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Intelligent escalator passenger 
safety management
Vasily Osipov1, Nataly Zhukova1, Alexey Subbotin2*, Petr Glebovskiy1 & Elena Evnevich1

This article addresses an approach to intelligent safety control of passengers on escalators. The 
aim is to improve the accuracy of detecting threatening situations on escalators in the subway to 
make decisions to prevent threats and eliminate the consequences. The novelty of the approach 
lies in the complex processing of information from three types of sources (video, audio, sensors) 
using machine learning methods and recurrent neural networks with controlled elements. The 
conditions and indicators of safety assurance efficiency are clarified. New methods and algorithms for 
managing the safety of passengers on escalators are proposed. The architecture of a promising safety 
software system is developed, and implementation of its components for cloud and fog computing 
environments is provided. Modeling results confirm the capabilities and advantages of the proposed 
technological solutions for enhancing the safety of escalator passengers, efficiency of control decision 
making, and system usability. Due to the proposed solutions, it has become possible to increase the 
speed of identifying situations 3.5 times and increase the accuracy of their determination by 26%. The 
efficiency of decision making has increased by almost 30%.

Escalators are essential and indispensable parts of subways and train stations, shopping malls, underground 
passages and other objects of public infrastructure. Their length can reach 140 m, and the height of the rise 
can be 70 m. During the operation of escalators, some events can occur that threaten the health and life of 
 passengers1. Specifically, it can be a fall into the escalator tunnel, pinching of body parts of small children and 
animals, equipment malfunction: brakes, electricians, grounding, etc. These events can be caused by sharp stops 
and breakdowns of escalators and by abnormal  behavior2 (children, sick and drunk people, etc.): passengers on 
escalators can stand in an unstable manner, not hold on the handrails, push each other, stumble and fall on the 
sharp edges of the steps. Escalators can be overloaded, thus creating dangerous situations. All this can result in 
serious injuries and even  death3. Dozens of people die every year in such accidents, and injuries are counted in 
 thousands4,5.

To reduce the risk of such events, escalators are monitored, as well as the behavior of people using  them6. In 
the process of monitoring threatening situations and rules, violations by passengers are recognized in a timely 
manner. The process of safety control based on the results of monitoring escalators assumes issuing recommen-
dations on the behavior of people, directing flows to parallel lifting and transportation vehicles, and warnings 
about the stops of escalators. Escalator safety operators, together with technical systems, manage safety to stop 
the escalator and assist passengers. The operator approach is rather simple but expensive and does not always 
provide high accuracy and agility of solutions. The use of additional technical means such as video cameras and 
facial recognition makes it possible to increase the efficiency of passenger safety  control7.

To reduce the required material resources and to increase the accuracy and speed of solution control, it is 
desirable to deliver all these functions to promising intelligent systems. The initial information for such intelligent 
systems can be data from video cameras, microphones and signals transmitted from sensors on the statuses of 
the escalators. To provide operative safety control, these systems should meet certain requirements. With large 
passenger flows on escalators, intelligent safety control systems should not only recognize threatening situations 
in a timely manner but also to do so with a high probability and be able to define appropriate control actions. 
A review of some existing  solutions8,9 shows that there is no integrated intelligent approach that proposes a 
problem of developing more intelligent solutions that are able to take into account the considered specifics of 
the processes of passenger safety management.

Back in 2016, the problem of developing a strategy for ensuring the safety of passengers on escalators using 
intelligent means was  raised10. The issues of improving this safety, its monitoring and management through the 
intellectualization of these processes were repeatedly discussed at the annual symposia on technologies related 
to elevators and  escalators11,12. The main difficulties in ensuring this safety are connected precisely with the 
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imperfection of an integrated approach to processing heterogeneous information both about passengers and 
the escalators themselves, with the recognition and prediction of complex fuzzy events, with the development of 
advanced control actions to prevent possible threats. In the interests of this, various artificial intelligence methods 
are used, based on symbolic, sub-symbolic and combined  approaches13,14. The most promising approaches include 
neural network solutions that allow the most complete connection and processing of heterogeneous signals. At 
the same time, it is necessary that intelligent passenger safety systems on escalators continuously learn and be 
able to simultaneously successfully recognize and predict threatening situations.

The novelty of the proposed approach lies in the advanced complex processing of information from three 
types of sources (video, audio, sensors) using machine learning methods and recurrent neural networks with 
controlled elements. The conditions and indicators of safety assurance efficiency are clarified. New methods and 
algorithms for managing the safety of passengers on escalators are implemented in a promising safety system in 
which components are deployed in cloud and fog computing environments.

The article is arranged as follows: the second section is devoted to critical analysis of existing safety methods 
and to the problem formulation of the development of the intelligent system for managing the safety of pas-
sengers on escalators. In the third section, the conditions and indicators of the efficiency of passenger safety 
assurance are researched and refined. The fourth section addresses the conceptual model for ensuring the safety 
of passengers. The fifth section describes the passenger safety assurance method. The sixth section presents the 
algorithms that implement the safety assurance method. The architecture of a complex data processing system 
based on using fog and cloud computing environments is presented in the seventh section, and proposals for its 
implementation are presented in the eighth section. Modeling results are discussed in the ninth section. Conclu-
sions are formulated in the tenth section.

Background
Modern hardware for information processing and control solution implementation is considered  in15–17. These 
studies focused on tracking moving objects, posturing people, and predicting emergency braking on escala-
tors.  Research18 proposes a multimodule integrated safety system for escalators based on computer vision. It 
considers the problems of escalator status identification, passenger monitoring, detection of hazardous objects, 
safety assessment and threatening event forecasting. The proposed intelligent system uses convolutional neural 
networks to process the source information.  In19, the possibilities of timely warning of potential escalator failures 
by means of processing signals from vibration sensors on escalators were investigated.

Despite the results obtained, it is not yet possible to implement control functions without escalator operators 
being involved in the process. Many creative operations of passenger safety control, which are performed easily 
by operators, can cause significant difficulties under machine implementation. One of the key reasons is the lack 
of effective methods of intelligent processing of heterogeneous information, which makes it impossible to create 
full-fledged intelligent systems for passenger safety control on escalators.

To date, a considerable number of complex control systems have been developed. Some of the ideas underly-
ing them can be used to improve passenger safety management systems on escalators. In particular, it is known 
a safety control system for the cabins of electric train drivers that constitutes a part of the entire control system 
of the train. Methods of artificial intelligence, pattern and sound recognition are used in these systems. Source 
information comes both from the sensors and from the alarm and centralization system deployed on the railway. 
There are separate traffic control services that send signals to railroad points and to semaphores on a particular 
section of the railway. This is a large integrated system of permits and prohibitions, including a system of safety 
control and regulation of rail transportation. Examples of such complex traffic and safety control systems in the 
United States are ACSES, PHW, Wabtec, CBTM, LIRR developed by Bombardier, Parsons Transportation Group 
(PTG), PHW Inc. These systems comply with FRA, AARS, NORAC, and GCOR standards, which are also used 
in Spain and Great Britain. In the territory of the European Union (Poland, Germany, France, Italy, etc.) there 
are analogues of systems used in the USA: ERTMS Regional, TETRA, developed by Banverket and UIC organiza-
tions. In Brazil, VLI and ALL companies are the developers of such systems. The systems coordinate train speed 
with the help of a set of satellites. Satellites are also used to provide safety by space observation for geolocation 
and rail track assessment. These systems are complexes that include control units where information is collected 
from locomotive sensors. The units are interconnected into a single network and coordinate with each other’s 
work. There are also auxiliary units for commutation, switching, diagnostics and direct control. Information 
from diagnostic sensors and coordination services is accumulated on the control panel. The liquid crystal screens 
display information about the railway (video, rail status, etc.). The locomotive driver is provided with statistics on 
the condition of the track, so he or she is less anxious and can implement better train control. The system proved 
to be efficient; during the testing operation of the system, there were no critical cases or emergency incidents, and 
the system successfully passed the test and deployment stages. The developments of the Krylov State Research 
Centre (https:// krylov- centre. ru/) can serve as an example of a system of this kind in Russia.

The authors propose taking advantage of the existing experience in creating complex  systems20,21 (in which 
components interact with each other at different levels of information processing) and creating a system based 
on previous developments to ensure the safety of passengers on escalators. Unlike existing solutions, it should 
not be a separate system based on sensors but a comprehensive safety system using intelligent video surveillance 
and analysis of sound information. In the interests of justifying the requirements of such a system, the conditions 
for ensuring the safety of passengers on escalators are considered below.

https://krylov-centre.ru/
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Escalator safety conditions and performance indicators
Threats to the safety of passengers and countermeasures to prevent them. All dangerous situ-
ations can be divided into three groups. The first group is situations when the escalator is operating in a normal 
mode. The second group is threatening situations (there are signs that one or more emergency events can occur, 
for example, indication that the escalator is overloaded or presence of odd noise that means its malfunction). The 
third group is emergencies (an emergency event occurred, for example, a person fell on the escalator).

A list of possible situations is defined for each  group22. Each of the above situations may be characterized by 
the harm done.

General threatening or emergency situations:

1. Falling of a passenger into an escalator tunnel due to negligence or illness;
2. Passenger injury with static electric current;
3. Jamming of the passenger in the receiver of the aircraft handrail;
4. Sticking the feet and other parts of a passenger body into the comb of an escalator;
5. Escalator failure due to exceeding the permissible load per step (more than 300 kg);
6. Failure of the passenger to the office spaces and premises of the escalator in case of failure of the on-board 

fences;
7. Ignition of escalator parts;
8. Failure of escalator brake and electrical circuit;
9. Drop of lining or plaster on escalator in case of concrete insulation damage.

All the threatening situations listed above can be detected and recognized using escalator automated means 
(sensors), CCTV (closed-circuit television) cameras and operators of escalator equipment.

Measures to prevent a threat or eliminate its consequences are defined in the form of logical rules (a system 
of rules defined with relation to a group of escalators).

In the case of a threatening situation, the escalator operator must undertake the following actions depending 
on the degree of danger:

1. Make a warning via microphone;
2. Stop the escalator and announce the situation;
3. Stop the escalator, close the entrance and ask everyone to enter the station lobby or plat-form;
4. Deenergize the escalator, turn off the main electrical circuit and ask to use protective equipment (gas masks, 

fire extinguishers, etc.).

Tools and capabilities for safety status data collection. A wide range of modern sensors can be used 
to collect data on escalator passenger  safety23. They can be divided into the following classes:

 1. Motion sensors function based on the light flux. They can determine the movement of passengers on the 
steps, movement of the conveyor belt, and integrity and structure of the steps;

 2. Radioactivity sensors detecting radioactive contamination or transportation of radioactive materials;
 3. Smoke detectors that can recognize micro particles of burning with high precision: cigarettes smoke, arson 

of article, clothing and other burning materials. Such violations are committed mainly by adolescents and 
in the evening;

 4. Light sensors: determine light intensity thus enabling the detection of narrow-range low energy blinding 
lamps which can cause damage to the eyes of passengers and subway employees. They can also detect 
small-range lasers, video cameras and similar small-range equipment capable of seriously harming people.

 5. Fire detectors indicating an open flame.
 6. Weight sensors estimate how many objects are placed on one step of the escalator. If the permissible limit 

is exceeded, the braking system can be switched on. The steps of the escalator are designed so that they 
can function only within a prescribed load per step.

 7. Vibration sensors signal that a group of people create causes a uniform oscillation of the escalator tape. 
This can cause the escalator to fail and stop at some point. Measures are being undertaken to desynchronize 
the tape to avoid the peak load. Uniform movement of the handrail that prevents synchronous oscillations 
and exceeds load is prohibited;

 8. Shock sensors detecting equipment damage as a result of either the breakage of escalator parts that strike 
the moving tape, thus destroying it, or of unauthorized actions such as the use of hammers or other sharp 
objects that destroy moving parts of the escalator tape;

 9. Fall sensors are designed according to a different principle than shock sensors. They detect a smooth oscil-
lation propagation curve, which means the fall on the step of some soft object, a bag or a person;

 10. Static voltage sensors show the electric current value, which may occur on the escalator due to, for example, 
the failure of grounding devices. The peculiarity of large and long escalators consists of their ability to 
produce high current values in seconds, which is dangerous for the life of passengers;

 11. Engine failure sensors can report ignition or crushing of rotation parts or current-carrying parts, which 
can cause fire or de-energizing of the escalator;

 12. Handrail integrity and malfunction sensors can signal about an object under the handrail belt, excess rail 
speed, handrail fracture or partial destruction of a handrail or tape receiver. Intentional cuttings of the 
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handrail are not uncommon. A long handrail with high tension can cause serious injuries to passengers if 
torn;

 13. Out-of-sync sensors show the dynamics of oscillation changes between all steps of the escalator, its hand-
rails and other parts of the equipment. Out-of-sync is necessary to reduce the peak load and to avoid 
escalator destruction;

 14. Speed sensors monitor the limit of speed of moving part rotation. Exceeding the speed admissible limits 
may cause serious consequences, even for human victims when passengers die after falling on the platform 
or escalator steps in the case of a brake system failure;

 15. Pulse sensors make it possible to detect the need for repair of the escalator due to wear of steps and damage 
to connections.

Sensors are not the only data-producing devices; an important source of data about the escalator is technologi-
cal microphones. There are microphones that are de-signed in such a way that the audibility of sound (amplitude 
of sound pressure) is the same regardless of the distance: 10 m, 50 m, 100 m. Filtering is carried out according 
to selected frequencies: voice, mechanisms, etc., which helps to eliminate noise and to listen only to the target 
frequencies. Such audio streams can be stored in a computer system for subsequent analysis.

All-weather high-resolution video cameras with additional detailing are also used in the subway. Video 
streams from them can be stored for a short time and for a long time in a computing system using storage servers. 
Based on their analysis, the current statuses of objects under monitoring can be recognized.

Safety assurance indicators and possible ways to enhance the values. Upper-level indicators 
may be assessed in terms of cases of prevented passenger health injuries (psychological, physical and others)24,25.

These indicators depend on a number of passengers, the time period under consideration and on the safety 
system efficiency; the latter can be assessed by the speed and accuracy of identifying and forecasting threatening 
situations and by the timely formulation and implementation of appropriate control measures for changing the 
transportation process and passenger behavior. The speed and accuracy of threat detection and forecasting and 
the efficiency and adequacy of safety control solutions depend to a large extent on the methods of information 
collection and processing and on the software and technological tools being used. Various methods provide 
different capabilities for processing video, audio streams and other signals from sensors. It is desirable to find 
and use appropriate methods to achieve the set goals while meeting a number of objective conditions. It is clear 
that passenger safety assurance is subject to the characteristics and quality of data on the status of the process 
under control being obtained from sensors of different kinds. It is desirable that the sensors provide complete, 
timely and accurate information.

In particular, the accuracy and speed of receiving information about passenger safety can be enhanced 
through the use of cloud and fog computing. Due to the high performance of cloud systems, it becomes pos-
sible to use more complex algorithms that provide high accuracy of object recognition in video images but have 
stronger requirements for computing resources.

The high performance of modern cloud and fog systems allows the processing of video streams together with 
audio streams using artificial neural networks. Such joint data processing results in significant enhancement 
with regard to the accuracy of threat detection. In fog and cloud systems where sensor information is processed 
simultaneously with audio and video information, the accuracy of determining threatening situations can be 
increased by tens of percent compared to conventional solutions.

The speed of detecting threatening situations can also be increased by developing and introducing a special 
mobile application for smart phones of safety control operators. Such an application gives the smart phone owner 
the possibility to have information about events that are registered by various systems and by other subway 
employees. In the case of a threatening situation, subway employees will be able to enter the mobile applica-
tion using one key press and evaluate the situation on the platform, lobby or escalator. Taking advantage of the 
developed mobile application that receives status signals from a complex system, it is also possible to increase 
the efficiency of decision making. A new mobile application will increase the responsiveness of staff, ensuring the 
prompt exchange of information between the operators of the escalator and CCTV. In addition, a new approach 
allows the saving of human resources. A person cannot be in a state of constant tension for a long time, which 
leads to nervous system exhaustion. One of the advantages of the proposed approach is the reduction of the active 
involvement of employees in routine activities. Auctioning of the staff is required only at the critical periods 
when the system identifies threatening situations and requires decision making.

Conceptual safety model
To develop a comprehensive method and advanced passenger safety system, some considerations are first given 
to a conceptual model that ensures the required level of safety (Fig. 1). The main idea of the proposed conceptual 
model is to organize joint processing of data received from various sources to recognize threatening situations 
in time.

Passenger safety on the escalator is ensured by processing collected data in an intelligent information pro-
cessing system in several contours. The contour of information processing from sensors makes it possible to 
provide escalator operators and safety responsible staff with a "basic picture" of emerging situations. Data to 
be processed in the first turn are those obtained from radioactivity, smoke and static voltage detection sensors. 
Processing and analysis of video information helps to identify inadequate behavior of a passenger or a group of 
passengers. Audio information processing completes the formation of a "safety picture", which gives the operator 
a comprehensive representation of the events taking place on the escalator, for example, equipment failure, fire, 
terrorist threat or hooligan action.
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Data processing is carried out in a closed loop in one or more contours wherein both data of the same type 
and of different types can be processed; for example, data from sensors and video information can be combined, 
or all three types of data—data from sensors, video and audio information—can be treated simultaneously. Data 
processing results obtained in different contours comply with each other. All implemented processing actions 
are interconnected, thus forming a single process aimed at obtaining information ensuring passenger safety.

In the case of a malfunction of one of the data collection systems, for example, video cameras, the safety 
control operator may receive operational data from sensors. In the case of sensor failure, data transmitted from 
process microphones can be used.

For data processing, artificial neural networks and machine learning methods can be used. For example, 
video stream processing methods of artificial intelligence being applied to the sequence of frames are capable 
of detecting objects that can affect the safety of passengers, while the identification problem is solved taking 
into account the context that is determined by the data from other sources. Solving the identification problem 
in such a statement, as a rule, requires the use of several neural network methods, a significant part of which 
includes complex calculations.

Application of the proposed conceptual safety model makes it possible to increase the validity of the generated 
results as well as the reliability of passenger safety systems.

New passenger safety systems based on joint data processing can offer solutions for the following new classes 
of problems:

• Prevention of terrorist acts and hooligan acts;
• Provision of timely assistance to the passenger in case of a sharp deterioration of health;
• Ensuring safety of the passenger in case of malfunction of escalator equipment or its parts (electricity, 

mechanics, etc.);
• Timely assistance to low-mobility passengers (disabled persons);
• Registration of a chronology of events in case of an emergency.

To solve the above problems, the system can propose the following solutions depending on the gravity of the 
situation and the currently available means to fix it:

• Call an operator to assist a disabled person in case of his inability to move independently and absence of an 
accompanying specialist;

• Stop the escalator in case of items stuck, in particular shoes, clothes or body parts in escalator equipment 
mechanisms (comb, side parts of balustrade, handrails, etc.);

• Call an ambulance if the passenger falls from the escalator and is injured;
• Call the police and special services in case of a terrorist threat;
• Call the firefighter, stop the escalator, turn on the fire prevention system, de-energize the escalator in case 

of smoke, fire or open burning, previously persuading in the high degree of danger of the situation that has 
arisen, i.e., making sure that the smoke is not the result of cigarette smoking or the actions of a minor bully 
who has set fire to an article or other objects;

• Deenergize the escalator and call emergency services in case of electrostatic failure;
• Switch on the backup brake system in case of failure of the main brakes or damage of the escalator engine or 

side handrails.

Passenger safety assurance method
The process of ensuring passenger safety on the escalator is based on the complex processing of data obtained 
from surveillance cameras, from technological microphones and from diverse  sensors26. Collected information 
is processed by the system using artificial intelligence methods. These methods include recognition of signals, 
objects, situations, forecasting of potential consequences, intelligent development and implementation of control 
solutions. If the situation is insecure, a so-called signal status is generated. The status signal is an information 
message that contains data on the current situation and its type (secure/threatening/emergency). It can be pro-
cessed both inside the intelligent technical passenger safety control system and sent to the smartphone of the 
safety control operator.

Figure 1.  Conceptual safety model.
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The safety operator, having received a signal status informing about the occurrence of a threatening or emer-
gency situation, can act in three different ways.

The first way is to take control to help passengers take responsibility. In this case, the operator of the technical 
system evaluates the situation and makes decisions on measures to prevent passenger safety threats. He or she 
may also share responsibility with senior operators and various subway services. The second method involves 
monitoring the operation of an intelligent technical system, making changes in its solutions or approving them. 
The third way is to pass all the control functions to the intelligent system.

The process of intelligent passenger safety control on escalators is shown in Fig. 2.
Passenger safety systems, realizing the process shown in Fig. 2, also provide records of events, situations that 

have arisen and the details of their development (date, time, type of event, level of danger, place, etc.), circum-
stances under which the situations have arisen, services involved in situation elimination and potential negative 
consequences.

For intelligent signal processing targeted at solving problems of recognition and forecasting of events, it is 
proposed to use a neural network  system27–29, the generalized structure of which is shown in Fig. 3.

This system consists of two identical recurrent neural networks and a control unit (Fig. 3). For the perception 
of signals from sensors by this system, they must be converted into sequences of the sets of single pulses (SSPs). 
In the general case, each original signal can be decomposed into spatial-frequency components. In this case, each 
component can be transformed into a sequence of single pulses with the repetition rate and phase as functions 
of the amplitude and phase of the component. As a result, when considering a process in discrete time, we have 
a sequence of sets of single pulses.

The first RNN is responsible for the continuous formation and storage of the model of input signals and the 
results of their recognition. In this RNN, the formation of a model of input signals is implemented by binding 
them on network elements, taking into account previously stored information. The continuously updated neural 
network building model provides the most complete identification and memorization of patterns inherent in 

Figure 2.  The process of intelligent passenger safety control on escalators.

Figure 3.  A neural network system with continuous learning for recognizing and predicting events: RNN—
recurrent neural network; SSPs—sequences of the sets of single pulses.
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input signals. Recognition of signals and their characteristic events using this model comes down to binding them 
with known memorized facts and extracting them from associative memory. Prediction based on this model is 
feasible with an accelerated call from associative memory of future events by processed signals. To implement 
such a prediction without interrupting the learning process of the first RNN, the second RNN is used.

The second RNN is used only for predicting events. In the interest of prediction, the control unit periodi-
cally reads the status information of the first RNN into the second RNN. After reading this information in an 
accelerated time, the operation of the second RNN and the formation of the forecast begin. To improve the 
prediction accuracy on short and noisy signal samples, the RNN provides the possibility of their restoration 
by controlling the directionality of the associative recall of signals from memory. The diagram of the  RNNs30,31 
used is shown in Fig. 4.

The features of this recurrent neural network are as follows (Fig. 4). Due to the spatial shifts of the sets of 
single pulses transmitted from layer to layer, this network can be endowed with various logical structures (linear, 
spiral, loop, and others). This provides an extended spatiotemporal linking of signals in associative memory. Due 
to the priority of strong ties, a one-to-one correspondence between the entry and exit elements is realized. An 
example of the loop structure of such an RNN is shown in Fig. 5. Other structures can be found  in27–30, which 
are the author’s previous works.

Undoubtedly, the size of logical fields in this neural network is determined by the size of the input SSPs, which 
can be composited and carry simultaneous information about many initial signals from sensors (Fig. 5). Note 
that sequences of sets of single pulses at the RNN outputs can be converted into corresponding original signals.

The use of such solutions for intelligent processing of signals from sensors in the interests of ensuring the 
safety of passengers on escalators makes it possible to expand the possibilities of both recognition and predic-
tion of threatening events.

Figure 4.  Flow diagram of a recurrent neural network.

Figure 5.  An example of a looped logical structure of a recurrent neural network: 1—lines of dividing network 
layers into logical fields; 2, 3—directions of movement of the sets of single pulses along and between the layers; 
4—neurons.
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Solution algorithms
To ensure the safety of passengers, it is proposed to develop an intelligent system that provides joint processing 
of data from various  sources32–34. The general functioning scheme of the system is shown in Fig. 6. The system 
assumes wide usage of the Internet of Things (IoT), fog and cloud computing  technologies35–37.

Joint data processing in the system is implemented through the use of fog and cloud computing technolo-
gies. Cloud technologies enhance information processing performance by several times, and the use of fog 
environments reduces delays to a significant extent. As a result, the use of fog and cloud technologies ensures 
data processing by machine learning methods and neural networks, providing necessary performance for the 
timely detection of threatening and emergency situations.

Data processing in the safety system involves usage of specially designed algorithms (deep learning, con-
volutional and recurrent neural networks, etc.) for the processing of certain types of data, in particular video 
and audio information, sensor data. These algorithms are combined in the frame of the general method of joint 
processing of data received from three sources.

Data collected from video cameras, microphones, analogous and discrete sensors are processed in the cloud. 
For their processing, ready-made machine learning models and neural networks are used, and new models are 
being developed. The selection and creation of machine learning and neural network models is controlled from 
a fog environment by generating scripts based on the characteristics of the obtained data (image characteristics, 
sound sampling rate, etc.) and transmitting scripts together with the collected data to the cloud.

The video processing algorithm involves the following steps:

1. Transmission of a group of frames from a fog environment to the cloud environment;
2. Dynamic Python script editing to build machine learning and neural network models and transfer them 

to the cloud; parameters of collected data (dimensions of images, names and paths, format) are transferred 
together with the scripts;

3. Selection of a profile for machine learning and neural network learning in the cloud, containing prepared 
in advance image bases for building models according to the list of keywords;

4. Dynamic editing of the image training base and creation of additional models taking into account illumina-
tion, weather conditions (frost, haze, high light radiation, rain and snow);

5. Temporary additional training on the cloud server in case of a strong change in the angle of the video camera;
6. Search for the objects in images;
7. Identification of objects using images shot from different angles and by different surveillance cameras;
8. Dynamic selection of models that were built in the cloud in advance using a large set of images for their 

construction and taking into account the experts’ opinion. Selection is made according to a keyword or a 
list of keywords.

9. Calculation of the refined probability of finding an object and transfer of information to a fog computing 
environment.

The logic of audio information processing is similar, but instead of images, the fragments of audio recordings 
lasting 2–3 s are transferred to the cloud.

Figure 6.  Logic structure of a system functioning in a fog computing environment.
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The algorithm of processing data from sensors is similar to the processing of audio information, since at 
the physical level, information obtained from sensors is analogous and is represented in the form of a sinusoid, 
similar to audio information. Exception is made only for discrete sensors.

Configuration of storage for individual images under framing a video stream and storage for log files and 
debug information is performed once during program installation.

Installation and configuring of drivers for special technological microphones, connecting audio streams in a 
program installed in a fog environment is also carried out once when installing the program.

The method of complex data processing based on algorithms for processing data from single sources involves 
the following steps:

1. Estimation of the probability of occurrence of a certain event by means of processing information from 
sensors;

2. Refinement of the information about the event on the basis of the data from three information sources: 
video, audio, sensors; output of a message about threat level, location, frame and sound to the operator’s 
smartphone.

Algorithm 1. Processing of information from different sources (video-, audio-, sensors)

Input: transmission of group of cadres yv; transmission of sound fragments ya; transmission of sensor information ys; 
acceptable probability of object detection tv,a,s; objects matrix Uv,a,s.
Initialize: number of spare cloud systems γlist = 1L; number of a cloud system C = 1; list of cloud systems with 
parameters CLS: Γ1 = IL, B1 = IM and delay range from the first cloud Rd = [0, L − 1]; iterations counter r = 0.
Assessment of cloud system performance:
1: Σ0 ← diagClouds(Γ1 ⊗ B1, Γ2 ⊗ B2, . . . , ΓC ⊗ BC).
2: Σh = Σ0 − Σp * TestAudio * TestVideo * TestSignals.
3: µh ← λ−1ΣhUPHyp.
Information transmission from the environment to the cloud environment:
4: for iCd = 1, 2, . . . , CountClouds do
5:       for iFg = 1, 2, . . . , Counts do
6: for i = 1, 2, . . . , CountFragments do
7:             Ld ← Transmit(yv,i ⊗ ya,i ⊗ ys,i), and update γlist with γv,I and γa,I and γs,I.
8:          end for
9:      end for
10: end for
Information processing in the cloud:
11: p(0) ← FindIndex(0 <γlist <γth).
12: if p(0) is not empty then
13: DynamicEditScriptPython(tv,a,s),
14:     ChangeProfile(Uv,a,s),
15: EditDatasets(yv,i ⊗ ya,i ⊗ ys,i),
16: AdditionalRetraining(tv,a,s ; yv,i ⊗ ya,i ⊗ ys,i),
17: SearchComplexObjects(Uv,a,s ; yv,i ⊗ ya,i ⊗ ys,i),
18: RecognizeDifferentSources(tv,a,s ; Uv,a,s),
19: DynamicSelectionML&NN(Uv,a,s),
20: frequently(r) = GetComplexProbabilityObject(yv,i ⊗ ya,i ⊗ ys,i),
21:     γlist ← γlist and γlist[p
22:       CLS ← Split(CLS, p(0)), where CLS is split to p(0).
23:          p(1) ← FindIndex(γlist ≥ γth) and UP ← UP[:, p(1) ⊗ (1 : M)].
24: end if
Stop the condition check for the result output into the computing environment and then to the smartphone of 
the safety operator:
25: r ← r + 1.
26: return the subpart of cloud system performance assessment until r ≥ rmax or frequently < tv,a,s.
Output: output of complex probability value based on three information sources
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System architecture
The proposed data processing system has a three-level architecture:

1. End user application is installed on smartphones under iOS or Android;
2. The program for data processing control is deployed in a fog computing environment;
3. Data processing program is deployed in the cloud.

Processing of all types of data takes place in the cloud using the high-performance system Microsoft Azure; 
obtaining data characteristics necessary for control and carrying necessary data preprocessing is performed in 
a fog environment, and the result is delivered to the safety operator’s smartphone or tablet. Cloud technologies 
involve the use of the control console (through a website or command line), which simplifies to a large extent the 
deployment of applications. Options for selection and configuration of different versions of operation systems 
(Windows, Linux, Mac, FreeBSD, CentOS, etc.), necessary software (various web servers, machine learning 
libraries, network administration programs, remote control, etc.) are provided via control console. At the fog 
level, virtual machines are used, which, unlike the traditional VMware Workstation (https:// www. vmware. com/), 
Virtual PC from Microsoft, can be adapted to certain technical means (taking into account storage parameters 
and systems, chipsets, central and graphics processors). Adaptation to hardware parameters enhances the effi-
ciency of virtual machine resources by the users of applications.

Ready-made servers can be adapted to solve certain problems in the fog environment. For example, a Cisco 
UCS C480 ML M5 server that differs from a user home computer by price (20 or even 30 times more expensive) 
and by pre-installed software, necessary drivers, components (discrete and analog input boards for video, audio, 
sensors), has a processor with a powerful NVIDIA Tesla V100 RAM graphics core, 96 GB of RAM, a control 
console that optimizes the resource consumption of a fog computing environment, is offered for use for solving 
tasks using machine learning and neural networks. Servers that are adapted for other tasks (production process 
control, banking operations, etc.) are al-so provided.

System implementation
The application for Android was developed in Android Studio 4.2.1 (https:// devel oper. andro id. com/ studio), 
provided by Google. The development environment is widely used by programmers because it is free. The new 
Dart programming language, which is cross-platform, allows the use of developed applications for iOS. In addi-
tion, the Dart language is supported by Visual Studio from Microsoft under Windows 10, as well as IntelliJ IDEA 
under the Linux family of operating systems.

The control program was developed in Java in the NetBeans 12.4 environment (https:// netbe ans. apache. org). 
Java supports many network protocols and provides cross-platform features and easy portability of applications. 
The developed control pro-gram interacts with video cameras and other means used for safety data collection. 
The work is organized according to the principle of signals: if a signal comes from one device, then another 
device or program in the system begins to work. For example, a video camera driver transmits a signal status to 
a fog environment in which the video camera is working. The program opens a stream of video information and 
begins reading, decoding and story boarding. Audio and video flow processing follows the principle that if one 
cloud server does not provide high data processing performance, then other servers with higher performance 
are to be involved in the processing.

Data from the fog environment are transferred to the cloud under the HTTP protocol since this protocol is 
supported in almost all networks. Information exchange takes place in XML format, and data are loaded in JSON 
format using web-based technologies PHP, JavaScript, JQuery. The choice of these technologies set was due to the 
ease of use, relatively low cost of development, the openness of the community of software developers and great 
popularity, presence of a large number of examples to solve the problems of data exchange and good documenta-
tion. The program for the cloud was developed in Qt Designer 5.15 (https:// www. qt. io). Version 5.15 is selected 
because version 6.1 is not stable enough at the moment. Development was carried out in C +  + using TensorFlow 
library 2.5.0 (https:// www. tenso rflow. org), which is installed separately or through the Qt pack-age manager.

Data and processing results are stored in the Oracle DBMS, which is located in 64 TB of cloud storage and 
can be extended. Interaction with the database takes place using the Qt QOCI driver, and it is possible to make 
connections to other databases through the drivers QPSQL, QODBC, QMYSQL, QDB2, QIBASE, QTDS, and 
save a temporary data array (2–3 weeks) in the cloud. The application of Oracle DBMS in Azure Storage accounts 
for the fact that its performance is higher under frequent INSERT requests. In addition, Oracle DBMS has many 
optimizations for various technical means, as well as for various complex and frequently executed requests.

Case study
The system developed by the authors was used to monitor the safety of passengers on the escalators and to 
provide assistance if necessary.

The performance of the system was assessed by the following indicators:

1. Information processing performance;
2. Accuracy of situation identification;
3. Operativeness of decision-making and assistance;
4. Satisfaction with the system (usability, ergonomics, etc.).

https://www.vmware
https://developer.android.com/studio
https://netbeans.apache
https://www.qt.io
https://www.tensorflow.org
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The developed system includes three programs. The first program is located in the cloud (Fig. 7). The pro-
gram was installed on a Microsoft Azure cloud server; network access was configured through the administrator 
panel. Using the administrator panel (access through the Remote Desktop Connection Manager (RDCMan)), 
the remote desktop was also configured, and all the necessary cores and processor types, RAM, operating system 
characteristics and preinstalled software were selected.

The user interface of the program that runs in the cloud and deals directly with image processing is shown 
in Fig. 7. On the left side of the graphical form of the program (Fig. 7), the statistics of connections to the cloud 
are shown: IP address, attempt to establish a VPN connection (successful or unsuccessful), the status of data 
delivery and data transfer process, etc. There is a Clear button for clearing statistics and a checkbox; when it is 
selected, connections are made only to addresses included in the list of valid addresses, which are configured in 
the config.ini and settings.ini configuration files in the directory of the application.

In the center of the graphical form, a panel for algorithm selection is placed. For example, as shown in Fig. 7, 
an algorithm that allows receiving requests from a program installed in the fog environment can be selected. The 
program also provides logging with the ability to view logs through the web interface. Clicking the Open button 
opens the browser page, which displays all the events in the system registered in logs. There are data processing 
process control buttons: Restart, Stop, Process, and a checkbox to automatically start the process; the statuses 
of the processes are saved in the config.ini file in the program directory. On the right side of the form, the last 
found object and additional information about the image are displayed.

The second program coordinates the work of the system (Fig. 8), and it plays the role of the information flow 
manager. The program was developed in Java and deployed in the fog computing environment. While processing 
video data, the program decodes the video stream from one camera to 12 frames per second (using settings, it 
is possible to increase or decrease the number of frames), and a package with images is sent to the cloud every 
4 s. Frames have the format Full HD with a resolution of 1920 × 1080. In the fog environment, the storyboard of 
a video stream can process information from 5 cameras, not more.

Figure 7.  User interface of the program deployed in the cloud computing environment.

Figure 8.  User interface of the program deployed in the fog computing environment.
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The user interface of the program that operates in the fog environment and controls the transmission of 
information flow from three data sources to the cloud is shown in Fig. 8. On the right side of the main graphical 
form of the program, the video image obtained from one of the surveillance cameras is presented. The camera is 
selected from the list located on the right of the image (according to Fig. 8, only five CCTV cameras are active: 
Cam. 1–5). The checkbox ‘Connected only’ allows display only active cameras, and cameras that are not con-
nected are hidden. It is possible to connect additional cameras through the config.ini and settings.ini configura-
tion files in the program directory. At the bottom of the form, there is a button for checking the connection of 
video cameras "Check Connection" and a button "List of servers in the clouds," which allows download a list 
of all cloud servers with logins, passwords, etc., access settings. At the bottom of the form, information is dis-
played about the status of the data transfer process, connection of the fog environment with the cloud, errors, 
etc., diagnostic messages.

In the center and to the right side of the form, there are panels for the following data processing settings:

1. Computing environments: Edge, Cloud and All;
2. Parameters of microphones: range (near, medium, far), noise reduction, sensitivity, frequency filtering;
3. Set of sensors (Motion, Radiation, Smoke, Light, Fire, Weight, Shake, Shock, Drop, Voltage, Engine, Handrail, 

Synch, Speed, Pulse), it is possible to select all or only separate sensors (Together button).

Figure 9.  User interface of the application for the operator’s smartphone.
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It is possible to maintain a debug log that can be turned on and off using the Debugging button; to record 
logs, the "Save log" switch is provided. At the bottom of the form, there are process and cancel buttons to start 
and stop the processes of sending data to cloud programs.

The third program displays information on the situation for the operator in a user-friendly and up-to-date 
form (Fig. 9).

At the center of the smartphone screen (Fig. 9), a diagnostic message on the danger level is displayed. The con-
trol operator can mark the message as ATTENTION and add a comment (NOTE). The RETURN button returns 
to the main menu. To assess the situation on the escalator, the operator is provided with information about the 
position of the escalator (at the bottom of the screen) and an image of the escalator (at the top of the screen).

The developed system was used for experimental research of the proposed method for monitoring the safety 
of passengers on escalators. To replicate the results of the research, it is necessary to connect all of the listed sen-
sors, video cameras and microphones to the expansion cards of the Cisco UCS C480 ML M5 server in the foggy 
environment, register on Microsoft Azure, select an instance of D2 v3 and start the virtual machine, connect 
via Microsoft’s RDCMan 2.7 remote desktop and install program for the cloud. The same should be done in the 
foggy environment. On a Samsung Galaxy J3 phone (or any other phone with similar specifications to Android 
OS, HD sAMOLED 5.0" screen, 4-core processor, and 8 GB memory) in developer mode, it is necessary to copy 
and install the Android application. Copy the processing time of the information of each package from the text 
logs of the programs and paste into Excel, apply filtering and perform aggregation (autosum, average, etc.), fill 
in the results in tables.

The results of experimental studies showed that video processing in a fog environment using cloud technolo-
gies increased the speed of detecting objects in images by an average of 3.6 times (Table 1). The columns in Table 1 
indicate the time (milliseconds) of image processing in fog, edge, cloud and all, and the last column shows how 
many times more relative to all and fog.

The use of three data sources (video, audio, sensors) made it possible to improve the accuracy of determining 
situations by 26% (Table 2).

The sensors give the largest increase in the number of detected events and have the lowest probability of error 
in determining emergencies. Video processing has the greatest effect in detecting threatening situations (first 
row of Table 2), and audio processing (62.5% versus 68.3%) has the greatest effect in determining safe situations. 
However, processing data from all three sources provides more accurate identification of all situations.

To assess the accuracy of determining situations, a sample consisting of 3964 situations was considered.

Table 1.  Assessment of video processing (object detection) performance.

Object type and number Fog Edge Cloud All Speed increase

Footwear clasping 951 145 3178 47 43 3.37

Objects stuck in the comb 739 164 4109 43 41 4

Pinching of objects and body parts with handrail 372 106 2416 32 31 3.42

Getting into handrail receiver 483 152 4059 38 37 4.11

Smoking 571 133 3724 41 40 3.33

Alcohol consuming 794 146 3056 39 37 3.95

Fall at stages 587 165 4124 46 43 3.84

Ignition 209 122 2937 37 35 3.49

Smoke 174 138 2970 42 41 3.37

Speed increase 83 154 4015 45 43 3.58

Radioactive contamination 27 159 4613 42 39 4.08

Light emission (abnormal) 879 121 2652 36 35 3.46

Light flashes 691 105 2438 34 33 3.18

Unstable steps motion 846 167 4347 46 45 3.71

Electrostatic impact 257 142 2942 39 38 3.74

Motor and/or electrical failure 174 125 3521 37 36 3.47

Cumulative average: 3.63125

Table 2.  Assessment of situation identification accuracy using data from three data sources.

Situation type and number Video- Audio- Sensors Altogether Errors Accuracy increase

A Secure situation 1724 62.53% 68.3% 56.9% 73.1% 2.51% 8.06%

B Threatening situation 1293 56.7% 52.12% 82.1% 86.5% 3.19% 26.61%

C Emergency situation 947 49.81% 75.23% 93.48% 94.71% 0.38% 44.52%

In total, by average: 26.397%
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Based on the data on the system operation during the pilot operation (at the test bench, for six months, from 
March to September 2021), estimates of the speed of decision-making by the operators were obtained (Table 3).

The new system has made it possible to enhance the performance of decision-making by almost 30% (29.79%). 
Services for disabled persons, electricians, plumbers and escalator staff (mechanics and support staff) are at the 
top in the decision-making list regarding the speed of response. These results are because the implementation 
of the new system has reduced the time to detect threatening and emergency situations and transmit data on 
them to subway services.

The results of the usability assessment are shown in Table 4.
To assess the usability of the system, a standard psychosocial loyalty questionnaire was used with 100-point 

scales, where 50 points can be scored to express negative attitudes and 50 points to express positive attitudes. 
Columns in Table 4 indicate: Pro—approving answers, Cont.—dissatisfaction, Lie—false and contradictory 
answers, Neutral—found it difficult to answer and neutral answers. Questionnaires were completed anonymously, 
without any personal information, except for the type of position held in the organization. The average ratio 
of positive to negative responses was 27.1%. The most positive responses were received from escalator opera-
tors and MMG assistance employees (assistance for disabled), which can be explained by the appearance of an 
application on their smartphones that displays operational data on events occurring on the escalator and allows 
viewing images of the escalator.

Conclusions
The analysis of existing systems allows us to conclude that they are not capable of providing data processing per-
formance and accuracy of the results to ensure a sufficient level of safety on the escalators. The authors propose 
an approach to increase the accuracy of detecting and recognizing threatening situations of different types by 
virtue of intelligent data processing from three sources (video, audio and sensors) and to increase the efficiency 
of making management decisions. In the interests of this, based on machine learning and recurrent neural 
networks, a new method and algorithms for managing the safety of passengers on escalators are proposed. The 
architecture of a promising safety system and implementation of its components for cloud and fog computing 
environments are developed. Data processing performance enhancement is attained due to the combined use of 
software in the cloud, fog and on user smartphones. In addition, the usage of a smartphone application provides 
easier access to the system for the end users.

The results of the experiments demonstrated an accuracy increase in recognizing situations by 8.11% and an 
increase in data processing performance by almost 4 times when using data from one type of source. Regard-
ing data processing from all three types of sources, the accuracy increases by more than 26%. The speed of 

Table 3.  Assessment of decision-making efficiency.

Event Earlier Now Results

Help to disabled persons 20–30 min 17–26 min 32.8%

Fire department 5–10 min 3–8 min 19.4%

Ambulance 10–20 min 7–16 min 14.31%

Police 2–5 min 1–4 min 8.431%

Anti-terror services (FSS, etc.) 30–40 min 25–37 min 3.49%

Investigative committee 15–20 min 13–19 min 5.27%

Electricians on duty 3–7 min 1–5 min 46.73%

Plumbers (Hydraulics) 7–15 min 5–12 min 32.41%

Mechanics of escalator service (ES) 2–7 min 1–4 min 61.2%

Support group of ES 2–5 min 1–2 min 73.9%

In total, by average: 29.79%

Table 4.  Assessments of system usability.

Staff, number Pro Cont Lie Neutral Results

Assistant to low mobility groups (disabled) 73 34 17 3 49 34%

Escalator operator 89 41 5 1 54 72%

Subway controller 76 32 19 7 49 26%

Guard 91 28 23 9 49 10%

Mechanics specialist 83 23 19 13 58 8%

Hydraulics specialist 79 26 14 11 60 24%

Electrician 62 21 13 24 66 16%

In total, by average 27.1%
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decision making by the control operator increases by almost 30%. The usability of the developed application for 
smartphones is confirmed by the results of psychological questioning of users, according to which the number 
of positive responses about the application increased by more than 27% compared to those on previously used 
systems. The proposed approach seems to be a promising one for the solution of other problems in various subject 
domains. Expanding the scope of the approach application requires further study.

Data availability
All the necessary data to repeat the experiments is here: https:// github. com/ alex1 543/ subbo tin.
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