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Contextual associations 
represented both in neural 
networks and human behavior
Elissa M. Aminoff1*, Shira Baror1,2, Eric W. Roginek3 & Daniel D. Leeds3

Contextual associations facilitate object recognition in human vision. However, the role of context 
in artificial vision remains elusive as does the characteristics that humans use to define context. We 
investigated whether contextually related objects (bicycle-helmet) are represented more similarly in 
convolutional neural networks (CNNs) used for image understanding than unrelated objects (bicycle-
fork). Stimuli were of objects against a white background and consisted of a diverse set of contexts 
(N = 73). CNN representations of contextually related objects were more similar to one another than to 
unrelated objects across all CNN layers. Critically, the similarity found in CNNs correlated with human 
behavior across multiple experiments assessing contextual relatedness, emerging significant only in 
the later layers. The results demonstrate that context is inherently represented in CNNs as a result of 
object recognition training, and that the representation in the later layers of the network tap into the 
contextual regularities that predict human behavior.

Objects do not appear in isolation, but rather embedded within a context. The context of an object includes the 
regularities of the scene in which it is found, the cluster of other objects it is typically found with, and the spatial 
relationships between all of these components. These contextual relationships have repeatedly been shown to 
facilitate human cognition and  perception1–6. For example, faster reaction times and more accurate responses in 
recognizing an object are found when the object is either primed by a contextual association (e.g., contextually 
related  scene7), or when it is embedded in a congruent context compared with an incongruent  context1,2. Thus, 
contextual associations are a strong cue for understanding our visual world and recognizing objects. However, 
what is the nature of these contextual associations and what is the relation between the contextual associations 
and object representations? For example, can contextual associations be extracted purely by exposure in the 
visual domain? And if so, are these types of contextual associations of objects learned specifically to enhance 
object recognition and incorporated in object perception even in the absence of visual background cues? One 
way to address the nature and role of contextual associations is to examine whether context is represented in 
artificial visual models.

Building on decades of work, especially in the most recent decade, computer vision has excelled to the level 
of human performance in recognizing  objects8–10. This is largely due to the development of deep convolutional 
neural networks (CNNs) trained to identify objects in images. CNNs are trained on thousands to millions of 
images to recognize the statistical regularities that indicate an object’s identity. However, it is unknown whether 
a CNN inherently learns and utilizes contextual associations to do this, even though it is not explicitly trained to 
do so. Moreover, if CNNs do learn contextual associations, it is unknown whether these contextual associations 
relate to the ones utilized in human perception.

Some computer vision work has developed models to integrate scene context into object perception explicitly. 
Several studies have incorporated context through object spatial position and camera pose, with small to modest 
improvements in object detection and  recognition11,12. Bell et al. extracted context and object representations 
through distinct CNNs and merged these two representations to improve object classification nearly twofold, 
particularly excelling at detecting small  objects13. These studies suggest that contextual information aids object 
recognition when context is visually apparent. However, whether context is inherently embedded within the 
object representation, even when not visually presented, remains an open question. Answering this question is 
important to understand the similarities and differences between human and computer vision. While multiple 
studies show that long-term contextual knowledge aids object recognition by human observers, even when 
objects are presented independent from context, the question remains whether context inherently facilitates 
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computer vision, without being explicitly modeled. And if so, whether context is covertly represented within 
the representation of objects in a CNN. Extraction of contextual associations during training of artificial object 
recognition algorithms would further support the functional utility of contextual associations for object recog-
nition. It would also demonstrate that context can be defined through regular object and scene co-occurrences 
and provide a framework for predicting the influence and strength of specific contexts on object recognition.

The current study took a multi-part approach to investigating the role of contextual associations in CNNs 
and how this role relates to human perception. We focused on examining contextual associations between indi-
vidual objects (e.g., table-chair) and asked whether these associations are represented in a CNN. To accomplish 
this, the object representation across the units at each layer of the CNN was first examined. We then looked at 
whether the representations of contextually related objects (bike—helmet) were more similar to one another than 
to objects that were unrelated (bike—fork). If so, this would indicate that contextual associations are inherently 
represented in the network even though the network was not explicitly trained to do so. In order to survey a 
wide range of potential contextual associations, 73 pairs of contextually related objects were tested (see Fig. 1a 
for examples). Critically, we extracted the CNN representation of objects depicted in images against a white 
background to prevent confounding the input stimulus with additional contextual information and/or scenery. 
To address our second question—whether the representations of contextual associations in a CNN were related 
to the representations that humans use, the contextual similarity represented in a CNN across the related pairs 
of objects was compared with human performance when rating whether these object pairs were associated with 
one another. A significant correlation between these measures would indicate the similarity depicted in the CNN 
was related to contextual associations used in human perception.

Figure 1.  (a) Examples of the stimuli used. 73 contexts were chosen, each with 2 paired objects. All pictures 
were photographs of objects against a white background. (b) Behavioral validation results. Three experiments 
were used to asses relatedness across contextually related object pairs. These experiments differed based on the 
instructions (Experiment 1 and 2 asked about relatedness; Experiment 3 asked whether the two objects would be 
found in the same picture); and the response choice (Experiment 1 used a rating scale of 6 points; Experiments 
2 and 3 used a two alternative forced choice), see Methods. Across these three experiments, contextually related 
objects were judged as related significantly more than unrelated objects (top row). This is reflected in reaction 
time as well, such that related judgements of contextually related objects are made significantly faster than 
judgements of contextual unrelated objects. Error bars represent standard error of the mean.
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Results
Validation of stimuli. Contextual associations between objects were first assessed in three human behavio-
ral experiments. The three experiments were treated as replications in demonstrating the effect across slight vari-
ations in instructions as well as independent, non-overlapping groups of participants. In these experiments, two 
images belonging to two object categories (e.g., an easel and a palette) were presented simultaneously and par-
ticipants were asked to judge whether the objects were related. In all experiments, 73 pairs of contextually related 
object categories were assessed. To make sure judgements generalize beyond exemplar-specific attributes, for 
each object category (146 object categories, comprising the 73 pairs) five different exemplars of the object were 
employed. For example, five different pictures of hairdryers and five different pictures of barber chairs comprised 
the two object categories that as a pair form the barber context. In the experiments, each context was represented 
across four different trials: two trials in which both objects were contextually related; and two trials in which 
the objects were unrelated. Unrelated pairs consisted of swapping object categories from the contextually related 
pairs (e.g., hairdryer—bird). Relatedness was assessed using three different tasks while presenting two objects 
simultaneously, side by side: in Experiment 1 (N = 32), relatedness was assessed on a 6 point scale, such that each 
pair of objects was rated from unrelated (1) to related (6). In Experiment 2 (N = 20), a two-alternative-forced-
choice was employed, asking participants to press the button (s) if the objects were related, and another button 
(d) if the objects were unrelated. In Experiment 3 (N = 20), participants pressed a button (s) if they expected to 
find the two objects in the same picture, and another button (f) if they did not. For all three tasks, participants 
were asked to respond as quickly and as accurately as they could.

Results validated that contextually related objects were indeed more strongly related to one another than 
unrelated objects (see Fig. 1b). In Experiment 1, contextually related object categories were rated as more related 
(mean 5.02) than unrelated object categories (mean 1.88; t(72) = 44.48, p < 4.09 ×  10–54). Participants were also 
faster at rating the contextually related objects as related (mean 1.18 s) compared with the unrelated object cat-
egories (mean 1.2 s; t(72) = −2.09, p < 0.04). When examining whether these ratings were stable, we performed 
a split-half analysis and compared the ratings across each half of the participants. Ratings were significantly 
correlated suggesting a stable reflection of context (r(71) = 0.691, p < 8.5 ×  10–9). These results replicated across 
the two additional experiments. In Experiment 2, when tasked with a two alternative forced choice, participants 
rated contextually related object categories faster and as more related (mean response: 84% related responses, 
reaction time (RT): 0.93 s) compared with contextually unrelated pairs of object categories (mean response: 9% 
related responses, RT: 0.98 s; paired response t-test: t(72) = 47.22, p < 6.35 ×  10–56; paired RT t-test: t(72) = -6.28, 
p < 2.20 ×  10–8). In Experiment 3, when asked whether the objects belonged in the same picture, related object 
categories were more predicted to appear in the same picture (mean response: 86% same picture) and were 
responded to faster (mean RT = 0.88 s) compared with unrelated objects (mean response: 9% same picture, mean 
RT: 0.94 s; paired response t-test: t(72) = 55.59, p < 6.91 ×  10–61; paired RT t-test: t(72) = −7.6, p < 8.29 ×  10–11). 
Thus, given our behavioral data we can confirm that humans do perceive the contextually related objects as 
strongly related to one another compared with the unrelated objects.

Neural network representation of context. Would a CNN also treat contextually related pairs of 
objects as related, even though it was not explicitly trained to do so? To test CNN context-integration, the repre-
sentation of an object across units in a layer was compared to the representation of a contextually related object 
and to the representation of an unrelated object. Stronger similarity to the contextually related object compared 
to the unrelated object would indicate that contextual associations were included in the object’s representation. 
We first tested context-integration with a popular benchmark CNN, VGG  1610, trained on image recognition 
with the ImageNet  dataset14. To provide a framework in which to interpret the results of the contextually related 
pairs, we first compared the representations of objects that belong to the same category. This comparison dem-
onstrates similarity of representations in the CNN based on object category membership (see Fig. 2), as the 
network was explicitly trained to link together objects in the same category. As mentioned above, each object was 
depicted in five different exemplars. To look at categorical representation, the similarity of the CNN representa-
tions across the different exemplars of the same category was evaluated. Similarity is measured as the ratio of 
average pairwise similarity of stimuli within a category (bird 1 vs bird 2, bird 1 vs bird 3, etc.) versus the average 
similarity outside of the category (bird 1 vs palette 1, bird 3 vs palette 5), even contrasting stimuli from the same 
context but still different category (bird 1 vs birdhouse 1). Ratios above 1 would indicate that there is greater 
similarity across categorically related objects than unrelated objects; thus, we expected similarity ratios above 
1. Results showed that objects that are categorically related to one another (e.g., two hairdryers) are represented 
more similarly in every layer of the CNN studied above the first layer (Fig. 2c). Ratios were consistently above 
1.1 starting at layer 4 (t(141) > 14.8, p < 2 ×  10–29) and grew larger with each subsequent layer (the output layer of 
the network was not included in the analysis). The maximum similarity was found in the last layers (ratios 2.23 
and 3.05, in layers 25 and 27); this heightened similarity was expected since a more invariant representation of 
category is thought to be represented higher in the network. In addition, we asked whether the category simi-
larity also included visual similarity. To assess this, we analyzed the similarity of pictures of objects within the 
same category compared to outside of the category in the pixel domain, as well as using Histogram of Gradient 
 (HOG15) visual features. To this end, we did indeed find that pictures of objects within the same category (e.g., 
bird 1, bird 2, bird 3, etc.) were more visually similar than pictures of objects across categories (t(141) > 8.81, 
p < 1 ×  10–14).

Next, in comparison to categorical relationships, contextual relationships were investigated. These relation-
ships are not explicitly trained but are rather implicitly learned based on statistical regularities found in the 
training stimuli. We found contextually related pairs of objects were represented more similarly in the network 
(despite not looking like one another, e.g., lamp-chair) than unrelated pairs (e.g., lamp-stroller). Two contextually 
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related pairs had maximum contextual similarity ratios several magnitudes above the mean. These were con-
sidered outliers and were removed from subsequent analyses to prevent false inflation of the results. Thus, all 
analyses henceforth included 71 contexts. Surprisingly, the level of context-based similarity was significant at 
every layer studied above the first layer. Ratios were consistently above 1.01 and significantly above 1 starting at 
layer 4 (t(70) > 8.5, p < 3 ×  10–12). The magnitude and significance of the ratio grew with each subsequent layer, 
reaching the maximum similarity in the last hidden layers of the network (ratios 1.62 and 2.01, in layers 25 and 
27). Naturally, the degree of context similarity was less than the similarity exhibited for categorical relationships 
(Fig. 2c), as would be expected given the network is trained to provide explicit output identifying the object 
category. Nevertheless, although the network was trained to recognize individual object categories, the network 
also implicitly represented contextual associations between objects. In support of this analysis, we also assessed 
the visual similarity of object pairs using pixel similarity and HOG features to determine whether contextually 
related pairs were more visually similar than unrelated pairs. We found that contextually related pairs of objects 
were not significantly more visually similar than unrelated pairs of objects (t(70) < 0.81, n.s.).

Correlating contextual processing in human behavior and in neural network representa-
tion. The critical test in our analysis was to determine whether the representation of contextual associations 
in a CNN had any relation to the influence of contextual associations on human behavior. To address this, Pear-
son correlations between the behavioral performance and the similarity between the CNN representations were 
computed. The similarity measure used to represent context representations in the CNN were the ratio of the 
similarity between paired objects used in the behavioral experiment over the similarity of unrelated, unpaired 
objects. To do this, we used the maximum similarity ratio value extracted from the CNN. Comparing across all 

Figure 2.  (a) Examples of the contrasts of interest. Five different exemplars of each object were used. Category 
similarity was assessed by comparing representations in the CNN across exemplars of the same category (orange 
outlines). Context similarity was assessed by comparing the representations of exemplars across the object 
paired categories (e.g., one easel and one palette exemplar, blue outlines). (b) Example of an ideal similarity 
matrix for each comparison using simulated data. (c) Representational similarity of images in the same category 
(orange) and same context (blue) at each layer of VGG16 CNN. Similarity computed as ratio of average in-group 
versus out-group similarities for each group. Error bars represent standard error of the mean.
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network layers, the maximum ratio for the contextually related pairs of objects was found at the highest hidden 
layer (layer 27) in all but 1 of the 71 context pairs (the defiant context’s maximum ratio was found at the penul-
timate layer, layer 25). The ratio used for the unrelated pairs was also extracted from the highest hidden layer 
to be consistent with values extracted for the related trials. This correlation was computed separately for each 
behavioral experiment. The purpose of looking at all three experiments was to reflect the ability to replicate the 
findings across tasks and independent sets of participants. We first ran this analysis examining the correlation 
across both contextually related and unrelated trials, with the expectation that the more contextually related the 
pairs of objects were judged, the more similar the object representations would be in the CNN. A robust positive 
correlation was indeed found across all three behavioral experiments (Ex. 1: r(140) = 0.79, p < 2.5 ×  10–31; Ex. 2: 
r(140) = 0.80, p < 3.9 ×  10–32; Ex. 3: r(140) = 0.80, p < 2.02 ×  10–32).

However, to provide a more stringent test of the results, we examined this correlation only including the 
contextually related objects. Because rating responses to related and unrelated trials were significantly different, 
and largely non-overlapping, we were concerned the correlation would be driven by this distinction and wanted 
to investigate a more sensitive measure looking at the variability only with contextually related objects. In addi-
tion, we wanted to examine the correlation with an even more sensitive nuanced measure of contextual facilita-
tion—reaction time—which we could not do when including the unrelated trials. When making predictions 
about reaction time and similarity, the prediction is different for related on unrelated pairs. For the related pairs, 
we expected faster reaction time the more similar the pair is in the CNN; however, for the unrelated pairs, we 
expected faster reaction times (e.g., faster at saying unrelated) the more dissimilar the pair is in the CNN. Thus, 
to hone in on the relationship between contextual associations used in human behavior, and those represented 
in a CNN we concentrated our investigation to only the related trials.

Specifically, behavioral performance, both relatedness judgements and reaction time, were correlated with 
contextual representations in the CNN (i.e., the maximum similarity ratio for the related objects). The resulting 
analysis found a correlation between the level of relatedness as indicated by human performance and similarity 
in the CNN network. This was significant in the second experiment (r(69) = 0.23, p < 0.05), but not significant 
in the first and third experiment (Ex. 1: r(69) = 0.21, p < 0.08; Ex. 3: r(69) = 0.20, p < 0.1). The positive direction 
of the correlation demonstrated the more participants found the pair of objects related to one another, the more 
similar the objects were represented across units in a CNN (Fig. 3a). Furthermore, to use a more stringent test, 
the more implicit and sensitive measure of reaction time was compared with the similarity of representation in 
a CNN. The resulting correlation demonstrated a significant negative correlation in experiments 1 and 2 (Ex. 
1: r(69) = −0.24, p < 0.05; Ex. 2: r(69) = −0.27, p < 0.02). The negative correlation demonstrated that the faster 
participants were able to judge the relatedness of the objects, the more similar contextually related objects were 

Figure 3.  Correlations between the representation of context in VGG16 and contextual performance in 
humans. (a) Positive correlations between human ratings of contextual relatedness and context similarity in the 
CNN; significant in Experiment 2, marginal correlation in Experiment 1 & 3. (b) Negative correlations between 
human reaction time and context similarity in the CNN; significant in Experiment 1 & 2. Correlations are 
computed over 71 contexts.
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represented in the CNN (Fig. 3b). This further supports the proposal that contextual associations are represented 
in a CNN, and those representations are related to human behavior.

The hierarchical nature of the layers (lowest layer 0, and highest hidden layer 27) in a CNN can also provide 
additional insight into understanding when the similarity of contextually related objects in a CNN is most rel-
evant to human behavior. To find out which layers were most related to human behavior, we correlated behavioral 
responses of the contextually related trials with the similarity of the contextually related object representations 
in each extracted VGG 16 layer (N = 13). Correlation across the different layers was only computed for those 
comparisons that demonstrated a significant correlation with the maximum similarity ratio discussed above 
(Experiment 1 RT, Experiment 2 response and reaction time). Correlations were significant only in the later 
layers of the network (see Table 1). Significance between reaction time and similarity of CNN representations 
first appeared in layer 20 (Experiment 1 RT: r(69) = −0.25, p < 0.03, Experiment 2 RT: r(69) = −0.27, p < 0.03) 
and continued to be significant through layer 27 (Experiment 1 RT: r(69) = −0.24, p < 0.05, Experiment 2 RT: 
r(69) = −0.27, p < 0.02). Significance between relatedness responses and similarity of CNN representations was 
only significant at the last hidden layer, layer 27 (Experiment 2 relatedness response: r(69) = 0.23, p < 0.05), 
however this did not withstand correction for multiple comparisons across the layers.

This analysis revealed that although contextually related objects have a significantly similar representation 
across almost all layers of the CNN, only those representations in the later layers are related to the contextual 
associations that humans use.

Exploratory analysis of context representation in other CNNs. Now that we established that con-
textual associations are represented in one CNN, we investigated whether these associations were unique to 
the VGG16 network, or whether contextual associations were represented in a variety of CNNs. We therefore 
studied CNNs that varied by number of layers, by architecture (computational components for image classi-
fication and learning), and by whether they were trained on ImageNet (i.e., object based) or  Places36516 (i.e., 
scene based). Similar to the procedure carried out for VGG16, for each network, in−group versus out−group 
similarity ratios were measured across 71 Contexts and 142 Categories at the maximum ratio layer, compar-
ing these ratios to the null hypothesis (ratio = 1, Fig. 4). The results show that the representation of contextual 
associations exists significantly in each network studied (p’s < 2 ×  10–23). For full results, please see Supplemental 
Materials Fig. 1. Some trends were found, however, differentiating between networks. More traditional, or shal-
low, networks showed substantially higher in–out ratios for both category and context than did networks with 
more novel architectures, which are considerably deeper in layers, (t(70) = 21.4, p < 3 ×  10–32), suggesting simpler 
representations are more effectively fit to object and context properties. ImageNet−trained networks showed 
higher in–out context ratios than did Places365-trained networks (t(70) = 23.6, p < 6 ×  10–35), suggesting that 
the representational similarity of objects from the same context is more effectively captured when learning to 
distinguish objects rather than when learning to distinguish overall scenes. Or alternatively, that context may be 
facilitative in processes related to object recognition, rather than scene categorization.

Discussion
This study used a CNN framework to examine whether contextual associations between objects are inherently 
extracted while learning to perform object classification, and whether the CNN-learned representational space 
for objects and contexts was related to human behavior. Our findings revealed that objects that were contextually 
related to one another were more similarly represented at each layer of the CNN compared to unrelated counter 

Table 1.  Pearson correlation between human behavioral performance and similarity in the VGG16 CNN 
network layers. Pearson r values between behavior (Experiment 1 reaction time, Experiment 2 reaction time, 
and Experiment 2 relatedness response) are listed in each cell. Cells marked with bold indicates correlations 
that were significant at p < .05, * indicates p values that withstood a false discovery rate correction of multiple 
comparisons across the layers. Significance of the correlation was only found in the later layers of VGG16.

VGG16 Exp. 1 RT Exp. 2. RT Exp. 2 response

Layer 0 0.197 0.096 −0.158

Layer 4 −0.132 −0.004 0.048

Layer 6 −0.179 0.046 −0.035

Layer 8 −0.137 0.019 0.026

Layer 9 −0.137 0.019 0.026

Layer 11 −0.085 0.051 0.053

Layer 13 −0.076 0.04 0.037

Layer 16 −0.083 −0.027 0.036

Layer 18 −0.176 −0.174 0.18

Layer 20 −0.253* −0.266* 0.195

Layer 23 −0.266* −0.270* 0.201

Layer 25 −0.261* −0.257* 0.208

Layer 27 −0.237* −0.269* 0.230
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objects. This indicates that commonalities related to context are integrated in the object CNN representation. 
Thus, despite being dissimilar in their visual features (e.g., umbrella and rainboots) and despite being presented 
on a white background with no visual context depicted, the network recognized a commonality between con-
textually related pairs of objects (bike helmet—bike) compared with unrelated objects (e.g., bike—football). 
This finding reveals the novel result that contextual associations are inherently coded in a CNN that is designed 
to recognize objects, despite it not being explicitly trained to capture context. Furthermore, we found that the 
extent to which the representations of contextually related objects were similar in the CNN correlated with 
human performance, both with how fast human participants responded in judging whether these object pairs 
were related, as well as with the degree of relatedness judgment itself.

Our study focused on the VGG16 network, a traditional convolutional neural network trained on ImageNet 
with the purpose of recognizing objects within an image, ultimately identifying each image as one of a possible 
1000 objects. The network’s successful optimization for object categorization is evident in the high similarity in 
the representation of objects that share the same category (e.g., two different birdhouses) compared with objects 
that do not share the same category. The significant similarity between objects of the same category was evident 
across all studied layers of the network and, as expected, increased with each subsequent layer. This analysis of 
category-based similarity was used as control and validated the use of this parameter as evaluating the represen-
tations encapsulated in the network. We then used it as a benchmark to compare the representation of context 
in the network, and found that belonging to a shared context, not only to a shared category, increased object 
representational similarity in the network as well. Analysis using pixel and HOG features further underscores the 
lack of basic visual similarities between different categories in the same context, indicating the VGG16 network 
learns additional co-occurrences of context-related categories within the training data without being explicitly 
trained to do so.

Furthermore, in our investigation of context it was critical to present the objects against a white background 
in order to prevent confounding the presented stimulus with any visual contextual information (distinguishing 
from other recent related  work17). Even though objects were presented in isolation, the similarity related to a 
shared context was evident in every layer of the network after the first layer, increasing with each subsequent layer. 
As later layers are more tuned to the ultimate goal of object  categorization18, it is very possible that achieving the 
goal of object categorization relies on contextual information with every additional layer. As expected, due to the 
targeted task of the network, the similarity based on object category was significantly higher than the similarity 
based on context. However, our results suggest regularities associated with context were correlated with object 
categories, and thus were integrated into the object representations to facilitate category recognition. This relation 
was true not only for VGG16, but for each of the ten other CNNs that were studied, trained on both ImageNet 
and Places365. Thus, networks using both traditional or shallow and more-novel, deeper, architectures, includ-
ing residual and recurrent networks, inherently integrated context within object representations. Interestingly, 
those networks trained to recognize scene categories (i.e., those trained on Places365) did not have significantly 
stronger context representations, suggesting that context is important for scene categories, but also critical to 
the task of object recognition itself. Previous studies, as highlighted in the introduction, were able to improve 
the network’s performance by explicitly modeling context. Our results are novel in showing that even without 
explicit training, context is inherently captured in the network. Context, therefore, is not just evident in facilitat-
ing human perception, but also inherently facilitates artificial perception in computer vision.

The degree of similarity in the CNN representations of contextually related objects correlated with human 
behavior both with regards to rating the degree to which two objects are related, as well as with how quickly 
these ratings were made, suggesting that a CNN can be used to predict context effects on human behavior, such 
as the strength and weight a particular context can have on facilitating object recognition. More generally, this 
also supports that the context represented in a CNN is relevant to understanding and modeling how context 
is derived in human behavior. Context facilitation of human perception is typically framed as utilizing prior 
knowledge to generate predictions and expectations on our perception in a top-down manner. In a CNN, how-
ever, the computations that are applied to determine the representation at each layer of the network are driven by 
bottom-up statistical regularities found in the training images. The results of the current study support the idea 

Figure 4.  Contextual representations across a variety of networks. Maximum similarity ratio for ten CNN 
architectures trained on ImageNet (solid bars) and Place365 (striped bars) data sets. Each network tested 
demonstrated a significant effect of context (p’s < 2 ×  10–23). This effect is significantly greater in traditional 
(shallow) network architectures (purple bars) compared with more novel, deeper, network architectures (yellow 
bars).
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that contextual relations between objects are derived bottom-up from the statistical regularities of co-occurrence, 
which is supported by previous neuroimaging  results19. Thus, the correlation to human behavior supports a 
model that signifies at least some of the contextual associations that humans utilize in perception derive from 
the statistical regularities one experiences in the environment.

Interestingly, the significant correlations between CNN and human behavior were only found in the later 
layers of the network, even though context was significantly represented at almost each layer of the CNN. Higher 
network layers are typically associated with less simple visual properties and more with higher-level semantic 
 properties20,21, indicating the learned regularities relevant to human behavior are more likely to be at a conceptual 
level rather than a visual level. Thus, relying just on statistical regularities to explain context in human cognition 
is too simplistic. Moreover, running a visual similarity analysis helped verify that low-level similarities between 
objects in the contextually related pairs does not account for our results. Further research is needed to uncover 
the differences of context representation at low levels versus high levels of a CNN. This will provide more insight 
into how context is derived, utilized, and updated in humans.

Naturally, unlike humans who experience the world in a multi-sensory way, CNNs can only learn from the 
visual information fed to them. Thus, although the correlations between human behavior and CNN were sig-
nificant, the shared variance between the systems is relatively small, hinting that there are yet many differences 
between human and artificial vision. This is not surprising, given that humans interact with the perceptual 
environment in a much richer way than a CNN, acquiring inter-object associations that go beyond the visual 
domain (e.g., action-related, temporal), which are unlikely to be represented in a network trained for a single 
purpose of object recognition. However, the small effect size may speak more to the small, but significant, role 
visual statistical co-occurrences play in contextual associations between objects in humans and helps paint the 
picture of how we can define contextual associations.

The results of this study demonstrate the importance of taking into account contextual associations in models 
of object recognition and image understanding in both human and artificial vision. And indeed, recent work 
incorporates context more readily in the deep networks used for image understanding. For example, scene 
graphs have played an important role in recent computer vision approaches to modeling static and dynamic 
scenes. Co-occurring objects in a given image are recognized and characterized through their relations with 
one-another22–25. However, patterns of inter-object association are not explicitly tied to the underlying scene 
in each image, and scenes can vary with inter-object association. These models that incorporate a cluster of 
contextual information are a promising avenue for further work in biological and computational studies as they 
demonstrated the strong role for context in modeling vision. Further development and utilization of convolu-
tional neural networks that employ feedback from higher layers to lower layers during classification may further 
aid in the discovery and incorporation of context during object recognition. In contrast, most current recurrent 
network models focus only on feedback of each layer to itself, failing to obtain potential benefits of top-down 
processing, as observed by the Wang and Hu model’s inferior contextual groupings compared to even a simpler 
feedforward network  model26.

Computer vision can achieve human level performance in recognizing objects of a scene (e.g., 27), however, 
there is still a gap between how humans understand an image and how computer vision understands an image. 
This difference may be fueled by a divergence in learning experiences—humans assemble visual and contextual 
knowledge across a lifetime of linearly evolving experiences that build off one another, while CNNs typically train 
on a static training set of images mixed together in less determined order and more limited in overall diversity. 
It is possible that further context learning may be key to bridging the gap between the biological and artificial 
systems, and that the more neural networks utilize context in ways similar to those of humans, for example, 
relying more on the context representation at later layers, the more computer vision may understand unusual or 
unique images in the same way humans effortlessly do. Ultimately, the more we bridge the gaps between human 
and artificial vision, the more computer vision can be applied to aiding and working in concert with human 
vision, for example supplementing and aiding people with visual impairments.

In conclusion, our study shows that context is inherently encapsulated in neural networks without being 
explicitly trained to do so, and that this representation of context correlates with human perception. Thus, 
object recognition trained CNNs represent context, emphasizing those contexts with the most impact on human 
cognition. Understanding the shared and unique ways artificial and human systems utilize context is therefore 
a promising direction in enhancing performance in both realms.

Methods
All methods were carried out in accordance with relevant guidelines and regulations.

Stimuli: Stimuli used in this study were photographs of objects against a white background. The objects were 
selected with a white background to remove confounding background variables and standardize background 
luminance. Images were obtained from a dataset by Brady et al.28, as well as from google image search. Stimuli 
were 375 × 375 pixels. A total of 730 images were used in this experiment. This was composed of 146 object 
categories, where each object had five different exemplars (e.g., five different tractors). The 146 object categories 
were then grouped into pairs of objects that belong to the same context, of which there were 73 contexts. Two 
contexts, and their corresponding four object categories, were removed from analysis due to their unusually 
high context and category similarity ratios in VGG16 CNN analysis—over three standard deviations above the 
mean. The remaining 71 contextually related pairs of objects were used in all remaining CNN related analyses.

Human behavioral experiments. Participants. Participants were recruited online via Prolific (https:// 
www. proli fic. co/). Participants self-reported they had normal or corrected to normal vision, fluent in English, 
and were located in the USA. Participants were financially compensated for their time. All study procedures 

https://www.prolific.co/
https://www.prolific.co/
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were approved by the Institutional Review Board of Fordham University. Informed consent was obtained from 
all participants. In Experiment 1, there were a total of 34 participants (17 females, mean age 36.67, 21–68 range). 
Two participants were excluded from analysis for not performing the task (did not press any key); in Experi-
ment 2 there were a total of 20 participants (10 females, mean age 34.9, 20–58 range); and in Experiment 3 there 
were a total of 22 participants (8 females, mean age 28.14, 18–50 age range). Two participants were excluded 
from analysis in this experiment for not performing the task (one did not press any key and the other constantly 
pressed the same key).

Procedure.  All experiments were presented using PsychoPy  software29 and hosted through the Pavlovia web-
site (https:// pavlo via. org). Participants were only permitted to participate in the experiment from a desktop/
laptop computer (i.e., no mobile devices).

In all three experiments, a trial began with a fixation cross for 100 ms that remained on the screen for the 
entire trial. Afterwards, two pictures of objects were presented side by side until the participant responded, or 
up to 1000 ms. Participants had up to 3 s to make a response. Before the participants began the experiment, 
they were given 16 practice trials. Participants were asked to respond as quickly and as accurately as they could.

The pair of objects presented were either of the same context or of different contexts. The experiment involved 
a total of 292 trials, which consisted of four presentations of each object (using four different exemplars). Two 
trials of each object were presented with a contextually related object, and two trials were presented with a con-
textually unrelated object (swapped from other contexts). Thus, half of the trials depicted contextually related 
objects (with two trials per context), and half of which depicted contextually unrelated objects. Specific exemplars 
of objects were balanced across the conditions across participants.

In Experiment 1, participants were asked to rate how related they found the pair of objects. They responded 
using a 6-point scale from 1: very dissimilar contexts to 6: very similar contexts. The scale was present on the 
screen during the duration of the experiment and participants responded using keys 1–6.

In Experiment 2, we wanted to use a paradigm that more accurately reflected reaction time differences 
across the trials. To accomplish this, participants were asked to make a two alternative forced choice and judge 
whether the two objects were of the same context (key s) or were of different contexts (key d). Instructions were 
displayed on the screen for the duration of the experiment. Experiment 2 also included ten catch trials in which 
two identical objects were presented and the participant had to respond that they were of the same context. This 
was to increase the quality of data collection.

In Experiment 3, we wanted to use a task more closely related to what a CNN might be picking up on—those 
objects appear together in the same scene. To accomplish this, in this last study we asked participants to judge 
whether the two objects would be found in the same photograph (‘s’ for same; ‘d’ for different). Instructions were 
displayed on the screen for the duration of the experiment. Like Experiment 2, catch trials were also included 
in this experiment to increase the quality of data collection.

Analysis. In all three experiments, we averaged participants’ responses and reaction time for each context (e.g., 
bike riding) in the related trials (e.g., bike-helmet) and in the unrelated trials (bike-fork). We then ran paired 
t-test analyses in all experiments to examine whether there were significant differences between related and 
unrelated responses, both in terms of the relatedness response (depending on the experiment and task) and its 
reaction time (RT).

To examine the stability of the ratings responses in Experiment 1, we ran a split-half analysis by breaking the 
participants into two groups and correlating the averaged ratings across the contexts. To break the participants 
into two groups, a random ordering was determined and then the participants were split in half (15 participants 
in one group; 16 in the other). The ratings for each group were averaged, and then the ratings of the two groups 
were correlated. This was done 1000 times, each time with a random ordering of participants, and the averaged 
r value and p values were reported.

Neural network analysis. We focused our study on the VGG16 convolutional neural network, used for its 
high performance in computer vision and simplicity as an analog to biological neural  networks10. We focused 
on the network as pretrained on the ImageNet data  set14,30, selected for its wide usage in computer vision due to 
its large size and its diversity of object classes. Network implementation and analysis was conducted using the 
Python PyTorch  library31.

The VGG16 network consists of 31 total Layers, each with 64 to 512 units to represent the image; the top layer 
(layer 31) contains 1000 units, corresponding to the 1000 object categories in ImageNet. Unit responses were 
extracted at the layers at the end of each processing block of the CNN architecture, where each block begins with 
a convolution and ends with rectification or max pooling. For VGG16, we studied thirteen layers, specifically: 
layers 0, 4, 6, 8, 9, 11, 13, 16, 18, 20, 23, 25, and 27. At each layer, representational similarity of image pairs were 
computed using Pearson’s Correlation of unit responses.

Similarity ratios were computed for each category and context. Specifically for categories, similarities were 
pooled among image pairs within each category and among image pairs with one image in-category and one 
image out-of-category. These relative similarities were measured by SimRatioC , computed as follows:

SimRatioC =
MeanInSimC

MeanOutSimC
=

1

NC
inGroup

∑

(i,j)∈C,i �=jsim
(

pi , pj
)

1

NC
outGroup

∑

i∈C,j∈C′ ′ sim
(

pi , pj
)
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pi , pj are two images to be compared; in the numerator we consider every pair of distinct images in the 
category C, i.e., 

(

i, j
)

∈ C, i �= j ; in the denominator, one image is in the category and the other is outside the 
category, i.e., i ∈ C, j ∈ C′ . For several categories C, a set of confounds were removed from the corresponding 
outside set C′ , designated for those objects that share a super ordinate category, e.g., a bike helmet was not con-
sidered in the “out” group for football helmet. In both the numerator and denominator, the average similarity 
ratio is computed by dividing the summed ratio by the total number of image pairs in the summation, NC

inGroup 
and NC

outGroup . This ratio SimRatioC was computed for each layer to measure the evolution of category represen-
tations through the network layers.

Along the same lines, similarities were pooled among image pairs within each context and among image 
pairs with one image in-context and one image out-of-context. These relative similarities were measured also 
by SimRatioC as computed above. Now, C denotes a context rather than a category. Again, a set of confound 
contexts are removed from C ’ when computing the denominator. For example, there were multiple object pairs 
from the kitchen context (e.g., pot—oven mitt; oven—fridge) that would not be considered in the “out” category 
for one another. For the context ratio, the in-context pairs considered in the numerator exclude all pairs in the 
same category. For both category and context comparisons, a ratio of 1 indicates no difference in pictures inside 
and outside the group.

For example, we can consider five easel images representing the “easel” category, five palette images repre-
senting the “palette” category, and both categories representing the “art” context. Our category ratio for easel is 
obtained by dividing the average similarity of distinct easel pictures in-category by the average similarity of easel 
pictures to non-easel pictures. Our context ratio for art is obtained by dividing the average similarity of easel pic-
tures to palette pictures by the average similarity of easel-or-palette pictures to any other picture in our data set.

Two out of the 73 contexts revealed a context ratio that was several orders of magnitude above the ratios 
of the other categories. These were removed from further analysis, to assure that these two categories were not 
inflating the results. Thus, all following analyses include 71 contexts.

To assess visual similarity, we repeated our category and context representation analyses comparing pairs of 
pictures based on Euclidean distances between their pixel representations and Euclidean distances between their 
Histogram of Gradient (HOG)  descriptors15.

We further repeated our category and context representation analyses on several additional CNN models. We 
studied additional traditional architectures, VGG 19 and Alexnet, which use the same computational building 
blocks as VGG16 arranged in different quantities and  orders8,10; we also studied more novel network architectures 
designed to enable learning on deeper networks using “skip connections” for residual learning in Resnet50 and 
Resnet152, and “inception blocks” in GoogLeNet, all pretrained for object recognition using  ImageNet27,32. We 
further studied a recent recurrent network architecture  (GRCNN26, in which units in each layer incorporated 
their own previous activity in computing their current output, intended to model lateral connections in biological 
networks and to simulate deeper network architectures while maintaining a relatively small number of learned 
network parameters. This recurrent network also was trained on ImageNet. We also studied several architec-
tures pretrained for scene recognition using  Places36516. For each network, the layer containing the maximum 
similarity ratio for category and context was studied. (In each network, the same layer had the highest ratio for 
both context and category.) Traditional networks (VGG and AlexNet) were compared to more novel network 
architectures; and ImageNet-trained networks were compared to Places365-trained networks through T-tests on 
the average maximum similarity ratio for each of the 142 categories and for each of the 71 contexts.

Human behavior—CNN correlations. To examine whether the representation of contextual information 
in CNNs related to human behavior, we computed Pearson correlation between the behavioral results and the 
CNN results. Initially ran on all trials, both the related and unrelated trials, comparing relatedness ratings and 
context similarity in the CNN. Subsequent analyses focused only on those trials in which the two objects were 
related. Two behavioral measures were used when analyzing just the related trials: the relatedness response and 
the RT for each of the 71 contexts. These behavioral measures were then correlated with the context similarity 
ratio in the VGG16 CNN network. First, we correlated behavioral performance with the maximum context ratio 
found at any layer (typically found at layer 27 for all but one context, which had the maximum ratio at layer 25). 
We then also examined the relationship between behavior and the representation of each layer of VGG16, and 
correlated with behavior with the context similarity ratio extracted for each layer of VGG16. The correlations 
were computed separately for each behavioral experiment.

Correcting for multiple comparisons. All p values from the analyses that included a test for each layer of 
the network were assessed for significance using a false discovery rate correction of multiple comparisons across 
the layers. If the significance of the p value did not withstand the correction, it was noted in the text.
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