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Tracking and predicting COVID‑19 
radiological trajectory on chest 
X‑rays using deep learning
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Louis Dieumegarde1, Reza Forghani2, Christian Gagné1, Alexandre Hains1, David Hornstein2, 
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Radiological findings on chest X-ray (CXR) have shown to be essential for the proper management 
of COVID-19 patients as the maximum severity over the course of the disease is closely linked to 
the outcome. As such, evaluation of future severity from current CXR would be highly desirable. We 
trained a repurposed deep learning algorithm on the CheXnet open dataset (224,316 chest X-ray 
images of 65,240 unique patients) to extract features that mapped to radiological labels. We collected 
CXRs of COVID-19-positive patients from an open-source dataset (COVID-19 image data collection) 
and from a multi-institutional local ICU dataset. The data was grouped into pairs of sequential CXRs 
and were categorized into three categories: ‘Worse’, ‘Stable’, or ‘Improved’ on the basis of radiological 
evolution ascertained from images and reports. Classical machine-learning algorithms were trained 
on the deep learning extracted features to perform immediate severity evaluation and prediction of 
future radiological trajectory. Receiver operating characteristic analyses and Mann-Whitney tests 
were performed. Deep learning predictions between “Worse” and “Improved” outcome categories and 
for severity stratification were significantly different for three radiological signs and one diagnostic 
(‘Consolidation’, ‘Lung Lesion’, ‘Pleural effusion’ and ‘Pneumonia’; all P < 0.05). Features from the 
first CXR of each pair could correctly predict the outcome category between ‘Worse’ and ‘Improved’ 
cases with a 0.81 (0.74–0.83 95% CI) AUC in the open-access dataset and with a 0.66 (0.67–0.64 95% 
CI) AUC in the ICU dataset. Features extracted from the CXR could predict disease severity with a 
52.3% accuracy in a 4-way classification. Severity evaluation trained on the COVID-19 image data 
collection had good out-of-distribution generalization when testing on the local dataset, with 81.6% 
of intubated ICU patients being classified as critically ill, and the predicted severity was correlated 
with the clinical outcome with a 0.639 AUC. CXR deep learning features show promise for classifying 
disease severity and trajectory. Once validated in studies incorporating clinical data and with larger 
sample sizes, this information may be considered to inform triage decisions.

The current outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the subse-
quent pandemic of coronavirus disease (COVID-19) are imposing a substantial stress on healthcare systems 
worldwide. In the majority of COVID-19 cases admitted to intensive care units (ICU)1 for respiratory distress 
and hypoxaemia, endotracheal intubation and ventilation are the main treatment options. The high number of 
infected patients has highlighted the need for more precise decision support systems for determining the need 
for and prognosis after ventilation, especially in healthcare networks where there is a risk of overwhelming 
system capacity. The recent surviving sepsis campaign recommendations do not make any specific recommen-
dation about this triage decision making1. Clinical prediction rules are therefore required to help caregivers 
during this delicate but necessary decision making process, and these rules should be based in part on the 
prognosis of possible outcomes2. While imaging is not indicated for diagnostic purposes in COVID-19, the use 
of chest radiography to inform prognosis was recommended by Rubin et al. in the consensus statement of the 
Fleischner Society: “in a resource-constrained environment, imaging is indicated for medical triage of patients 
with suspected COVID-19 who present with moderate-severe clinical features and a high pre-test probability 
of disease”3. This recommendation rests on radiological findings for COVID-19, already reported in adults4–7. 
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For CT imaging, they comprise (a) bilateral, subpleural, and peripheral ground-glass opacities; (b) crazy pav-
ing appearance (ground glass opacities and inter-/intra-lobular septal thickening); (c) air space consolidation; 
(d) bronchovascular thickening; and (e) traction bronchiectasis. COVID-19 appearance on CXR was reported 
more recently, with a handful of reports focusing specifically on anterior-posterior (AP CXR) at the bedside, 
the most common form of imaging in ICUs. CXR may be normal in early or mild disease, but commonly shows 
abnormal findings in patients requiring hospitalization, in 69% of patients at the time of admission, and in 80% 
of patients sometime during hospitalization8. Most frequent CXR findings are consolidation (59% of patients) 
and ground glass opacities (41%)8,9, with a peripheral and lower zone distribution, that are commonly bilateral 
or multilobar that tend to be patchy and asymmetric. Pneumothoraces are rare. The main finding over time on 
CXR was consolidation. These findings are not specific however, as they are similar to other causes of coronavirus 
and other viral pneumonias10.

It has been shown that radiological findings in CT11 and CXR imaging12–14 are correlated with disease out-
come. Therefore, the ability to assess a patient’s radiological severity, track its evolution over multiple CXRs, and 
predict its future radiological trajectory is a medically sound basis for a COVID-19 prognosis tool. Given the 
critical nature of the triage decision, it is imperative that as much relevant information as possible be extracted 
from all available data. This information can help assess the risk of mortality, determine priority for initiating 
ventilation, determine improvements in condition and predict probable clinical trajectory, all of which must be 
considered in the intervention decision15.

We hypothesize that deep learning can be harnessed to analyze CXRs and extract radiological features in 
a reproducible and quantitative manner. Such models could be integrated in the clinical workflow to provide 
additional, actionable data in triage situations. This is supported by the number of successful application of AI 
and deep learning techniques for COVID-19 management.

Related Works.  Notably, prognosis16 and diagnosis17–19 for COVID-19 patients using CT scans have 
reported good results in terms of accuracy and patient stratification. However, in most of the world, CT scans are 
not part of the standard of care in COVID-19 patients—especially in ICUs—and CXR is the modality of choice. 
As such, many authors have also developed applications using CXR. For instance, differential diagnosis (Healthy, 
pneumonia or COVID-19) of COVID-19 positive patients can be achieved20–22 with accuracies reaching over 
90% using deep networks such as the Xception architecture. Disease severity can be assessed in an objective way 
using radiology23–25 which is useful to quickly assess the pulmonary involvement of the disease; and the poten-
tial for adverse events can be predicted (such as death, intubation or need for oxygenation) to help direct future 
treatments26 Finally, ventilation need can be predicted in the near future for hospital-admitted patients27 with 
over 90% accuracy. These cases demonstrate that CXRs possess enough information to predict clinical develop-
ments in the near future (around three days ahead of the event). It should be noted however that in these works, 
adverse events prediction and radiological severity are always treated as two separate endpoints. However, they 
are likely to be correlated as the clinical degradation of the patient should be reflected in the radiological signs 
on CXR; this forms the first contribution of this article.

Most attempts at COVID-19 diagnosis or prognosis have used end-to-end deep learning methods. However, 
this comes at a high risk of overfitting when small COVID-19 datasets are used. Hence, alternatives for end-to-
end methods are desired. Of particular interest is the combination of transfer learning and classical machine 
learning algorithms18 where machine learning algorithms were trained on the output of a convolutional network 
trained on COVID-19 images, or the use of radiomics as a feature extractor19. Another interesting avenue to limit 
overfitting is deep transfer learning on CXR datasets such as the CheXpert dataset28 to create a CXR-specific 
feature extractor, using supervised or contrastive learning26. The classifier layer is then fine-tuned jointly with 
the feature extractor to approach a prediction task with a dataset of>5000 images. Considering that fine-tuning 
deep networks is still at risk of overfitting on smaller datasets, an approach using deep transfer learning to extract 
general CXR pathological features that are not specific to COVID-19 would be valuable. Classical machine 
learning can then approach the task using these features without re-training on COVID-19 patients. This is the 
second major contribution of our article.

Study contributions.  A common trait among the litterature is that the radiological severity evaluation and 
adverse events prediction are typically viewed as two separate tasks. In this work, adverse events prediction is 
approached as a worsening of the radiological severity observed on successive CXRs. This paradigm shifts the 
target from discrete clinical decisions to a continuous spectrum of disease progression. The change in the extent 
of the disease in future imaging is then defined as the radiological trajectory. Knowledge of the future radiologi-
cal trajectory of a patient could be useful information for a physician to make the best decision for a patient given 
its correlation to the clinical outcome. Towards this goal, we first demonstrate that a pre-trained non-COVID 
feature extractor is suitable to extract useful information with no additional training on COVID-19 CXRs. Then, 
we use this feature extractor on COVID-19 CXR datasets to train models that predict the disease’s severity and 
future radiological trajectory. The main contributions of this article are therefore as follows:

•	 We show that a deep learning model trained to extract convolutional features from non-COVID chest X-rays 
(CXR) can extract useful information without re-training on COVID-19 CXRs;

•	 We propose the prediction of the radiological trajectory as a continuous alternative to the binary endpoint 
of adverse events prediction;

•	 The feature extractor was used on both a convenience, open access dataset and a systematic, multi-institu-
tional dataset. We demonstrate that these features had the ability to track severity and predict the radiological 
trajectory over a large spectrum of disease presentations.
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Materials and method
Study design.  This is a retrospective study of a large dataset of CXRs (open access), a convenience series 
of COVID-19 cases (open access), and a multi-institutional dataset of clinical ICU cases. The whole study was 
approved by the ethics committee of all participating hospitals (CIUSSS-Capitale-Nationale certificate #MP-
13-2020-2025) and was performed according to the relevant guidelines and regulation. Informed consent was 
waived due to the retrospective nature of the study. This study is conducted and reported based on the STARD 
criteria29.

Datasets.  ChexPert dataset.  Training the feature extractor We used as training set the open “CheXpert” 
chest X-ray dataset from Stanford Hospital, comprised of 224,316 X-ray images taken from 65,240 unique pa-
tients (aged 60.4 ± 17.8 years (mean ± standard deviation); 132,636 CXRs from men/90,777 CXRs from women)
(Table 1)28. The CheXpert database was originally extracted from the Stanford Hospital PACS system with the 
assistance of text mining from the associated radiological reports using natural language processing. The dataset 
includes both posterior-anterior, anterior-posterior and lateral images. None were from COVID-19 positive 
patients.

Feature extractor validation The validation set (n = 234) for deep learning feature extraction was selected at 
random within the 500 validation set studies that forms part of the CheXpert dataset (https://​stanf​ordml​group.​
github.​io/​compe​titio​ns/​chexp​ert/)28. The latter was composed of randomly sampled studies from the full data-
set with no patient overlap. Three board-certified radiologists from the CheXpert team individually assigned 
radiological findings and diagnoses to each of the studies in this validation set.

COVID‑19 image data collection.  The open-access COVID-19 dataset was curated from a convenience sample 
of 77 patients with sequential AP CXRs (aged 58.1 ± 15.8 years; 79 men, 34 women, 11 not reported) (Table 1). 
There were 124 CXR pairs with less than a 7 days span between them, accessible in the MILA COVID-19 image 
data collection (https://github.com/ieee8023/covid-chestxray-dataset/). A full list of cases, including links to 
original sources, is included in Supplementary Material 1. Data was downloaded on August 18, 2020.

Dataset splitting 24 patients from the COVID-19 image data collection were randomly allocated to the test-
ing set for a total of 37 CXR pairs. The remaining 53 patients from the COVID-19 image data collection were 
included in the training set for a total of 87 CXR pairs.

COVID‑19 ICU dataset.  We collected imaging and clinical data (outcome, risk factors, demographics) for 
all adult patients that were admitted at the ICU for confirmed COVID-19 and were treated using intubation 
and mechanical ventilation in five Quebec hospitals (Centre hospitalier universitaire de Quebec; Hotel-Dieu de 
Levis; Institut universitaire de cardiologie et pneumologie de Quebec; Jewish General Hospital, Centre hospital-
ier universitaire de Montreal) between March 2020 and February 2021. The canonical index test for COVID-19 
presence was the polymerase chain reaction test. CXRs were taken irregularly (depending on the institution) 
prior to and after intubation as part of the standard of care. The post-intubation CXR was the only reliably col-
lected timepoint. Only 123 patients (aged 65.7 ± 10.0 years; 346 men, 152 women, 0 not reported) had multiple 
CXRs to assess radiological progression, for a total of 498 CXR pairs (Table 1).

Dataset splitting The patients in the dataset were randomly split between testing and training using stratified 
sampling on the basis of outcome (Death/Hospital discharge). The number of patients is not equal between 
training and testing because the groups were assigned prior to this study and some patients had only a single 
image and could not be used.

Index test and reference standard.  By patient, sequential AP CXRs with less than a week of time differ-
ence were grouped into pairs. The primary outcome for each pair of sequential AP CXRs was a categorical clas-
sification of radiological evolution (“Worse”; “Stable”; and “Improved”) and defined based on the radiological 
case history provided with the open dataset as well as the images themselves (Supplementary Material 1). Evalu-
ation of the severity of the disease was also performed by the radiologists for each image. The adopted severity 
scale was “No disease”; “Mild”; “Severe”; and “Critical”. The history was performed by certified radiologists at the 

Table 1.   Group demographics information.

Group N Age Sex (M/F/unknown)

CheXpert 223,414 60.4 ± 17.8 136,636/90,777/0

COVID-19 image data collection 124 58.1 ± 15.8 79/34/11

 Worse 76 60.0 ± 16.3 47/22/7

 Stable 24 49.9 ± 12.9 17/3/4

 Improve 24 59.8 ± 14.1 15/9/0

ICU dataset 498 65.7 ± 10.0 346/152/0

 Worse 110 65.5 ± 10.9 78/32/0

 Stable 327 65.6 ± 9.9 224/103/0

 Improve 61 66.7 ± 9.2 44/17/0

https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/


4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5616  | https://doi.org/10.1038/s41598-022-09356-w

www.nature.com/scientificreports/

centers providing cases. The categorical and severity classifications was done by two authors on the COVID-19 
image data collection ([N.D.] 25 years practice; [N.D.] fourth year residency) for indications regarding radio-
logical outcome. Only the categorical classification was performed for the ICU dataset by a third radiologist 
([N.D.] third year residency). The readers were blind to the outcome. If, when compared to the first CXR of a 
pair, additional findings (e.g. new lung opacities, or increase in lung opacities already present) were noted in the 
second CXR, then the pair was categorized as “Worse”. If no change was reported, it was labeled “Stable”; and if 
improvements were described, the category was “Improved”.

COVID‑19 image data collection.  There was a total of 124 such pairs in the COVID-19 imaging data collection, 
given that some patients received more than two CXRs. There were 76 pairs of successive CXR studies in the 
“Worse” outcome category, 24 in the “Stable”, and 24 in the “Improved” outcome categories (Table 1). Mean age 
for the “Worse” outcome group was 60.0 ± 16.3 years (mean ± standard deviation) (47 men, 22 women, 7 not 
reported); for the “Stable” group 49.9 ± 12.9 years (17 men, 3 women, 4 not reported); and the “Improved” group 
59.8 ± 14.1 (15 men, 9 women, one not reported).

COVID‑19 ICU dataset.  There was a total of 498 such pairs in the COVID-19 imaging data collection. There 
were 110 pairs of successive CXR studies in the ‘Worse’ outcome category, 327 in the ‘Stable’, and 61 in the 
‘Improved’ outcome categories (Table 1). Mean age for the ‘Worse’ outcome group was 65.5 ± 10.9 years (mean ± 
standard deviation) (78 men, 32 women); for the ‘Stable’ group 65.6 ± 9.9 years (224 men, 103 women); and the 
‘Improved’ group 66.7 ± 9.2 (44 men, 17 women). Figure 1 summarizes the distribution of patients.

Input variables and deep learning algorithm.  We trained a deep learning model for feature extraction, 
taking as input all single-view chest radiographs of the training CheXpert dataset (regardless of patient position) 
and providing as output the probability of nine radiological findings and one radiological diagnostic category 
(“Pneumonia”, used as a label by the CheXpert authors to represent images that suggested primary infection 
as the diagnosis). The findings were defined by certified radiologists in CheXpert. We removed the following 
radiological findings from the training set, given their irrelevance to the purpose of our study: “No Findings”; 
“Fracture”; “Support Devices”. We further removed “Pneumothorax”, given its low occurrence in COVID-19. 
We used a DenseNet121 architecture for all our experiments as it was determined by Irving et al.28 to achieve 
the best results on the CheXpert dataset. CheXpert images were fed into the network with pretrained weights on 
Imagenet with a size of 320 × 320 pixels without any frozen layers. Data augmentation was performed by ran-
domly cropping the input images to 290 × 290. Images were histogram-equalized using OpenCV. We used the 
Adam optimizer with default β-parameters of β1 = 0.9, β2 = 0.999 and learning rate of 1× 10

−4 which was fixed 
for the duration of the training. Batches were sampled using a fixed batch size of 16 images. We used a weighted 
binary cross-entropy loss function to account for class imbalance. In this scheme, the cross entropy results are 
divided by the label’s prevalence in the training set to give more weight to examples in the minority classes. We 
also followed the U-zeroes policy from28, replacing the uncertain findings with negative findings. We trained 
for four epochs, saving checkpoints every epoch and using the checkpoint with the lowest validation loss. This 
trained network is subsequently used as a feature extractor by removing the fully connected layer and using the 
last convolutional layer as the feature vector.

Radiological trajectory prediction.  We then proceeded in testing our hypothesis as follows (Fig. 2). First 
was whether deep learning could track radiological evolution. We used the deep learning network as trained 
above to extract the findings probabilities from each CXR. We then computed the difference in findings prob-
abilities between sequential CXRs in each pair and tested whether this difference was significant between out-
come groups. We also investigated if the findings probabilities were correlated with the severity of the disease, 
and tested whether the probabilities were significant between severity groups.

Secondly, we attempted to assess the predictive power of the extracted deep learning features, i.e. whether 
or not the features of the first CXR could predict the outcome category of the CXR pair (Worse or Improved) 
(Fig. 2). Instead of using the predicted findings or the findings probabilities from the deep learning network, we 
used the output of the last convolutional layer. A high-level summary of the method is shown in Fig. 3. This layer 
was average-pooled to a 1 × 1 size to reduce dimensionality. Data augmentation was performed at the feature 
extraction stage in the same way as when training the network on the CheXpert dataset. We extract features for 
10 random crops per CXR in both COVID datasets, providing us with an estimate of the features robustness. 
Only stable features are selected by removing features with a inter-crop variance higher than a given threshold. 
We further reduced the dimensionality of this feature space by selecting the best N features using the ANOVA 
F value. The number of features (N), the variance filtering threshold, the type of classifier and the regularization 
coefficients were tuned using cross-validated random search. The candidate models were random forests, logistic 
regression and support vector classifier. We performed cross-validation using a leave-one-patient-out scheme, 
removing/testing all pairs associated with this patient in the learning/validation phase. We ranked and selected 
the candidate models using the ROC-AUC before testing. 95% confidence intervals on the model’s AUC are 
found by percentile bootstrapping.

In the case of predicting the severity of the disease on the current CXR, the same model selection methodol-
ogy was also used. In that situation, the candidate models were random forest regression, polynomial regression 
or linear regression and the best candidate was selected on the basis of minimizing the average error.

This model selection methodology is identically applied to both COVID-19 datasets without mixing. The 
severity regression model is trained only on the COVID-19 image data collection as the severity evaluation was 
not performed on the ICU dataset.
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Statistical analysis.  Demographics were expressed as mean (standard deviation) in years, and differences 
between outcome groups were tested using the SciPy library. Statistical analysis of the deep learning algorithm 
consisted in calculating the area under the (receiver operating) curve (AUC) for the determination of label learn-
ing on the training set; and Mann-Whitney tests to compare results between outcome groups. We used a bilateral 
P < 0.05 threshold for significance and calculated effect size (Cohen’s d) for each output.

Software.  Deep learning feature extraction was done in Python using the PyTorch library (version 1.4). Our 
source code will be available after acceptance in the following GitHub repository: https://github.com/medicslab/
COVID-19-public.

Results
Training the DenseNet on CheXpert dataset.  We successfully trained the deep learning algorithm 
with the aforementioned architecture to extract salient radiological findings, attaining results comparable to 
those from the original authors of the CheXpert series (Fig. 4) with AUCs ranging from 0.64 (“Enlarged Car-
diomediastinum”) to 0.95 (“Consolidation”). We were unable to ascertain AUCs for two radiological findings 
(“Lung Lesion”, “Pleural—Other”) due to a lack of sufficient number of cases in the validation dataset. We gener-

Figure 1.   Study flowchart. Some patients may have CXR pairs in more than one outcome category.
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ated a class-activation map30 for the highest-activated radiological sign (“Pneumonia:) on a random COVID-19 
patient for illustrative purposes (Fig. 5).

Outcome prediction.  Testing whether deep learning features could track disease trajectory and severity, 
we applied the learned classifier to the whole COVID-19 dataset, extracted radiological signs probabilities, and 
computed the differences between sequential CXRs. The four main findings related to COVID-19 are shown in 
Fig. 6 for each outcome group and in Fig. 7 for each severity group. There were significant inter-group differences 

Figure 2.   Experimental design. For each patient, the acquired CXRs formed a series of sequential pairs. 
For each pair (example shown for CXR2 and CXR3), an outcome was defined by judging if the radiological 
evolution of second CXR of the pair was worse, stable or improved compared to the first. We then tested 
whether the difference ( � CXR) in radiological findings probabilities would be statistically different between 
outcome categories; and secondly if deep learning features from the first CXR of the pair would predict 
radiological evolution.

Figure 3.   High-level description of the method. In a first step, the DenseNet121 is trained on the CheXpert 
dataset. Then, the network is frozen and COVID-19 CXRs are fed to the network. The features at the last 
convolutional layer are extracted and used as the feature vector for the COVID-19 model selection and training.
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(Mann-Whitney P < 0.05) for three radiological findings and diagnoses (“Consolidation”, “Lung Opacity” and 
“Pneumonia”) in terms of both evolution and severity and a significant difference for the “Pleural effusion” sign 
when considering severity. The Cohen’s d effect sizes for evolution and severity are presented in Table 2.

The potential of deep learning to predict the radiological trajectory was confirmed in both datasets. Tuned 
hyperparameters are shown in Table 3. For the COVID-19 image data collection, the last convolutional layer was 
reduced from 1,024 to 22 features and the selected model was a Support Vector Classifier with a sigmoid kernel. 
Similarly, the chosen classifier on the ICU dataset was also a Support Vector classifier with a sigmoid kernel, but 
using only 2 features instead of 22. Good generalization was obtained from the validation set to the testing set 
in both cases, with equivalent performances (0.81 compared to 0.81 and 0.66 compared to 0.67). Figs. 8 and 9 
present the ROC curves for both models. The green shaded area corresponds to the 95% confidence intervals, 
computed by percentile bootstrapping.

Performances when predicting the severity of the disease on the current CXR using the convolutional features 
yielded best performances on the validation set when using a linear regression model applied to the best 5 fea-
tures. The accuracy on the testing set when rounding to the nearest integer was 52.3% in the four-way classifica-
tion of severity, with a 0.55 average error on the raw regression (an error of one would mean a misclassification 
of one severity step, ex. from ‘Mild’ to ‘Severe’). The confusion matrix in Fig. 10 shows good separation between 
the severity groups. The ‘No Disease’ severity level was not represented in the testing set.

Severity prediction trained on the COVID-19 image data collection was directly applied to the ICU dataset, 
with 81.6% of images labeled as ‘Critical’ and 18.4% labeled as ‘Severe’, which is consistent with an ICU-bound, 
intubated population. Also, the predicted severity was correlated with the clinical outcome (Death or Hospital 
discharge) as the predicted severity alone had a 0.639 AUC when applied to this task.

Discussion
Summary.  Triage decisions to decide if and when patients should be admitted to the ICU and be mechani-
cally ventilated during the current COVID-19 pandemic must be based on all available prognostic evidence. We 
hypothesized that deep learning analysis of baseline CXR and longitudinal changes in feature probabilities could 
provide objective information such as current and future radiological severity to help in these triage decisions. 
To this end we needed first to prove the ability of deep learning to assess imaging features and predict imag-

Figure 4.   Results of the deep learning architecture trained on CheXpert for seven radiological findings (a–g) 
and one radiological diagnosis (h) on a separate 234-cases test dataset, selected at random within the 500 test set 
studies of the CheXpert dataset (cf. Irvin et al. for details). The latter was composed of randomly sampled studies 
from the full dataset with no patient overlap. Three board-certified radiologists individually annotated each of 
the studies in this test set.
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ing outcomes related to the disease. Consequently, we used a deep learning architecture, pre-trained on a large 
CXR dataset, and able to learn image features related to nine radiological signs and one pneumonia diagnosis. 
We applied this algorithm to a series of sequential images from patients with suspected or proven COVID-19. 
The algorithm was able to significantly detect changes in the images related to either a worsening or improving 
outcome for the patient and predict the category from the first CXR with reasonable AUC on two different data-
sets. Additionally, radiological severity could be estimated from the CXRs and the model demonstrated good 
cross-dataset generalizability with the severity being correlated with the outcome as previously demonstrated in 
the litterature12,13.

Findings and implications.  We found that the proposed deep learning architecture was able to derive 
meaningful feature classes from a large yet disparate number of images. In effect the CheXpert dataset was not 
curated specifically for pneumonia; images were acquired in a variety of positions (e.g. anterio-posterior, pos-
terior-anterior, and lateral views); and there were a number of non-pathologically related artefacts (e.g. various 
devices creating image shadows). Yet, it proved robust at extracting those deep learning features that best cor-
related to the radiological findings in the validation and test sets, the latter only composed of AP CXRs. The class 
activation maps of Fig. 5 are indicative of the process and show that the deep learning architecture is correctly 
focusing on relevant areas. The value of the deep learning features to inform triage decision making however 

Figure 5.   Original CXRs and class activation maps for a random patient in the COVID-19 dataset. (A) CXR at 
admission, with (B) overlaid activation map for the most activated radiological finding (“Consolidation”). (C) 
CXR four days later, with a worsening radiological presentation. The regions activated for the same finding (D) 
now encompass a larger area as the disease has progressed.
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lies not so much in the identification of radiological findings; this task is being done by radiologists themselves 
in the course of their duty. Rather, it centers on the ability to extract image features, distributed over the image, 
that may prove salient at the task of predicting outcome. These may be subtle, counter-intuitive, and therefore 
not part of the usual radiological diagnostic checklist or report; be subject to inter-reader variability; or couched 
in language that would vary between readers and centers. By quantitatively calculating these features, the model 
provides objective, repeatable estimates that may have better predictive ability than the binarized appraisal of 
disease status as exemplified in clinical scores such as the SMART-COP (“multilobar: yes/no”)31.

Study limitations.  This study has some limitations. First, the small size of the COVID-19 image data col-
lection dataset, which inevitably must be augmented to avoid potential bias, most notably case selection, and to 
confirm generalizability. Nevertheless, the confidence intervals on the AUC demonstrated that the model was 
robust to changes in the training set. The issue of dataset bias is very problematic in most COVID-19 prognosis 
studies as pointed by32,33, which propose as a solution to identify a very specific use-case and then proceed to 
collect a representative dataset. To address the issue with our first dataset, we reassessed our methodology on a 
second, systematically collected dataset with a more homogeneous patient population. On the ICU dataset, the 
trained model showed lower performance (0.66 compared to 0.81) but higher generalizability and very tight 
confidence intervals (0.63–0.67), probably due to the simpler model that used only 2 features. An hypothesis 
for the lower performances is that the ICU dataset covers a narrower range of severity, where the radiological 
improvement and worsening is more subtle. Indeed, more patients were graded as ‘Stable’ in the ICU dataset 
(65%) than on the COVID-19 image data collection (19%). Interestingly, the two features used in the ICU data-
set model did not overlap with the 22 used by the other model, suggesting that the features indicative of future 
radiological changes are dependant on the disease’s extent or severity. Next, the time duration between sequen-
tial CXRs was not uniform, which may have diminished the appraisal of the features’ sensitivity to change and 
the predictive ability of our model. A significant issue with the objective of predicting the future radiological 
course of the disease is the effect of intervention on the disease’s course. In the case of the COVID-19 image 
data collection, information about the treatment is scarce and very well could affect the quality of the predic-
tions since those are dependant upon the care that the patient receives. In this work, since the images came from 
hospital-admitted patients, the predictions of the model are conditional upon the patient receiving standard of 
care for their current situation. However, care is not uniform across medical centers, even in the ICU dataset. 
Additionally, the future trajectory might depend on risk factors such as age, sex or existing conditions. Ideally, 
future works should try to add current treatment information and clinically relevant patient information to the 
prognosis model, a step towards personalized medicine. Another limitation is the exclusion of ‘Stable’ image 

Figure 6.   Boxplots show significant inter-group differences between Worse vs Improved (P < 0.05, indicated by 
symbol *) in predicted imaging findings: “Consolidation”, “Lung opacity”, and diagnosis of pneumonia.
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pairs in the prediction of the radiological trajectory. Their exclusion was initially justified by their small num-
ber in the COVID-19 image data collection, however as seen in the ICU dataset they actually represent a large 
proportion of the typical radiological trajectory. Next, the medical assessment of severity and progression was 
performed before the staging system introduced by Wong et al.8 and used by Cohen et al.23. This limits the inter-
work comparison, even if it does not impact the conclusions put forward in this work. The closest work, only 
in terms of severity evaluation, is the work of Blain et al.25, who report severity on a 0–3 scale similar to the one 
used in this work. They report a 78% accuracy in the 4-way classification of severity, higher than ours of 52.3%. 
However, due to their small dataset size (65 CXRs), this performance was only cross-validated, and not tested. 
Moreover, a end-to-end deep learning model was used for this task, leading to concerns of overfitting. Finally, 
the design of the study is retrospective. However, as the pandemic unfolds, new clinical and radiological data will 
be continuously incorporated in the test set from the open source repositories, and from additional cases from 
the authors’ institutions, which will truly test generalizability and solve some of these limitations.

Figure 7.   Boxplots show significant inter-group differences between Severity groups (P < 0.05, indicated by 
symbol *) in predicted imaging findings: “Consolidation”, “Lung opacity”, Pleural effusion and diagnosis of 
pneumonia.

Table 2.   Extracted deep learning feature differences between groups (Mann-Whitney).

Rx sign/Diagnosis Worse vs Improve P value (Cohen’s d) Mild vs Severe P value (Cohen’s d)

Consolidation 2e−6 (1.340) 6e−94 (1.16)

Lung Opacity 2e−6 (1.178) 3e−11 (1.28)

Pleural effusion 0.0806 (0.376) 0.003 (0.397)

Pneumonia 0.0004 (0.945) 2e−5 (0.764)

Table 3.   Radiological progression classifier hyperparameters and testing performances for both datasets.

Dataset Classifier Selected features C Gamma Test AUC​ 95% CI

COVID-19 image data collection Sigmoid SVM 22 0.09 1 0.81 0.74–0.83

ICU Dataset Sigmoid SVM 2 0.06 1 0.66 0.64–0.67
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Figure 8.   Receiver operating characteristics curves for the best performing model (validation set and applied 
to the testing set) for the purpose of predicting worsening of the radiological state. The chosen model was 
a support vector classifier with a sigmoid kernel and using 22 convolutional features. The testing AUC is up 
to 0.81, equivalent to the validation AUC of 0.81. The green shaded area corresponds to the 95% confidence 
interval for the testing AUC and ranges from 0.74 to 0.83 AUC.

Figure 9.   Receiver operating characteristics curves for the best performing model (validation set and applied 
to the testing set) for the purpose of predicting worsening of the radiological state. The chosen model was a 
support vector classifier with a sigmoid kernel and using 2 convolutional features. The testing AUC is up to 0.66, 
equivalent to the validation AUC of 0.67. The green shaded area corresponds to the 95% confidence interval for 
the testing AUC and ranges from 0.64 to 0.67 AUC.
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To a degree, this report has confirmed that deep learning features can track radiological progression in 
COVID-19 but also predict temporal evolution, adding evidence to the conceptualization that there is directional 
information in static X-rays allowing this prediction. However, it should be restated that the reference standard 
was categorization of imaging rather than clinical outcomes, such as duration of ICU stay or mortality. Further 
studies should therefore assess the added value of deep learning features in clinical decision making using mul-
tivariate models incorporating additional variables such as vital signs, oxygenation and ventilation parameters, 
and assessment of imaging data, such as the reported hazard ratios published in large scale studies34.

Conclusion
We found that deep learning was able to assess the severity and predict the radiological evolution of the SARS-
CoV-2 over CXR images. Patients at risk of a worsening radiological presentation over a short period could 
be identified in both a ICU-bound, intubated population and in a more general hospital-admitted population. 
Automated analysis of CXRs for COVID-19 afflicted patients has the potential to alleviate the burden of medical 
providers and inform future treatment by identifying at-risk patients and by staging the current severity of the 
disease. Even though concerns of bias, overfitting and distribution shift remains, deep learning could be a critical 
tool to help in patient management and also in ressource-allocation scenarios such as triage. Shared decision 
making integrating the best available prognostic models, clinician experience and patient values and preferences 
about life-sustaining therapies will also be paramount in making these very difficult decisions.
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