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Learning‑based cable coupling 
effect modeling for robotic 
manipulation of heavy industrial 
cables
Fangli Mou, Bin Wang & Dan Wu*

The robotic manipulation of a heavy industrial cable is challenging to model and control because 
of the high number of degrees of freedom and the rigid-flexible coupling dynamics. In this paper, 
we report the development of modeling the cable effect and control methodology for robotic cable 
manipulation. Our cable effect model is based on the 2D convolutional neural network, which is a 
deep learning-based method uses the effective cable representation method to achieve the accurate, 
generalizable, and efficient estimation of the cable coupling forces and torques. Practical problems 
such as the measurement limits and time efficiency are considered in our method for real applications. 
With these approaches, we are the first to solve the problem of dynamic payload effect caused by 
heavy industrial cables in experimental cases. The used control methodology combines the active 
disturbance rejection control framework with the sliding mode control method, which can acquire 
promising tracking performance. We integrate our cable effect model into the control scheme, and 
demonstrate it satisfies the high-quality robotic manipulation of heavy cables. The performance of 
the proposed method is assessed with both a simulated system and real robot system. The results 
show that our method can estimate the cable coupling effect with over 85% accuracy and accomplish 
manipulation with a positioning error less than 0.01 mm. This reveals that our method is promising 
for robotic manipulation of heavy industrial cables and can accomplish the challenging cable insertion 
task.

Manipulating heavy cable objects with robots has a wide range of industrial applications and creates tremendous 
benefit. In the current assembly of an aircraft, workers need to manually lay and mount over 200 km of aeronautic 
cables1, which not only limits the production efficiency but also brings huge strain on the workers. With the 
development of aviation and manufacture technology, the mission of industrial cable assembly will increasingly 
face a number of complex and diverse manipulation tasks.

Different from manipulating the rigid objects, the complex dynamics and high dimensionality of deform-
able objects makes the manipulation tasks much more challenging in robotics. For this reason, relative studies 
mainly focus on solving the motion planning problem for manipulating light and soft deformable objects2–4. In 
these works, the deformable objects were assumed to have no influence on the robot system and the using robot 
was regarded with the perfect ability to manipulate the deformable payload as what is preplanned. However, 
when manipulating heavy and stiff objects such as aeronautic and industrial cables, the payload effect is rather 
obvious and not appropriate to be simply ignored. As shown in Fig. 1, to accomplish the robotic industrial cable 
insertion manipulation task, we need to guarantee high positioning accuracy and decouple the cable effect to 
control the contact and insertion process.

Cable objects can be categorized as deformable linear objects (DLOs), modeling DLO dynamics in 3D space 
is challenging due to its high dimensions and complex dynamics. Generally, analytic modeling techniques can 
be divided into mesh-based methods and meshless methods5. The mesh-based models are more commonly used 
compared to meshless methods, and can be categorized into continuum models and discrete models according 
to the consistency of the mesh. The discrete models are mainly represented as Mass-Spring-Damper (MSD) 
models, which represent DLO bodies using a set of mass particles connected by springs in a lattice structure. The 
finite element methods (FEM) are one of the most popular continuum methods7, where the DLO is discretized 
using a set of discrete geometric parts called finite elements, and partial differential equations (PDEs) provided 

OPEN

State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China. 
*email: wud@tsinghua.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-09643-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6036  | https://doi.org/10.1038/s41598-022-09643-6

www.nature.com/scientificreports/

by continuum mechanics need to be solved. These methods are used for computing the deformation of DLOs, 
the applied forces and torques are the input of models and the time efficiency is less important. Hence, these 
conventional modeling methods are not suitable for modeling the real-time cable effect that we concern in 
robotic cable manipulation. Recently, data-driven models have been widely used due to their ability to directly 
learn from observations and have the potential of being accurate and computationally light enough for use in 
robot control and planning8. And several works have been focused for modeling deformable bodies, fluids and 
DLOs9–12. However, similar to those analytic physics-based models, these data-driven methods are also aimed 
for cable planning in the simulation. Problems such as measurement ability and computing efficiency are not 
concerned, which makes these methods unsuitable in real robot control applications.

Several works have been focused on the specific problem of manipulating DLOs13–19. The task of tying a knot 
using the robot is discussed in20, the method based on robots manipulating at high speed and the assumption that 
the dynamic behavior of the DLO can be obtained from algebraic calculations of the robot motion. Wang et al.21 
addressed the tight-tolerance insertion tasks for string and rope using the approximate Jacobian in conjunction 
with a virtual magnetic field emanating from the hole and a re-grasping method for reducing the approaching 
error. Liu17 investigated the untangling ropes problem for robots using an RGB-D sensor to perceive the knot 
structure. In these studies, the manipulated DLOs are light and soft with low elasticity, which makes the manipu-
lated object can be approximated as a geometrical model. Moreover, these tasks are represented as a proof of 
concept and the precision of the robot manipulation does not need to be considered much. Correspondingly, 
manipulating a DLO into a desired shape is a common action in automotive industry. A robotized wire handling 
system was developed for assembling the wrapped cables in a car22. The wrapped cables cannot be simply treated 
as the geometrical objects, which makes the average speed of assembly have to be slow in order to reduce the 
coupling effect caused by the cables. Based on programming by demonstration, Rambow et al.23 presented a 
method using the admittance control framework to overcome the uncertainties for robotic deformable object 
manipulation. It is noteworthy that current studies mentioned above mainly focused on planning a path for 
robots manipulating DLOs under the assumption that the manipulated DLOs cause no influence to the robot. 
However, it is not appropriate to ignore the cable dynamics when manipulating heavy and stiff cables such as 
aeronautical and industrial cables, especially when the task needs high manipulation precision such as the cable 
insertion task shown in Fig. 1. A method for heavy cable manipulation was proposed in24; however, this method 
is rather primary and not practical for real applications.

This paper addresses the robotic manipulation tasks having precision requirement for heavy and stiff cables. 
We present a practical and effective method for modeling the cable coupling effect and controlling a robot to 
achieve the heavy cables manipulation with high precision. Our core idea is to design and use the representative 
features-based cable representation to provide an estimation of the payload effect and embed this learned model 
into an active disturbance rejection control (ADRC)25 based sliding mode controller (SMC). A convolutional 
neural network (CNN) is used for modeling the complex cable effect, the proposed method is considered and 
designed from a practical viewpoint, on account of the engineering background. We demonstrate the effective-
ness of our method for the positioning task of cable manipulation, and quantitatively show that the proposed 
method is significantly more effective in accomplishing the robotic manipulation of heavy cables compared to 
the existing method.

Succinctly, the key contributions of this paper are as follows:

•	 As far as the authors are concerned, this is the first attempt to consider and solve the problem of dynamic 
payload effect caused by manipulating heavy DLOs in experimental cases. We propose an efficient cable rep-
resentation method without requiring expensive measuring costs, which reduces the dimensions of original 
features by 69%.

•	 We propose a learning-based cable coupling effect modeling method using a residual learning neural network, 
which shows improved generalization compared to the published modeling method.

•	 We demonstrate our method in both simulated and real environments. Quantitative comparisons show that 
our method can estimate the coupling forces and torques with over 85% accuracy, reduces prediction errors 
by an average of 67% and reduces the positioning error to less than 0.01 mm compared to the baseline, 
respectively.

Figure 1.   The task of robotic aeronautic cable insertion manipulation.
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The rest of this study is organized as follows. Section “Preliminaries” introduces the problem definition and 
the limits using the existing approaches; section “Methods” provides a description of our method for modeling 
the cable effect in manipulation; simulation and experimental results are demonstrated and discussed in sec-
tion “Results and Discussions”; conclusions are drawn and future work is discussed in section “Conclusions”.

Preliminaries
In this section, we briefly describe the coupling effect caused by cable in the robotic manipulation, we also show 
the common techniques for cable modeling and our previous study, which address the motivation of our work 
in this paper.

Cable effect in manipulation.  Same as the rigid payload, the cable object brings coupling forces and tor-
ques to the robot in manipulation tasks as shown in Fig. 1. We define this coupling forces and torques (as Fc in 
Fig. 1) as the cable effect in this paper. However, due to the deformable characteristic, commonly used payload 
identification method for rigid payload26 which estimates the inertia parameters using the joint states of robot 
cannot be applied to the cable cases. Figure 2 shows the cable effect and positioning error of different cables 
manipulated by a UR 5e robot in the simulated environment (detailed in section “Results and Discussions”). 
We should note that Fig. 2 shows a general phenomenon, robots with different rated payload have similar per-
formance when the cable weight has the same percentage of rated payload. As we can see in Fig. 2, a cable with 
larger weight and stiffness causes more significant cable effect. We also note that whether a cable is considered 
heavy or not in applications is relative to the applied robot and the requirement of the manipulation task. And 
in our experience, when the cable can cause effect compared to more than 10% of the robot’s rated payload, the 
coupling effect of the cable should be considered in the system design.

Dynamic cable modeling methods.  The conventional cable modeling methods are used to compute the 
cable deformation based on their current states and an input force, which are not suitable for modeling the cable 
effect here. To obtain the cable effect that we concern in robotic cable manipulation, we can use these mesh-
based modeling methods to formulate the cable dynamics. If we can have every state of the elements of the mesh, 
we can achieve the cable effect by solving the equations. This is the basic idea of our work. In our previous work24, 
we use the features-based MSD method to simulate the cable effect, where we apply the partial least squares 

Figure 2.   The illustration of cable effect and corresponding influence to robot with different cable properties.
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regression (PLSR) algorithm to perform feature points selection. However, this method has two main limits: 
First, the linear MSD model is less accurate and realistic, which makes the obtained model become a local model 
and the accuracy of estimation can be hardly improved. Second, the feature number of the final built model is too 
much (usually 32 feature points need to be measured for a 1 m cable in order to preserve a satisfactory accuracy), 
which makes the method rather impractical for applications.

The cable effect model can be directly used in the following three applications: (1) Decoupling the meas-
ured forces and torques, which makes it is possible to obtain and analyze the manipulating forces and torques 
(as shown in Fig. 1) without using extra sensors or equipment. (2) The cable effect model can be used in the 
controller design, which can improve the system performance and manipulation quality. (3) The cable effect 
model can provide a convenient and realistic dynamic model in the simulated environment, which can narrow 
the simulation-to-reality gap and make the simulated results more reasonable. In order to the accomplish these 
applications, the accuracy of estimation, cable representation method and the time efficiency of the cable effect 
model need to be addressed and investigated.

The material presented here is an improved and extended version of the preliminary study presented in24, 
both regarding the methodology and the quality of the results. In this paper, we mainly focus on three aspects 
of modeling the cable effect: the accuracy of estimation, the effective representation of the manipulated cable 
and the time efficiency of computing, which are crucial for accomplishing a robotic cable manipulation task in 
real applications.

Methods
We formulate the problem of cable effect modeling as predicting the coupling forces and torques caused by 
manipulation using the measured cable states. In order to acquire a sufficiently accurate and concise model for 
robot control and manipulation, we first extract and construct features to describe the cable states (section “Rep-
resentation of a cable”). Based on these features, we use a CNN to learn the cable effect model, and the structure 
of this network is described in section “Learning-based cable effect modeling”. Details on the applications of the 
proposed method are described in section “Application details”.

Assumptions.  The developments of the methods described in this paper are based on the following assump-
tions:

(a)	 The robot consists of rigid bodies, and knotting and tensioning of the cable do not happen during the task.
(b)	 The motion states of all the feature points of the cable are well known.

Representation of a cable.  Our cable representation is based on a nonlinear MSD model6. For a given 
manipulated cable form a manipulating point like shown in Fig. 3a, the coupling effect Ft can be approximated 
using the internal forces {Fi} with feature points {si} , as seen in Fig. 3b. We note that the gravity vectors are omit-
ted for better illustration in these figures. For a heavy and stiff industrial cable, the axial stiffness is much larger 
and twisting usually needs to be avoided in manipulation. In addition, the shape of the cable is the most direct 
observation from images. Thus, we use the positions and velocities of the feature points as the original cable rep-
resentation. We should note that our method cannot model the coupling effect caused by the twist of the cable, 
which is mainly reflected in the coupling torques and is less important in our task. Theoretically, we can have a 
more accurate model if we can use the twist information in modeling.
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Figure 3.   The feature model representation of the manipulated cable coupling effect to the robot.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6036  | https://doi.org/10.1038/s41598-022-09643-6

www.nature.com/scientificreports/

Using more feature points will make the obtained effect model have higher accuracy. However, for real 
applications, the number of feature points should be limited due to real-time hardware requirements. We now 
present a general scheme to acquire the robust feature points. Our optimization process uses the local effect 
model proposed in24. First, we execute robotic cable manipulation and collect the measurements, then segment 
the process data and perform feature points selection using the partial least squares regression (PLSR) algorithm 
for each segment. Next, the cable is divided into two segments based on the middle point of the cable and the 
statistics is performed, we calculate the average percentages of selected feature points in these two segments. 
Finally, we can extract and configure the feature points when given the desired number of feature points. Algo-
rithm 1 summarizes the whole feature points configuration algorithm in pseudocode.

After choosing the feature points, we can define the original cable representation (OF) as

where pi ∈ R
3×1 and vi ∈ R

3×1 are the position and velocity of the feature points in the world frame, respectively, 
and m is the number of configured feature points.

The original cable representation is not considered for modeling since FOF depends on the establishment of 
the coordinate system, which has a poor ability for generalization. Furthermore, the relative cable representation 
(RF) can be defined as

The CNN method is widely used in solving feature extraction problems in machine learning and usually has 
better performance than simple fully connected network such as multilayer perceptron (MLP). Since a cable 
has the diminishing rigidity property27, we can recode the relative cable representation to realize centralization. 
We define this representation as the feature map of cable (FM), the FM is constructed using a helix method. 
The construction process of the FM with 10 feature points is shown in Fig. 4a. It should be noted that the FM 
representation is suitable for m > 5 , and zero padding is processed from the front of the features when m cannot 
be properly factorized. For better feature extraction, we can adopt the FM extension to strengthen the relation 
of feature points. We call this cable representation the extended feature map (EFM), which is shown in Fig. 4b. 
Note that the extension features can be the same data or the sequential data of the FM, and usually using the 
sequential data can have better performance in a dynamic state.

(1)FOF = [p1, v1, p2, v2, ..., pm, vm] ∈ R
6m×1

(2)FRF = [p2 − p1, v2 − v1, ..., pm − pm−1, vm − vm−1]

Figure 4.   The FM (a) and EFM (b) representation of a cable.
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Learning‑based cable effect modeling.  To exploit this structure, we use an CNN with a residual learn-
ing framework28 to estimate the cable effect, as visualized in Fig. 5, we call this network the residual cable effect 
network (RCEN). The input of this network is the EFM representation of cable, the network output is the 6× 1 
scaling effect forces and torques vector as ŷ = [�F, a�T] , where a depends on the cable material and can be chosen 
based on the measurement data as 
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 . The convolutional layers mostly have 3× 3 filters. The 

network ends with a 256-dense fully-connected layer and a 6-dense fully-connected output layer. The activation 
function used is the exponential linear unit (ELU)29, except for the output layer. We adopt batch normalization 
and do not use dropout30, following the practice in31. Batch normalization, data augmentation and early stopping 
are the main technologies used in this paper to reduce the overfitting. We add Batch Normalization to each hid-
den layer of the network which is considered more suitable for training the convolutional layers and generate 
extra 10% of data points using the same noise level of measurement for training. We construct a loss function for 
combining the mean squared error and cosine similarity in order to obtain a prediction whose direction is rela-
tively close to the measurement, to better analyze the coupling effect property in further research.

Application details.  The above approach is developed based on the fact that motion states of all the feature 
points of a cable can be completely measurable. However, a real system can hardly satisfy this requirement due 
to the camera ability and environment occlusion, resulting in some feature states that may be missing in the 
manipulation. To solve this problem, some state estimation methods32–34 for DLOs can be utilized. These estima-
tion methods are usually complex and learning-based. Specific to our system, most states of the feature points 
can be observed in one measurement. Here, we present a rapid interpolation method to approximate the missing 
feature states in the measurement.

where pi(t), vi(t) is the missing state of the feature point si , B is the quadratic Bézier function, po(t) is the near-
est feature point that can be measured before si , pn(t) is the nearest feature point that can be measured after 
si , µ ∈ [0, 1][0, 1] is the weighted factor which can be chosen as a decaying exponential function of t − to , and 
pi(to) is the last measurement state of feature point si . Here, the tangent vector of cable is used in constructing 
the Bézier function.

Now, we can use the proposed model to predict the coupling effect for a certain cable manipulation with a 
fixed manipulation length. Next, we normalize our method to apply different manipulation lengths. Let x be the 
nodal positions. The governing dynamic equations of a cable can be given using the FEM. And for each finite 
element, we have

where ρ is the density of the material and the divergence operator turns the stress tensor back into a vector 
representing the internal force resulting from a deformed infinitesimal volume.

Considering a cable with manipulation length L0 as ζ0 , we can construct the effect model using the above 
approach as H0 . When the manipulation length of cable is changed to L1 , note that L1 = �L0 and the cable as 
ζ1 , we can have a corresponding proportionate representation with ζ0 . Let pζ0 = L0(t) and pζ1 = L1(t) for the 
parametric equations for  ζ0 and ζ1 , where t ∈ [0, 1] . Then, for ∀t ∈ [0, 1] , the equation pζ1 = �pζ0 is satisfied. 
Next, we discretize ζ0 and ζ1 with the same number of nodes, which means the finite element discretized depends 
on the parameter t  . Since pζ1 = �pζ0 , we have fζ1 = �fζ0 in (5). This result implies that we can use the model 
H0 to compute the coupling effect of ζ1 by the configuring feature points with the same pattern and using the 
proportionate features �pi and �vi.

(3)Loss = MSE(y, ŷ)+ kCOS(y, ŷ)

(4)
pi(t) = (1− µ)B(po(t), pn(t))+ µpi(to)

vi(t) = (pi(t)− pi(t −�t))/�t

(5)ρRx = ∇ · σ + f

Figure 5.   The network architecture for RCEN with 11 parameter layers.
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Results and discussions
We evaluate each of the components described in the above section and demonstrate them both in simulations 
and on real robots. We model a robot and cable system in the MATLAB/Simulink simulation environment. The 
robot model is UR 5e, which is the same as we used in the real experiments. The dynamic cable model is set up 
using the SimMechanics toolbox; one side of the cable is mounted on the ground and the other side is mounted 
on the end of the robot (i.e., held by the robot).

Simulated verification.  We generate data from different robotic manipulation trajectories in simulation. 
To obtain random cable deformation states with relatively apparent discrepancies, we use a chaotic sequence35 
to generate robot trajectories with a setting region. In the simulation, a cable is modeled by 50 segments, where 
every two neighboring segments are connected by a special 6D spring-damper element. The cable parameters 
length L , radius R , and mass m are set to 1.1 m, 7.54 mm and 1.5 kg, respectively. We generate about 1,200,000 
data with different noise levels (detailed further) for further verification, and we measure the feature points of 
cable at 20 Hz in our method.

We first demonstrate the effectiveness of our cable representation method described in section “Represen-
tation of a cable”. The data are split into training and validation sets with an 80–20 split. We demonstrate the 
training and evaluation loss for each cable representation method in Table 1. The loss function is as described 
in (3), which approximates to the mean squared error for �F and 10�T after training. For example, for cable rep-
resentation with OF for all features, the presented model performance in Table 1 represents the average force 
prediction error is about 3.48 N and the average torque prediction error is about 0.348 Nm in the training set. 
Here, the number of total feature points is 51, and the number of configured features is 10. The training model 
is the same CNN with same training parameters. From these results between different methods in Table 1, we 
can know that the RF representation is better for learning the cable effect model and our feature configuration 
method can greatly decrease the feature points needed for learning, which reduces the computational cost and 
the measurement requirement of the system, making the physical system much more practicable and simpler. 
Besides, we can also see that the proposed FM and EFM representation can have better performance for training 
the cable effect model than directly using the RF representation.

Next, we evaluate the estimation performance and generalization ability for different modeling methods: the 
partial least squares regression (PLSR) model in24, an MLP network with 6 layers, a CNN with 6 conv layers, a 
bi-directional LSTM network with a similar structure to32 and the RCEN described in section “Learning-based 
cable effect modeling”. All these methods use the best cable representation method for training, that is the RF rep-
resentation for MLP and bi-LSTM, and the EFM representation for CNN and RCEN. We trained these models on 
clean measurement data and noisy measurement data, respectively. We report the training and evaluation loss for 
each method in Fig. 6. The neural network models are trained and tested on a 10 GB Nvidia RTX 3080 GPU. All 
the models are trained for 5 times, and we choose the best model in the entire training process of each method.

Here, we note that the PLSR0 represents the model in24 with 32 selected feature points, and PLSR1 represents 
the PLSR model with 10 configured feature points. In addition, all the other methods use the 10 configured fea-
ture points. The average computing time of PLSR0 and PLSR method is less than 200 µs , the average computing 
time of the MLP, CNN, bi-LSTM and RCEN method is about 1 ms, 5 ms, 18 ms, and 34 ms, respectively. As can 
be seen, the PLSR method has the worst performance, since the PLSR model is a local model and cannot explain 
the nonlinear dynamics of the cable effect. Hence, all the learning-based methods show a significant performance 
improvement compared with the PLSR model. The MLP network is less accurate but has the shortest training 
and computing time. The CNN performs relatively better than MLP. The bi-LSTM network has promising 
performance with clean measurement data, and meanwhile has the largest performance decay with noisy data. 
Our RCEN achieves the best performance on both the training set and test set regardless of whether noise is 
applied. This indicates that the proposed method can have robust generalization ability for modeling the cable 
effect under different measurement conditions.

To better evaluate the performance of our method, we demonstrate the performance of the RCEN trained 
under different measurement noise in Table 2. The noise applied to the measured positions of feature points 
is white Gaussian noise, and the velocities of feature points are calculated using these noisy positions. We also 

Table 1.   Model performance of different cable representation.

Cable representation

Model 
performance

Train Test

OF for all features 12.1249 19.1262

RF for all features 12.2217 17.2607

RF for configured features 13.3554 17.7963

FM for configured features 12.0523 17.0985

EFM for configured features 11.3252 16.1384
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compute the corresponding signal-to-noise ratio (SNR) of the training data to reflect and evaluate the measure-
ment quality.

As shown in Table 2, our method can have satisfactory modeling accuracy under different measurement noise. 
For the measurement signal with a SNR larger than 50 dB, our method has a promising and stable estimation 
ability. Even though the standard deviation of the measurement noise in positions is 10.0 mm, our method can 
give a relatively accurate estimation of cable effect (which is still better than the PLSR model trained with clean 
data). We have also conducted ablation studies to study the model ability with different network parameters. 
We test the RCEN network with different layers (numbers and filters). The results show that the performance 
improvement is not sensitive to the selection of layers when the residual learning framework exists.

Experimental setup.  The experimental system is as shown in Fig. 7. To generate diversified training data, 
we use two robots to perform cable manipulation. One robot grips the cable and executes the manipulation tra-
jectories; we call this robot the manipulating robot (a UR5e robot here). The other robot fixes one side of cable to 
obtain different deformation states; we call this robot the positioning robot (a UR10 robot here).

We conducted the experiment with the following process with a cyclic sequence of actions to show the 
repeatability and reliability of the experiments. Step 1: Before performing every manipulation trajectory, we 
randomly generate an initialized position of the positioning robot. Step 2: After the positioning robot achieves 
the initialized position, it stops running during the subsequent manipulation. Step 3: Then the manipulating 
robot executes the given manipulation trajectory, and we record the data for verifying our method. The cable 
used in the experiment is a bundle of 4 industrial cables with about 1.1 m long, and its total mass is 1.5 kg. A 
Basler industrial camera is utilized to capture the images at 30 Hz, and Aruco markers36 are used for detecting 

Figure 6.   Estimation performance of the different methods for modeling the cable effect.

Table 2.   Estimation performance of the RCEN under different measurement noises.

Noise SNR (dB)

Performance

Train Test

σ = 0.0 mm Inf 3.3643 6.4203

σ = 0.1 mm 72.74 3.5029 6.9871

σ = 0.2 mm 66.72 4.2574 7.4179

σ = 0.333 mm 62.28 4.4588 8.2097

σ = 0.5 mm 58.76 5.6446 9.1494

σ = 1.0 mm 52.74 5.9922 10.9922

σ = 2.0 mm 46.72 8.1113 13.1932

σ = 5.0 mm 38.76 12.5032 16.9725

σ = 10.0 mm 32.74 15.1758 20.2373
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and estimating the states of the feature points. We use the same feature points configuration method as in the 
simulation. The center of cube is the corresponding feature point. The gripper is a Robotiq Hand-E Gripper, and 
the force/torque sensor is an SRI six-axis force sensor.

We randomly generate and execute 1000 experimental manipulations, with about 300 k data collected. The 
data is also split into training and validation with an 80–20 split. We use the method described in section “Appli-
cation details” to obtain the missing measurement data. The average absolute force and torque in experiments is 
20 N and 1.6 Nm, respectively. We test the same methods compared in the simulations, and Table 3 summarizes 
the training and evaluation loss for each method. As we can see, these methods have a similar performance on 
experimental data similar to that of noisy data in simulations. By comparing the quantitative results between 
different methods in Table 3, we reach the following conclusion: Our cable representation and modeling method 
can achieve the accurate estimation of the cable effect caused by manipulation. This shows that we can use the 
proposed method to compensate the manipulation effect of heavy cable with comparable performance of nominal 
no-load robot system.

The estimation performance of our method is illustrated in Fig. 8 showing the measured, predicted and their 
corresponding error cable effect in one experimental manipulation task. The measurement and estimation pro-
cess runs with a real-time frequency of 20 Hz, and the average manipulation speed is about 0.25 m/s. Figure 8a 
shows the estimation performance for coupling forces and Fig. 8b shows the estimation performance for coupling 
torques. As we can see, the averages for predictive error forces and error torques are respectively 0.503 N and 
0.087 Nm, the maximum error of predictive forces and torques are respectively 1.272 N and 0.284 Nm, which 
indicates over 94% of the average coupling effect can be predicted real-time in our method. For further explana-
tion, we define the following error ratio to evaluate the prediction accuracy

The average error ratio in the manipulation is [5.2%, 9.1%], this accurate prediction allows for precise decou-
pling the effect caused by manipulated cable and serving as the modeled part in controller design, as illustrated 
by Figs. 1 and 10. These results shows that the proposed method has a promising performance for estimating 
the real-time cable effect in the robotic manipulation.

In our system, the velocities of feature points cannot be measured directly. The velocities of feature points 
are calculated using the positions, which will unavoidably amplify the measurement noise. And intuitively, the 
manipulation speed will affect the model performance. Now, we show the influence of the velocity features in 
modeling the cable effect and the effectiveness of our method. For quantitative evaluation, we test our model 
on a dataset with different manipulation velocities, and the result is shown in Fig. 9. Here, we use the time scale 
to describe the manipulation velocity and the mean absolute error with standard deviation to evaluate the 

(6)erratio(t) = [
�Ferror(t)�2
�Freal(t)�2

,
�Terror(t)�2
�Treal(t)�2

]

Figure 7.   The illustration of our experimental system.

Table 3.   Estimation performance of different methods.

Modeling method

Model 
performance

Train Test

PLSR 35.1249 46.6628

MLP 14.6217 20.9916

CNN 14.1071 19.0665

bi-LSTM 15.0160 18.5227

RCEN 13.3758 16.4741
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Figure 8.   The estimation performance of our method in a real manipulation task.
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performance of our method. The time scale is calculated based on the reference duration T0 as Ts = Tm/T0 , 
where Tm is the manipulation duration and T0 is the inflexion of performance curve. A larger Ts means a lower 
manipulation velocity.

As shown in Fig. 9, the model has a relatively stable performance when the manipulation runs at low speed. 
And the model performance will rapidly decrease when the manipulation runs faster than a threshold speed 
(about 0.1 m/s in our case). The result also proves that our approach can achieve better generalization in a large 
manipulation speed. We can also see that the estimation error sharply increases when Ts = 0.1 , that is because 
the images captured by our camera under this consideration are rather blurred and many cable features cannot 
be recognized, which is one limit of our system.

By summarizing these experimental results, we can see that when the manipulation runs at speed lower than 
0.25 m/s (which is a common value in application), the averages for predictive error forces and error torques are 
respectively 0.503 N and 0.087 Nm, the maximum error of predictive forces and torques are respectively 1.272 N 
and 0.284 Nm, and the average error ratio in the manipulation is [5.2%, 9.1%]. And for the manipulation speed 
covering 1.0 m/s (which is the limit of our system), the averages for predictive error forces and error torques are 
respectively 1.257 N and 0.246 Nm, the maximum error of predictive forces and torques are respectively 3.502 N 
and 0.425 Nm, and the average error ratio in the manipulation is [12.6%, 14.7%]. Generally, we can use the pro-
posed cable effect model to obtain the estimation of the coupling forces and torques in the manipulation task 

Figure 9.   Estimation performance with the changing manipulation speed.

Figure 10.   Control structure of the cable model based DRSMC framework. qd is the given trajectories of 

desired positions; 
∼
qd ,

∼̇
qd ,

∼̈
qd are the actual reference trajectories generated using the tracking differentiator; 

qa, q̇a are the joint angles and joint velocities of robot, respectively; z1, z2, z3 are the augmented system states 
generated using the extended state observer25; τ c is the feedback control torque; τ fw is the feedforward control 
torque; χ0 is the measurement states of the cable and χ c is the generated cable representation for the cable effect 
model.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6036  | https://doi.org/10.1038/s41598-022-09643-6

www.nature.com/scientificreports/

with over 85% accuracy. We should note that the method of modeling cable effect should be used to fit different 
application demands, simplified method such as the MLP network and the features with RF and no velocities 
can be applied to meet the actual requirements of tasks. Next, we show the controller performance using the 
proposed method as one application of our cable effect model in cable manipulation.

Controller performance.  We integrate our cable effect model in an effective and practical control frame-
work (disturbance rejection sliding mode control, DRSMC37) for accomplishing the robotic manipulation of 
heavy cables. The DRCMS method uses the ADRC methodology to improve the robustness and accuracy of a 
traditional SMC controller, which provides a practical and effective trajectory tracking control framework with a 
strong disturbance rejection ability for robots. The cable effect model is used as the asynchronous modeled part 
in DRSMC framework, the block diagram of the entire control strategy is shown in Fig. 10. Algorithm 2 summa-
rizes the control framework of the algorithm in pseudocode, detailed definitions can be seen in our preliminary 
study presented in24,37.

The performance of the controller architecture was assessed with the simulation tests described below. The 
simulation environment is the same robot-cable system. The cable manipulation task is to control the end of cable 
to reach three desired positions. The goal of the task is to reduce the positioning error of these desired positions 
as much as possible in order to achieve a satisfactory initial state for the subsequent insertion manipulation. The 
robot moves with an average speed of 0.8 m/s in Cartesian space. The standard deviation of measurement noise 
is 5 mm, the measuring frequency of each feature point is 10 Hz, and we randomly ignore some feature points in 
the measurement to simulate the real measurement condition. The cable effect model is trained using the method 
detailed in the above section. We first use a conventional PID controller to control the robot as commonly used 
in industrial applications. Then, we use our DRSMC method to complete the same robot trajectory. Both of 
these controllers work at the frequency of 1 kHz, and the control parameters are tuned using the same method 
as described in37. Both the PID controller and the DRSMC controller can achieve stable positioning errors of 
less than 0.01 mm when no payload is applied. The tracking errors of these controllers are illustrated in Fig. 11.

As seen in the top row of Fig. 11, the stable positioning errors increase to 0.3 mm under the conventional 
robot controller which is over 10 times compared with the no-load nominal system. This result reveals that the 
cable effect should be considered if high precision is needed in manipulation such as positioning or mounting 
in an industrial application. We can also see that using our method, the stable accuracy of manipulation can be 
maintained close to the nominal system that we pre-designed, which has the positioning accuracy better than 
0.01 mm. In addition, the dynamic performance such as the settling times and overshoots of the system under 
our method are also greatly less than those of the conventional controller (as seen when t is near 2 s, 4.3 s, 12.5 s 
and 15.0 s, where the reference trajectories undergo unsmooth changes), these results indicate the promising 
application of robotic manipulation of a heavy cable object. The bottom row in Fig. 11 is the top view of the 
plug. The pins of plug are the blue parts in the figures, the socket is the green part and the holes are red parts. 
The width of each pin is 1.13 mm and the width of the hole in socket is 1.18 mm, which are the same objects in 
our future insertion manipulation task. As we can see, after the positioning manipulation, conventional control-
ler causes relatively large errors and these errors can be greatly reduced using our method. To accomplish the 
following insertion manipulation, complex algorithm needs to be designed after the positioning manipulation 
using conventional controller. Correspondingly, simple method such as conventional impedance control can be 
used when the positioning manipulation finished with the errors shown in our method. The positioning errors 
can hardly be measured and compensated after this positioning manipulation, which leads the initial states are 
critical for the subsequent insertion manipulation. These results indicate that our method can greatly reduce the 
difficulty and increase success rate of the challenging cable insertion task.
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Conclusions
We developed a practical and accurate method for modeling the coupling effect caused by manipulating heavy 
cable objects. We proposed an effective and concise feature design methodology for cable representation for 
training the cable effect model. Practical problems on account of the engineering background such as the meas-
urement limits and time efficiency are considered in our method for real applications. We also demonstrate the 
influencing factors of our method and how the performance can be improved. In addition, our approach can 
be effective even though the manipulation has a high speed. We evaluated the proposed approach in both the 
simulation environment and real-world experiments. The results showed that our method using the RCEN can 
obtain an estimation of the coupling forces and torques with over 85% accuracy, has reduced prediction errors 
by an average of 67% compared to an existing baseline model. Furthermore, we integrate our cable effect model 
into the DRSMC control scheme and demonstrate it satisfies the robotic manipulation of heavy cables, which 
can realize the cable positioning errors less than 0.01 mm compared with 0.3 mm that using the conventional 
method. These results show that our method can solve the problem caused by manipulating cables such as cou-
pling dynamics and control degeneration.

The presented study has also some limitations. First, Aruco markers are used in the experiment, and the fix-
ture of markers will partly influence the cable dynamics. Additionally, we assume that knotting and tensioning 
of the cable does not occur during the task while ignoring the coupling effect caused by cable twisting. These 
simplifications are deemed reasonable according to the manipulation tasks and the given results, but they should 
be considered in real-life applications, especially when the cable is less stiff.

Figure 11.   The tracking errors of manipulating point (top row) and the stable states after positioning (bottom 
row). The left column shows the performance using the conventional robot controller and the right column 
shows the performance under our method.
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In the future, we will use the proposed method to achieve a heavy cable insertion manipulation task. We also 
hope to perform our method using images of the cable without setting any markers and extend this method with 
more conditions considered, such as knotting and tensioning.

Data availability
The video for the paper is provided as the supplement material.

Received: 2 November 2021; Accepted: 24 March 2022

References
	 1.	 Gao, J., Chen, X., Yilmaz, O. & Gindy, N. An integrated adaptive repair solution for complex aerospace components through 

geometry reconstruction. Int. J. Adv. Manuf. Technol. 36(11–12), 1170–1179 (2008).
	 2.	 Sanchez, J., Corrales, J. A., Bouzgarrou, B. C. & Mezouar, Y. Robotic manipulation and sensing of deformable objects in domestic 

and industrial applications: A survey. Int. J. Robot. Res. 37(7), 688–716 (2018).
	 3.	 Saha, M. & Isto, P. Manipulation planning for deformable linear objects. IEEE Trans. Rob. 23(6), 1141–1150 (2007).
	 4.	 Jimenez, P. Survey on model-based manipulation planning of de formable objects. Rob. Comput. Integrat. Manuf. 28(2), 154–163 

(2012).
	 5.	 Nealen, A., Müller, M., Keiser, R., Boxerman, E. & Carlson, M. Physically based deformable models in computer graphics. Comput. 

Graph. Forum 25(4), 809–836 (2010).
	 6.	 Moore, P. & Molloy, D. A survey of computer-based deformable models. in International Machine Vision and Image Processing 

Conference (IMVIP 2007) 55–66 (2007).
	 7.	 Peter, A. P., Hunter, P. & Pullan, A. Fem/bem Notes (2017).
	 8.	 Nguyen-Tuong, D. & Peters, J. Model learning for robot control: A survey. Cogn. Process. 12(4), 319–340. https://​doi.​org/​10.​1007/​

s10339-​011-​0404-1 (2011).
	 9.	 Mrowca, D. et al. Flexible neural representation for physics prediction. in 32nd Conference on Neural Information Processing Systems 

(NIPS), Montreal, CANADA, 2018, vol. 31 (2018).
	10.	 Watters, N. et al. Visual interaction networks: Learning a physics simulator from video. Adv. Neural 30, 1–10 (2017).
	11.	 Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B. & Torralba, A. Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable 

Objects, and Fluids (Springer, 2018).
	12.	 Sanchez-Gonzalez, A. et al. Learning to Simulate Complex Physics with Graph Networks (Springer, 2020).
	13.	 Vinh, T. V., Tomizawa, T., Kudoh, & Suehiro, T. A new strategy for making a knot with a general-purpose arm. in 2012 IEEE 

International Conference on Robotics and Automation, 2217–2222 (2012).
	14.	 Kudoh, S., Gomi, T., Katano, R., Tomizawa, T. & Suehiro, T. In-air Knotting of Rope by a Dual-arm Multi-finger Robot. in 2015 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6202–6207 (2015).
	15.	 Takizawa, M., Kudoh, S. & Suehiro, T. Method for placing a rope in a target shape and its application to a clove hitch. in 2015 24th 

IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 646–651 (2015).
	16.	 Lee, A. X., Lu, H., Gupta, A., Levine, S. & Abbeel, P. Learning force-based manipulation of deformable objects from multiple 

demonstrations. in 2015 IEEE International Conference on Robotics and Automation (ICRA), 177–184 (2015).
	17.	 Lui, W. H. & Saxena, A. Tangled: Learning to untangle ropes with RGB-D perception. in 2013 IEEE/RSJ International Conference 

on Intelligent Robots and Systems, 837–844 (2013).
	18.	 Yoshida, E. et al. Simulation-based optimal motion planning for deformable object. in 2015 IEEE International Workshop on 

Advanced Robotics and its Social Impacts (ARSO), 1–6 (2015).
	19.	 Bretl, T. & Mccarthy, Z. Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configu-

rations. Int. J. Robot. Res. 33(1), 48–68 (2014).
	20.	 Yamakawa, Y., Namiki, A. & Ishikawa, M. Motion planning for dynamic knotting of a flexible rope with a high-speed robot arm. 

in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems 49–54 (2010).
	21.	 Wang, W., Berenson, D. & Balkcom, D. An online method for tight-tolerance insertion tasks for string and rope. in 2015 IEEE 

International Conference on Robotics and Automation (ICRA), 2488–2495 (2015).
	22.	 Jiang, X., Koo, K., Kikuchi, K., Konno, A. & Uchiyama, M. Robotized assembly of a wire harness in car production line. in 2010 

IEEE/RSJ International Conference on Intelligent Robots and Systems 490–495 (2010).
	23.	 Rambow, M., Schauß, T., Buss, M. & Hirche, S. Autonomous manipulation of deformable objects based on teleoperated demon-

strations. in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2809–2814 (2012).
	24.	 Mou, F. & Wu, D. Control method for robotic manipulation of heavy industrial cables. IEEE Int. Conf. Mech. Autom. (ICMA) 2021, 

963–969 (2021).
	25.	 Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009).
	26.	 Dong, Y., Ren, T., Chen, K. & Wu, D. An efficient robot payload identification method for industrial application. Ind. Rob. 45(4), 

505–515. https://​doi.​org/​10.​1108/​IR-​03-​2018-​0037 (2019).
	27.	 Berenson, D. Manipulation of deformable objects without modeling and simulating deformation. in 2013 IEEE/RSJ International 

Conference on Intelligent Robots and Systems, 4525–4532 (2013).
	28.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. in 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 770–778 (2016).
	29.	 Clevert, D.-A., Unterthiner, T., & Hochreiter, S. Fast and accuratedeep network learning by exponential linear units (ELUs). http://​

arxiv.​org/​abs/​1511.​07289 (2015).
	30.	 Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-

adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012).
	31.	 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc. Mach. 

Learn. Res. 37, 448–456 (2015).
	32.	 Yan, M., Zhu, Y., Jin, N. & Bohg, J. Self-supervised learning of state estimation for manipulating deformable linear objects. IEEE 

Rob. Autom. Lett. 5(2), 2372–2379 (2020).
	33.	 Nair, A. et al. Combining self-supervised learning and imitation for vision-based rope manipulation. in Proceedings of International 

Conference on Robotics and Automation, 2146–2153 (2017).
	34.	 Ebert, F. et al. Visual fore-sight: Model-based deep reinforcement learning for vision-based robotic control (2018). http://​arxiv.​

org/​abs/​1812.​00568.
	35.	 Caponetto, R., Fortuna, L., Fazzino, S. & Xibilia, M. G. Chaotic sequences to improve the performance of evolutionary algorithms. 

IEEE Trans. Evol. Comput. 7(3), 289–304 (2003).
	36.	 Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F. J. & Marin-Jimenez, M. J. Automatic generation and detection of highly 

reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014).

https://doi.org/10.1007/s10339-011-0404-1
https://doi.org/10.1007/s10339-011-0404-1
https://doi.org/10.1108/IR-03-2018-0037
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1812.00568
http://arxiv.org/abs/1812.00568


15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6036  | https://doi.org/10.1038/s41598-022-09643-6

www.nature.com/scientificreports/

	37.	 Mou, F. L., Wu, D. & Dong, Y. F. Disturbance rejection sliding mode control for robots and learning design. Intel. Serv. Robot. 
14(2), 251–269 (2021).

Author contributions
F.M. contributes to design the general method and make the algorithm for modeling the cable effect. B.W. 
contributes to integrate the algorithm and debug for the hardware system in experiments. D.W. contributes to 
review the article and supervise our research.

Funding
The authors gratefully acknowledge financial support from both the Tsinghua-Foshan Innovation Special Fund 
(Grant No. 2020THFS0126) and the Special Research Project of Chinese Civil Aircraft (Grant No. MJ-2018-G-54).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​09643-6.

Correspondence and requests for materials should be addressed to D.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-09643-6
https://doi.org/10.1038/s41598-022-09643-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Learning-based cable coupling effect modeling for robotic manipulation of heavy industrial cables
	Preliminaries
	Cable effect in manipulation. 
	Dynamic cable modeling methods. 

	Methods
	Assumptions. 
	Representation of a cable. 
	Learning-based cable effect modeling. 
	Application details. 
	Consent to publish. 

	Results and discussions
	Simulated verification. 
	Experimental setup. 
	Controller performance. 

	Conclusions
	References


