positivity and epidemiological data to date. We utilize an ex-post forecasting approach 
where we first project the next week’s values of positivity by applying the ARIMA model to tweet positivity. 
The ARIMA model is of a similar form to Eq. 5.3, except that positivity is the outcome value and the β1P̄t term 
is excluded. Following this we used the ARIMA model to forecast cases and hospitalizations considering the 
ARIMA linearized relationship between the history of epidemiological factors and tweet positivity and the 
projected values of positivity. Equivalently, without altering the ARIMA structural form in Eq. 5.3, we predicted 
new hospitalization considering different predictands, i.e. tweet volume, volume and positivity, or hospitalization 
only to select the optimal model with the highest prediction accuracy.

We conducted a validation exercise to evaluate the performance of this modeling approach (see Fig. 8). 
We split the data into a training and test set such that the training set included a week of data and the test set 
contained the same data as the training set and an additional week of data that did not appear in the training 
set. Four models were then trained on the training set using different predictors: using the epidemiological data 
alone to forecast itself (ACF); using positivity to forecast epidemiological data; using tweet volume to forecast 
epidemiological data; and using positivity and tweet volume to forecast epidemiological data. The models were 
then used on the test set and the results were compared to the observed data. This process was repeated with 
the training set and test sets being increased by one week until the entire data set was used. The mean absolute 
percentage error (MAPE) of each model was computed to quantify the accuracy of the model: the lower the 
MAPE, the more accurate the model.

Geostatistical forecasting. We predicted the spatial spread of healthcare pressure with geostatistical kriging con-
sidering the inferred linear relationship between positivity and cumulative hospitalization at the city scale. This 
relationship is linked to the β1 exponent in the ARIMA model of Eq. 5.3 and is updated every week. A similar 
modeling was performed in the past by Berke, O.55. Geostatistical kriging was performed using the automap 
 package56, and the results were visualised as a heatmap overlaying satellite imagery obtained from Google Maps 
using the ggmap package version 3.0.057 . We restricted data to the most recent two weeks of tweets and cumu-
lative hospitalization to ensure that there was enough geo-spatial tweet data salient to predict the last observed 
hospitalization. This was also supported by the limited “memory” of positivity for hospitalization, reflected by 
low values of the ARIMA parameters p and d. As with the double step prediction of ARIMA, first we extrapolate 

(5.1)P =

N∑

i=1

pavg (wi) ·
fi

∑N
j=1 fi

(5.2)P̄t =

∑Nt
j=1 Pj

Nt

(5.3)�Hd
t = β0 + β1P̄t + φ1�Hd

t−1 + · · · + φp�Hd
t=p + θ1εt−1 + · · · + θqεt−q + εt
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positivity over the whole geographical domain and after we perform a second geokriging to predict new hospi-
talization based on the positivity-hospitalization relationship. Given the limited volume of geo-located tweets, 
we used ordinary geo-statistical kriging because average is likely  constant58 (as in our case) to interpolate positiv-
ity using the semi-variogram:

where �i(Pj) is a kriging weighting factor for the know value of the variable P at a sampled location i and j  = i . 
A function is a semivariogram only if it is a conditionally negative definite function, i.e. for all weights �1, ..., �M 
subject to 

∑M
i=1 �i(Pj) = 0 and locations i, ..., M it holds: 

∑M
i,j=1 �i γP(i, j) �j . This establishes the connection 

between predictions of Eq. 5.5. and semivariogram of Eq. 5.4. The experimental semi-variogram of the data at the 
observation location is fitted against a theoretical semi-variogram model of γ̂P(δP) ; the latter is an exponential, 
Gaussian or spherical semivariogram. One is thus making a distinction between the experimental variogram that 
is a visualization of the observed possible spatio-temporal correlation and the variogram model that is further 
used to define the weights of the kriging function on which predictions are based. M is the number of (10,000) 
randomly generated points which are interpolated using the kriging weighting factor �i(Pj) determined by the 
semivariogram.

Next, we applied universal geostatistical  kriging59 to interpolate the expected hospitalization Ĥ over space 
considering the forecast based on the relationship between twitter positivity and the state-level cumulative 
hospitalization. Universal kriging is used because it assumes that the average is not constant as it is in our case. 
This is done by using the following analytics:

where γ̂H (δ) is the predicted semivariogram of expected positivity based on m(P̂) =
∑L

l=0 αl fl(P̂) that is a slow 
and continuous trend  function60 capturing the linear relationship between hospitalization and tweet positivity 
among points l; these points may be different from the whole set of points M over which interpolation is per-
formed. Finally, to determine the healthcare pressure HP at each point i we used

where �ĤT � is the expected average of hospitalization over the selected geographical domain, and M is the num-
ber of interpolated points. We applied the same model to spatially explicit hospital bed occupancy in order to 
compare interpolations of hospitalization based on state and hospital level data.

Predictability indicators. Weekly indices are introduced to monitor the evolution of the pandemic, the 
short- and long-term predictability of Twitter positivity and the departure between forecasts and observations. 
The Risk Index is set to measure the rate of change in epidemiological values, yet in formulating indication of 
epidemic trends. The Gap Index is introduced as the difference between forecast predictions and observations 
normalized to previous observations. The Correlation Index is calculated by estimating the Pearson correlation 
coefficient to quantify the short-term forecast ability of positivity for epidemiological variables (new hospitali-
zations and new cases) via geokriging over space and via ARIMA over time. The first ARIMA component and 
geokriging factors are linear functions of the linearized relationship between positivity and epidemiological 
variables (Eqs. 5.3 and 5.7). To quantify the long-term predictability of highly diverging events, transfer entropy 
(TE) as in Li and  Convertino28 is introduced as the Predictability Index that informs about the probabilistic pre-
dictability of positivity for epidemiological patterns in terms of probability distribution functions (pdfs) rather 
than time point values. The higher TE, the higher the time-delayed and/or divergent influence (as pdfs) of posi-
tivity for hospitalization or cases. We did not use TE for predictive purposes because we never forecasted events 
beyond one week within which the socio-epidemiological linearity holds. All indices are analytically defined as:

(5.4)γP(δ) =
1

2N(δ)

{ N(δ)∑

i=1

[Pi+δ − Pi]
2

}

(5.5)P̂j =

M∑

i=1

�i(Pj) · Pi

(5.6)γ̂H (δ) =
1

2N(δ)

N(δ)∑

i=1

[(Ĥi+δ −m)− (Ĥi −m)]2

(5.7)Ĥj =m+

M∑

i=1

�i(Hj) · (Ĥi −m)

(5.8)HPi =

{

Ĥi − �ĤT � = Ĥi −

∑M
i=1 Ĥi

M if > 0
0 otherwise

(5.9)R(Yt) =(yt − yt−1)/yt−1 = �Y(δt)/100

(5.10)G(Yt) = ˆy(t)− y(t)/y(t) = �Ŷt/100
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where Y = I or �H is indicating time series of cases or hospitalization, respectively, and y indicates time point 
values. P̄ =

1
L

∑L
t=1 pt and Ȳ =

1
L

∑L
t=1 yt . L is the length of time-series of P and Y.

The Value of Misinformation (VoMi) was defined as the difference of gap indices as:

where S and M stand for the systemic Twitter information and classified misinformation set in predicting Y as 
cases or hospitalization. VoMi provides users with a measure of how misinformation impact forecasts of epide-
miological variables with respect to the systemic tweet information considering both model and data uncertainty 
contained in the gap index.

Increasing values of VoMi (independently of the sign) indicate that the misinformation tweet subset has 
increasing importance in forecasting versus the full tweet set. On average, if VoMi is positive, misinformation 
does contribute non-negligibly to overpredict epidemiological trends, whereas if it is negative it impacts posi-
tively and substantially the forecasts proportionally to the magnitude of the misinformation gap G(Yt)M . This 
is evaluated for the same model structure and epidemiological data uncertainty of the full tweet information. It 
should be noted that both gap indices G(Yt)S and G(Yt)M can be negative and M ⊆ S , yet the relative (non-linear) 
balance between full information and misinformation (positivity) predictability contribute to determining VoMi.

In a decision analytical sense VoMi is defined as the amount of resources a decision maker would be willing 
to pay for extra information that increase forecast accuracy before an event occurs. The optimal information 
set Iopt is defined as the one whose gap is minimized (assuming that data are perfect “error-free” information to 
match) and equal to G(Iopt) = G(Isub)− VoMi(Iopt , Isub) where VoMi = MI(P,H) that is the mutual informa-
tion MI(P,Y) =

∑
p

∑
y p(p, y) log

p(p,y)
p(p)p(y) between positivity and cases or hospitalization. Mutual Information 

in an information-theoretic variable measuring the amount of information shared between two variables that 
is on average inversely proportional to the predictability indicator in Eq. 5.12 (i.e. the uncertainty reduction 
between variables).

Tweet spread. For each week, we calculated and displayed the average daily tweet and retweet volume for 
all tweets and the misinformation related tweets. Time series of tweet and retweet volumes, as well as their corre-
sponding average positivity, are displayed by InTo, which serve as indicators of spreading potential of COVID-19 
related messages within and beyond the geographical domain considered. Additionally, the Twitter user of the 
most popular tweet in a week is shown when hovering over a point on the Tweet spread plot.

Dashboard architecture. The InTo dashboard utilizes a client-server architecture designed and imple-
mented using the shiny  package61 in  R62 that provides a convenient wrapper for interactive HTML widgets. 
This is similar to GLEaMviz  architecture63. The client component only allows users to visualize the results of 
InTo but many outputs, for example predictability indicators, are downloadable by users. All computations on 
the server are conducted in R using the established workflow (see Fig. 1).

InTo online
InTo online dashboards and data are at:

https:// nexus lab. shiny apps. io/ InTo_ Delhi/ for the city of New Delhi
https:// nexus lab. shiny apps. io/ InTo_ Mumbai/ for the city of Mumbai
Into online manual, workflow, data sources and codes is at:
https:// rpubs. com/ elroy g1/ Into- walkt hrough
Into main code is at:
https:// github. com/ elroy g1/ InTo.

Data ethical approval
Twitter data are collected by leveraging Twitter’s free streaming API. A Twitter developer account was obtained 
as well as the necessary authentication tokens. The data set is available in compliance with the Twitter’s Terms 
and Conditions (https:// devel oper. twitt er. com/ en/ devel oper- terms/ agree ment- and- policy), under which we are 
unable to publicly release the text of the collected tweets. Twitter developer account was obtained on May 7, 
2020. We are, therefore able to release Tweet IDs, which are unique identifiers tied to specific tweets. The Tweet 
IDs can be used by researchers to query Twitter’s API and obtain the complete tweet object, including tweet 
content (text, URLs, hashtags, etc) and authors’ metadata. Our collection relies upon publicly available data 
(both epidemiological and Twitter data) and is hence registered as IRB (institutional review board) exempt by 
Hokkaido University.

Satellite images were obtained from Google Maps using their Maps Static API. Our use is in compliance with 
Google’s Google Maps/Google Earth Additional Terms of Service, which allows us to view and annotate maps, 
as well as publicly display content with proper attribution online and in print for non-commercial use (https:// 
www. google. com/ help/ terms_ maps/).

(5.11)corr (P,Y) =

∑L
t=1(pt − P̄)(yt − Ȳ)

√∑L
t=1(pt − P̄)2

∑L
t=1(yt − Ȳ)2

(5.12)TEP→Y =

∑
p(Yt ,Yt−1, Pt−1) · log

(
p(Yt |Yt−1, Pt−1)

p(Yt |Yt−1)

)

(5.13)VoMi(t) = G(Yt)S − G(Yt)M

https://nexuslab.shinyapps.io/InTo_Delhi/
https://nexuslab.shinyapps.io/InTo_Mumbai/
https://rpubs.com/elroyg1/Into-walkthrough
https://github.com/elroyg1/InTo
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://www.google.com/help/terms_maps/
https://www.google.com/help/terms_maps/
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