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A union of deep learning 
and swarm‑based optimization 
for 3D human action recognition
Hritam Basak  1, Rohit Kundu  1, Pawan Kumar Singh  2, Muhammad Fazal Ijaz  3*, 
Marcin Woźniak  4* & Ram Sarkar  5

Human Action Recognition (HAR) is a popular area of research in computer vision due to its wide range 
of applications such as surveillance, health care, and gaming, etc. Action recognition based on 3D 
skeleton data allows simplistic, cost-efficient models to be formed making it a widely used method. In 
this work, we propose DSwarm-Net, a framework that employs deep learning and swarm intelligence-
based metaheuristic for HAR that uses 3D skeleton data for action classification. We extract four 
different types of features from the skeletal data namely: Distance, Distance Velocity, Angle, and 
Angle Velocity, which capture complementary information from the skeleton joints for encoding 
them into images. Encoding the skeleton data features into images is an alternative to the traditional 
video-processing approach and it helps in making the classification task less complex. The Distance 
and Distance Velocity encoded images have been stacked depth-wise and fed into a Convolutional 
Neural Network model which is a modified version of Inception-ResNet. Similarly, the Angle and Angle 
Velocity encoded images have been stacked depth-wise and fed into the same network. After training 
these models, deep features have been extracted from the pre-final layer of the networks, and the 
obtained feature representation is optimized by a nature-inspired metaheuristic, called Ant Lion 
Optimizer, to eliminate the non-informative or misleading features and to reduce the dimensionality 
of the feature set. DSwarm-Net has been evaluated on three publicly available HAR datasets, 
namely UTD-MHAD, HDM05, and NTU RGB+D 60 achieving competitive results, thus confirming the 
superiority of the proposed model compared to state-of-the-art models.

Human Action Recognition (HAR)1 is a highly dynamic and peremptory research area in the domain of image 
and video processing. It refers to the automated identification of the actions of one or many subjects through 
a sequence of observations. The automatic interpretation of human-environment interaction has been a vital 
domain for research due to its promise in both online and offline applications viz., visual surveillance, gaming, 
automatic video annotation, assisted living, automation-based driving, and health monitoring2.

Deep learning is very effective for classification problems, where related tasks benefit from each other (transfer 
learning) since it performs end-to-end optimization. Several recent action recognition methods3–5 employ deep 
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Graph Convolutional Net-
works (GCNs)6,7 for achieving commendable results in both 2D and 3D HAR problems. The drawback of using 
RNN is that all spatial dependencies are not captured by RNNs, since information about the spatial structure of 
the skeleton in 3D HAR requires the knowledge of a specific traversal of the joints. GCNs have scalability issues 
concerning their number of nodes, and hence may be proven insufficient for complex 3D HAR tasks.

To convert the HAR task into an image classification problem, image encoding of features is a popular 
methodology8 that converts the 3D skeletal data into images. Image Encoding techniques extract geometrical 
features from the key joints of the skeletons. The drawbacks of the existing image encoding practices include 
the insensitivity of features from highly localized movements, features’ fusion from the same orthogonal planes, 
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the lack of motion information, and the high number of channels in the encoded image thus increasing the 
computational cost.

Several methods exist for HAR from RGB videos (2D action recognition) like9,10, but the drawback of harness-
ing only the RGB modality is the high level of abstraction and the difficulty in handling the temporal dimension. 
Besides, the classification task from RGB video is sensitive to multiple factors like viewpoints, the background, 
and illumination conditions. The 3D convolution frameworks have also been proposed in recent studies like Cao 
et al.11, Papadopoulos et al.12 some of which show promising results.

With developments in multimedia computing like the introduction of economical Kinect depth sensors 
(Microsoft Kinect13, for example), extracting skeletal data has been made easier. In HAR, skeletal representa-
tion refers to the set of points in 3D space, each of which indicates the physical position of a specific joint in 
the subject’s body. In comparison to 2D HAR tasks, 3D HAR uses skeletal details as the primary source of input 
information14, since such representations are more resilient to challenges such as dynamic video conditions and 
body parts’ occlusion that were prevalent in the 2D HAR tasks.

CNN is a widely explored and one of the most popular deep learning-based tools for HAR task due to its 
better representational abilities than the RNNs. However, processing the RGB or depth modality of the action 
data through CNN requires huge computational cost and memory requirements which might not be scalable in 
the real world. To address this challenge, in the present work, we propose a novel method, called DSwarm-Net, 
involving a swarm intelligence-based optimization algorithm along with the CNN framework for the HAR task. 
First, we extract four distinctive spatio-temporal feature vectors from the relative movements of the skeletal joints. 
These features are thereafter encoded into images, which are fed to the CNNs for deep feature extraction. We 
also employ Ant-Lion Optimization (ALO) to remove redundant and misleading information from the feature 
space. Finally, we use a classification head to have the final prediction of actions. The overall workflow of our 
proposed HAR framework is shown in Fig. 1.

Literature survey
Multi-modal approaches for HAR have been used in literature15–17, but 3D HAR is generally based on skeletal 
data14 unlike video-based HAR. Spatio-Temporal LSTM networks are widely applied in action recognition tasks, 
that use a gating mechanism18, or attention mechanism19.

Devanne et al.20 used a depth sensor for extracting a compact representation of an action class and developed 
a fitting algorithm to use the 3D coordinates of the joints in the consecutive frames as a trajectory. Then they used 
a Riemann manifold to compute the similarity of trajectory and a KNN classifier for final classification. Liu et al.21 
proposed a unified framework for both single and multiple-view action recognition. They use a hierarchical 
partwise bag-of-words representation to encode local and global features and then formulate a part-regularized 
multitask structural learning framework for action classification. Hou et al.22 used skeleton data for encoding 
the spatial-temporal information into colour texture images and fine-tuned a pre-trained CNN model in three 
different ways: using front, top and side views. The decision scores of the three models were fused using the late 
score fusion technique for the final classification. On the UTD MHAD dataset, their proposed method got an 
accuracy of 86.97%.

Yang et al.23 proposed a two-branch attention model that attends to the key stages of Spatio-temporal fea-
tures, filtering out the misguiding joint predictions. They combined their two-branch attention network with a 
“Sub-Sequence Attention Network” for improving the performance. They achieved 82.4% accuracy on the NTU 
RGB+D 60 dataset on cross-subject classification. Mansur et al.24 used dynamic features extracted by applying 
inverse dynamics to a physics-based representation of the human skeleton. They used a low-dimensional fea-
ture representation with a hidden Markov classification framework. Yang et al.25 proposed a latent max-margin 
multi-task learning model that uses 3D skeleton data for action classification. They take into consideration the 

Figure 1.   Overall workflow of the proposed DSwarm-Net model for solving 3D HAR problem.
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intrinsic inter-dependencies between the joints in the human skeleton and the action classes leading to improved 
performance.

Recently GCNs have been implemented in the task of HAR as shown by26,27 where the skeleton sequences are 
considered as graphs and the Spatio-temporal features are captured by the GCNs whereas Song et al.28 showed 
that fusion of multiple GCNs can even improve the classification performance. Shi et al.29 used two-stream 
adaptive GCNs where the topology of the graphs can be either learned by the end-to-end Backpropagation 
algorithm or by uniform learning with an additional benefit of flexibility for graph construction. Yang et al.30 
introduced pseudo-GCN, where a learnable matrix was introduced instead of a fixed adjacency matrix. Thus 
the network learns dependencies among joints well as well as captures deep multi-level features followed by a 
hybrid Spatio-temporal multi-level attention module to produce comparable results with the state-of-the-art 
results on HDM05 and NTU RGB+D 60 datasets. Recently, Liu et al.31 proposed a unified spatio-temporal graph 
convolutional operator to disentangle multi-scale graph convolutions to address the research gap of unobstructed 
cross-spacetime information flow and unbiased long-range joint relationship modeling under multi-scale opera-
tors. However, all these approaches suffer from the shortcomings of exceeding computational complexity and 
inflexible receptive fields in the spatial and temporal graphs. To alleviate the problem, Cheng et al.32 proposed 
Shift-GCN, consisting of shift graph operations and lightweight point-wise convolutions. The performance of 
Shift-GCN notably exceeds the state-of-the-art methods with 10X fewer parameters. LSTM based networks such 
as33 have also been implemented recently to remove the intra-class diversity by adapting a Spatio-temporal auto-
encoder, although they have failed to accomplish comparable results with the GCN based approaches, thereby 
proving the superiority of GCN over LSTM networks.

ALO34 is a widely used optimization algorithm, based on the behaviour of the ants and the antlions in 
nature. Recently, it has been applied to several domains including engineering applications, power systems, 
economic load dispatch, PID controller, and many more. For example, Heidari et al.35 proposed an efficient 
training algorithm for solving the optimal multi-layer neural network problem. Here ALO, as compared to 
other population-based and heuristic optimization algorithms, performed superior in terms of convergence 
ability. Ali et al.36 used the ALO for finding a solution to minimize the whole running time of the Directional 
Over Current (DOC) relays. The authors used ALO particularly for determining the optimal location of the DG 
unit in the Radial Distribution Network (RDN). Optimal Reactive Power Dispatch (ORPD) is an important 
economic load dispatch problem and can be achieved through the determination of an optimal set of reactive 
compensation devices, transformer turns ratio, etc. Mouassa et al.37 successfully used ALO in this particular task, 
achieving the minimum transmission loss and optimal set of ORPD parameters. Besides, ALO has been used 
in several other applications like optimal design problem38, smart grid design39, image processing40, network-
ing applications41, etc. These applications establish the versatility and usefulness of the ALO in solving different 
complex optimization problems.

Methods
In this paper, we propose a deep learning-based method that uses skeleton data for the 3D HAR task. More spe-
cifically, the proposed approach extracts four types of informative features (Distance, Distance Velocity, Angle, 
and Angle Velocity features) from the 3D skeleton data, and encodes them into images using a suitable encoding 
scheme. The Distance and Distance Velocity features based images have been stacked (depth concatenation) to 
form “compact distance inputs” and Angle and Angle Velocity feature-based images have been stacked to form 
“compact angle inputs”. These compact inputs have been fed to a CNN architecture customized by us inspired 
by the Inception-ResNet42 architecture. The CNN model is trained twice separately (from scratch)43 for both 
types of compact inputs and 2048 deep features are extracted from the pre-final layer of each CNN. These deep 
features have been concatenated to form a 4096 sized feature space, which has been fed to the ALO for feature 
selection, embedded with an SVM classifier for fitness evaluation in the ALO and final predictions.

Spatio–temporal feature extraction.  Instead of the previous methods that used the 3D skeleton infor-
mation to project on three orthogonal planes, we have extracted four different types of features and mapped 
them in the form of two-dimensional encoded images. The feature extraction methods and their pre-processing 
are described in the following sections. Figure 2 contains the representative encoded grayscale images for four 
different feature vectors.

Distance features.  Following the work of44 the distance features, which contains important relative spatial 
information about the joints, are computed by measuring the separation between any two fixed joints. Con-
sider a skeleton-based representation has N joints and M frames. For ith joint (where i ∈ N ) in each frame, 
let the position vector be pi = {pxi , p

y
i , p

z
i } . So, for mth frame (where m ∈ M ), we have N such position vectors 

Pm = {p1, p2, p3, . . . , pN } and for the entire M video frames, we have P = {P1, P2, P3, . . . ,PM} , consisting of 
spatial location of human-body joints having the dimension of M × N × 3.

If we consider the jth frame, the Euclidean distance between the joints k and l (where k  = l ) is defined as:

Therefore the joint distance features, arranged in increasing temporal order, from a skeleton sequence, is 
defined as:

(1)dikl = ||p
j
k − p

j
l ||2

(2)DFm = {d1kl , d
2
kl , . . . , d

m
kl }
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Thus we represent the temporal features explicitly whereas the spatial configuration of joints can be expressed 
implicitly through the pair-wise distances. Then we scale the number of columns of DF from m to m′ using 
bilinear interpolation.

where, I(DFm) is the interpolation function.

Distance velocity features.  The temporal difference between the distance features as described above is captured 
by the Distance Velocity Features (DVF) vector. Du et al.45 proposed a similar approach wherein they used the 
marker coordinates of the raw skeleton. However, the distance velocity features extract information about the 
kinematic pattern of the skeleton sequences. For capturing the spatial and temporal information, the temporal 
difference over the distance feature vectors has been used. This method is especially useful when extracting 
features from classes that have a rapid spatial movement, like Jog or Run. The temporal motion of the classes 
and their spatial characteristics are equally important, the span and direction of which are used as information 
sources.

The DVF for an interval ω , can be expressed as Equation 4, for t ∈ τ and t < τ − ω , τ being the total time 
of the video sequence.

And across the whole sequence of the video, we have the distance velocity features as in Equation 5.

Angle features.  Angle features are defined as the angle between any three skeleton joints from the sequence of 
the skeleton and contain more discriminating information for some of the special tasks like running, throwing, 
waving, etc. Unlike the distance features, the angle features change more drastically.

For every frame, if we have joints a, b, c where {a, b, c} ∈ M , M being the total number of joints and a  = b  = c 
having angular matrix can be obtained from pa, pb and pc which is given by the Equation 6.

Thus, for nth frame and for M number of joints, we can extract 
MC3

2
 features in the form

(3)DF = I(DFm) = {d′1kl , d
′2
kl , . . . , d

′m′

kl }

(4)DVFt = DFt − DFt+ω

(5)DVF = {DVF0,DVF1,DVF2, . . . ,DVFτ−ω}

(6)θabc = cos−1

(

pab · pbc

||pab|| ||pbc||

)

Figure 2.   Encoded gray-scale images generated from four different features: (a) distance (b) distance velocity 
(c) angle, and (d) angle velocity features obtained from the UTD-MHAD dataset. Angle features contain more 
expressive information as compared to distance features.
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So, for the entire sequence, we have the angle features as follows:

Angle velocity features.  The angle velocity features (AVF) vector representation is important for classes that 
have a significant angular movement like Arm Curl or Draw Circle. It can discriminate between these specialized 
movements with ease. The AVF can capture the temporal difference in an inter-frame scenario, which is similar 
to the concept of Optical Flow in 2D HAR tasks46.

The AVF for an interval ω , can be expressed as Equation 9, for t ∈ τ and t < τ − ω , τ being the total time of 
the video sequence, and AF being the Angle Features, as described in the previous subsection.

Across the whole sequence of the video, we have the angle velocity features as given in Equation 10.

Image encoding of extracted features.  Skeleton data are considered as five-dimensional (5D) data 
points that include three coordinate dimensions, a time label and a joint label. Hence, we have transformed 
the sequence to visualize them as a series of RGB images that encodes Spatio-temporal information of skeleton 
data descriptively. This image encoding scheme makes the data more compatible and enables the CNN to learn 
discriminative features from the skeleton data. Following the original work of45, we can convert the sequence of 
features

to the intensity mapping of the encoded image by using the following transformation:

where, Ii,j is the pixel intensity of the index (i,j) in the encoded image where, i is the number of frame of the 
video sequence and j is the number of feature, Fi,j is the jth feature in the ith frame and Fi is the ith frame in the 
feature sequence F.

Unlike the original work of Du et al.45, who have used the image encoding to map those features in three 
orthogonal planes of RGB image, we have used this scheme to frame the complementary features in single-
channel grayscale images similar to Fig. 2. Besides, we have mapped the information of a frame from the sequence 
into a single row of the encoded image unlike45 to ensure that the extrema used in the equation above are not 
affected by the presence of global outliers across the frame. The reason behind the channel modification is that 
classification of a single channel grayscale image calls for lesser memory allocations and fewer parameters with 
similar performance as compared to three-channel RGB images. Thus, by preserving frame-wise locality, we 
encode the features into images of dimension m× n where m is the number of frames in a single video sequence 
and n is the number of features extracted from that frame. In the case of videos having different frame lengths, 
i.e. different m values, the encoded images from these video sequences having dimension m× n are further 
resized to a fixed dimension of m0 × n using bicubic interpolation, where, m0 is the fixed value of frame length 
in a video sequence.

Compact distance and angle encoding.  The feature encoded images extracted from the skeleton of the 
datasets have dimensions as follows:

In the present work, image stacking has been performed by concatenating the images depth-wise, leading to 
separate images which are of size l × b× h1 and l × b× h2 , to now be a single image of size l × b× (h1 + h2) . 
On the Distance and Distance Velocity feature-encoded images, this method leads to “compact distance inputs” 
of size 65× 190× 2 . Similarly, applying depth concatenation on the Angle and Angle Velocity encoded images 
results in a “compact angle inputs” of dimension 70× 3420× 2.

Such compact encoding results in only two types of inputs and thus two CNN architectures are used rather 
than using four CNN classifiers for the four types of feature-encoded images, thereby decreasing the computation 
cost. Channel-wise aggregation tends to lose information about the input and thus image stacking is preferred 
here since the important features will be learned by the deep learning model while rejecting the redundant infor-
mation. Attempting to decrease the computation cost by aggregating the feature-encoded images leads to higher 
rates of misclassification for a small decrease in the computation complexity, which is an undesired trade-off 

(7)AFn = {θa,b,c} where {a, b, c} ∈ [0,N]

(8)AF = {AFn} where n = [0,M]

(9)AVFt = AFt − AFt+ω

(10)AVF = {AVF0,AVF1,AVF2, . . . ,AVFτ−ω}

(11)F = {Fn} where n ∈ [0, τ ]

(12)Ii,j = ⌊(255− 0)×
(Fi,j −min(Fi))

max(Fi)−min(Fi)
⌋

Distance : 65× 190× 1

Distance Velocity : 65× 190× 1

Angle : 70× 3420× 1

Angle Velocity : 70× 3420× 1
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in this scenario. So we chose to perform depth concatenation-based image staking thus preserving the feature 
information rather than saving the computation cost, to ultimately obtain superior performance. Additionally, 
the angle and angle velocity features contain more refined and edifying information of the relative movement 
of the body joints. Encoding those features into images results in a high-dimensional image as compared to the 
distance features, and therefore, we have only merged the encoded images with the same dimensions, alleviating 
the requirement of reshaping, thereby limiting the loss of potentially important information.

CNN for deep features extraction.  Traditional machine learning methods extract hand-crafted features 
which need to be selected manually, and thus non-informative features may get selected making the classifica-
tion erroneous. Deep Learning on the other hand learns the essential feature set on its own using backpropaga-
tion and thus is more feasible. So, in the development of this framework, we use extract deep features instead of 
machine learning features.

The proposed method for mapping skeletal data to images like tensors makes it flexible to experiment with a 
wide variety of previously deployed and potential future CNN architectures. As the processing of images is quite 
easier as compared to skeleton sequence, temporal image encoding reduces the work from skeletal data process-
ing to simple image classification tasks, with all the skeleton information embedded in the encoded images. In 
the proposed DSwarm-Net model, we use a modified Inception-ResNet42 architecture for the image classification 
task with remarkable efficiency. The Inception-ResNet network has been previously successfully applied on tasks 
like face recognition47. Besides, the Inception-ResNet architecture allows us to experiment with different input 
image specifications, both in terms of the number of channels and spatial image dimension. Therefore, we have 
used it as the test-bed for our experiments of extracting features from encoded skeleton images.

Being inspired by the original network architecture, we have made substantial changes in the layers of the 
network to serve our purpose. Figure 3 shows the architecture of the CNN used for feature extraction. Categori-
cal cross-entropy loss is used for this specific purpose, and model accuracy and losses are monitored over the 
iterations, and the weights for the best accuracy model are saved for further use. Finally, 2-channel encoded 
distance and angle encoded tensors are feed-forwarded through the CNN and the outputs from the penultimate 
dropout layer are extracted. In Fig. 3, the fully connected layers have been shown for the CNN model. These 
fully connected layers have been used during the training of the CNN model using the encoded images and the 
corresponding class labels. After the feature learning process, the fully connected layers have been removed to 
extract the final feature set from the penultimate layer of the model to be optimized using ALO in the next step 
of the framework.

Following the original work42 for the training of the CNN, which demonstrates the compatibility of the CNN 
used with DSwarm-Net, we started the training from scratch. We have conjectured that training the network 
from scratch, rather than fine-tuning, resulted in a more superior manner, probably due to the difference in visual 
patterns, as compared to natural scene images. We have stacked angle, angle-velocity features, and distance, 
distance-velocity features separately and created two parallel CNN for classification of these 2-channel tensors, 
and thus by depth-concatenation, the number of parallel CNN branches have been reduced from four to two, 
bringing down the memory requirements.

To demonstrate the additional benefits of data augmentation with the distance and velocity encoded images, 
we have also trained the proposed CNN with the augmented dataset, which effectively reduces the possibility of 
model over-fitting. Some of the popular data augmentation methods like vertical or horizontal flipping fail in this 
task because the patterns present in the encoded images are distorted by these augmentation strategies, thereby 
changing the labels of encoded images. So, as a remedy, we have used the additive Gaussian noise for the data 
augmentation strategy, which effectively doubles up the training data volume. Samples were drawn from zero to 
mean Gaussian distribution with the standard deviation value set as 0.02. Finally, it was added to the skeleton 
frame sequence, with the observation that minor variations of the skeleton position or velocity information do 
not effectively affect the skeleton information much to change the label of the specific action task. This specific 

Figure 3.   Architecture of the proposed CNN used in this study.
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data augmentation strategy already gained significant superiority in performance over the existing methods, 
removing the necessity of further data augmentation strategy.

After processing the skeletal sequence with the CNN, it becomes more practicable to exploit the extracted 
features from the pre-final layer of the CNN to further process them. As discussed before, a single encoded image 
contains spatial information for a single skeletal sequence only, therefore to increase the robustness of the model, 
the features extracted from the parallel CNNs are further processed through linear concatenation before feeding 
it to the ALO for feature selection and final classification.

Feature selection using ant lion optimizer.  End-to-end classification using deep learning frameworks 
requires a large amount of data, which is often unavailable in HAR tasks, where there is a large number of classes 
in the dataset with very few samples belonging to each class. This hinders the optimal performance of CNN 
models. Also, directly processing skeleton data demands a large number of computational resources since a large 
amount of information, all of which might not be discriminative is present. When the number of features in a 
classification model becomes very large, it is preferable to reduce the dimension of the feature set before the final 
classification. This is because, in a large feature space, redundant as well as deceptive features might be present 
that may lead to degraded classification performance. Feature selection procedures48–50 help eliminate these 
non-informative and misleading features and further lowers the storage requirement of the machine and leads 
to faster and better performance of the classification algorithm. Hence for this purpose, we use an evolutionary 
meta-heuristic, called ALO, which was proposed by Mirjalili et al.34.

The ALO algorithm is based on the interaction between the antlions and the ants in a trap. The ants move 
stochastically in nature for food sources, whereas the antlions position themselves to trap and consume the ants. 
This movement is affected by the positions of the antlions, who form traps randomly. The randomized movements 
of the ants can be represented by Eq. (13).

where, ‘cs’ represents the cumulative sum operation, it | t ∈ {1, 2, . . . ,T} represents the number of current steps/
iterations, where T is the maximum number of iterations, R(i) is a random binary generator that generates 0 or 
1 in the ith step. This equation is normalized using min-max normalization and used for updating the positions 
of ants in the search space, as shown in Eq. (14).

where, Aj and Bj are the minima and the maximum of the random walks in jth variable respectively and, Ci
j and 

Di
j represent the minimum and the maximum of the jth variable respectively, in the ith iteration.

The movements of the ants in the hyperplane are affected by the traps of the antlions. This can be mathemati-
cally expressed by Eqs. (15) and (16).

Here, Antlionij is the position of the kth antlion in the ith iteration, Ci indicates the minimum of all variables 
in the ith iteration, Di represents the vector including the maximum in the ith iteration, Ci

k and Di
k indicate the 

minimum and the maximum of all variables for the kth ant in the ith iteration, respectively.
With every iteration, we assign fitness and update the positions in the position matrix for every ant and 

antlion. With the overall mechanism explained so far, antlions can build their trap based on their fitness, i.e., 
an antlion with more fitness has a higher probability to build a bigger trap and catch ants with more ease. The 
ALO algorithm utilizes a Roulette Wheel mechanism for selecting antlions based on their fitness. To capture the 
ants inside the trap, the antlions throw sand inside the pit. This can be explained mathematically by Equation 
(17) and Equation (18).

where, I = 10α × i
T , where, i is the current iteration, T is the maximum number of iterations, and α is a constant 

such that:

(13)Posant(t) = [0, cs(2R(i1)− 1), cs(2R(i2)− 1), . . . , cs(2R(iT )− 1)],

(14)Posij =
(Posij − Aj)× (Bj − Ci

j )

(Di
j − Aj)

+ Cj ,

(15)Ci
k =Antlionik + Ci

(16)Di
k =Antlionik + Di

(17)Ci =
Ci

I

(18)Di =
Di

I

(19)α =



















2 when t > 0.1T
3 when t > 0.5T
4 when t > 0.75T
5 when t > 0.9T
6 when t > 0.95T
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where, t is the current iteration and T is the total number of iterations. So, based on Equation 17 and Equation 18, 
the radius of updating ant’s position is decreased at every iteration and it mimics the sliding of the ants inside 
the trap. Finally, when the fitness of an ant is greater than or equal to the fitness of the antlion, it is assumed that 
the antlions have consumed the ant, and the antlion moves to the position of the fitter ant. This can be explained 
mathematically by Equation 20 where, Antlionik and Antik represent the positions of kth antlion and ant respec-
tively in the ith iteration.

The ALO algorithm was traditionally proposed to solve continuous optimization problems. Thus, to make 
the algorithm compatible with feature selection tasks, we map the continuous search of ALO to binary search. 
A Sigmoid-shaped function is used as a transfer function to convert the continuous values to binary encoded 
candidate solutions, as shown by Equation 21.

The fitness of the ant and antlion population (denoted by A) are calculated using Equation 22, where, ‘acc(A)’ 
represents the classification accuracy obtained by the candidate solution ‘A’; α represents a weighting factor, 
and ‘FS(A)’ represents the number of features selected out of D total features, by the candidate solution A. Thus, 
the fitness function is a weighted sum of the accuracy and the fraction of features not selected by the candidate 
solution.

The exploration capability of the ALO algorithm due to the randomized antlion selection and the formula-
tion of random walk of the ants around the antlions. The exploitation capability of the ALO is attributed to the 
shrinking of the boundaries of the antlions’ traps. This makes the ALO algorithm a robust choice for solving the 
feature selection problem.

The overall workflow of ALO algorithm used for feature selection is described in Fig. 4.

Results and discussions
In this section, we first describe the datasets used for evaluating the performance of the proposed model and 
show the results thus obtained. Furthermore, we compare our results with some existing models in literature 
on the same datasets.

Description of datasets.  We have used the skeleton data only from the datasets for the action recognition 
task and have discarded other modalities of available data due to reducing extremely high pre-processing and 
large memory requirements. The specifications of the datasets used are mentioned in Table 1.

UTD multimodal human action dataset.  The UTD-MHAD dataset51 consists of the image sequence of actions 
performed by 8 different subjects and the data is distributed in 27 different action classes and their correspond-
ing skeleton information. Each of the subjects was recorded four times for each of the 27 actions, resulting in 
an 861 video sequence in total. For each of the actions, the depth maps, along with RGB, inertial sensors, and 
skeletal information were recorded, however, for our experiments, we have used the skeleton files only.

Following the work of54 we have used the data from odd-numbered subjects (i.e. 1, 3, 5, and 7) for training, 
and the rest of the data (i.e. subject number 2, 4, 6, and 8) were used for testing purpose, which is known as 
cross-subject validation protocol.

HDM 05.  HDM0552 is a publicly available motion database that contains more than three hours of systemati-
cally recorded and well-documented motion capture data in the C3D as well as in the ASF/AMC data format. 
Furthermore, HDM05 contains 130 motion classes in 10 to 50 realizations executed by various actors. Classifi-
cation of action data from this huge dataset is extremely challenging due to the large number of action classes 
present and their similarity. A different number of repetitions of actions having a high amount of similarity add 
to the challenge of action recognition from this dataset. To compare our results with the existing methods, we 
have followed the standard protocol where we have conducted 10 different experiments, each of them sampling 
the dataset in two equal portions, and utilizing one half for training and the other half for validation and the 
mean from the experiments was reported.

NTU RGB+D 60.  The NTU RGB+D 60 dataset53 is a large-scale dataset for the HAR task. It contains 56,880 
action video sequences, recorded by using 17 different setups, named S001 to S017. The dataset contains vid-
eos from 60 different action classes, and these were performed by 40 different human subjects of different age 
groups, heights, and ethnicity. The 60 action classes are further classified in three V2 cameras concurrently and 
the dataset contains four different modalities of data for each video sequence: RGB video, depth maps, infrared 
(IR) videos, and 3D skeleton data, however, in our method, we have used the skeleton data only. Each of the 
skeleton files contains information about the 25 major body joints of humans whereas the RGB videos have a 
resolution of 1920×1080.

(20)Antlionik = Antik , if fitness(Antik) ≥ fitness(Antlionik)

(21)F(m) =
1

1+ e−m

(22)fitness(A) = α × acc(A)+ (1− α)×
D − FS(A)

D
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Figure 4.   Flowchart of the ALO algorithm used in our proposed DSwarm-Net model.

Table 1.   Specifications of the different datasets used in the present work.

Dataset Number of video sequence Action classes Subjects Keyjoints

UTD-MHAD51 861 27 8 20

HDM0552 2337 130 5 31

NTU RGB+D 6053 56880 60 40 25
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Following the original evaluation protocol as proposed in53, we have performed both the cross-subjects (CS) 
and cross-view (CV) evaluations, which are done by splitting the dataset into two equal sub-parts containing 
actions from 20 subjects and by using them for training and testing. One of the major drawbacks of this dataset 
is that 302 samples had incomplete or missing skeleton data, forcing us to discard those samples for training 
and testing.

Implementation.  The height configurations m0 of the images are set to 70, 75, and 265, and based on the 
median length of video frames, the frame interval is set to 5, 5, and 10 for UTD-MHAD, NTU RGB-D 60, and 
HDM05 datasets respectively. The model is compiled using Adam optimizer with an initial learning rate of 0.001 
and categorical cross-entropy loss is implemented for this purpose. β1 and β2 values are set to 0.9 and 0.999 
respectively. ǫ value is set to 0.01 and the model is fine-tuned by using adaptive learner such that the learning rate 
is reduced by a factor of 5 upon saturation of accuracy. Batch normalization in the network architecture is found 
useful for network training and to reduce sensitivity to the initial starting weights. Early stopping is incorporated 
with a patience value set to 20 epochs to remove the possibility of overfitting. Additive Gaussian noise is found 
useful for the data augmentation strategy. The model is trained up to 500 epochs with a batch size of 8.

Table 2 shows the performance of DSwarm-Net on three standard benchmark datasets. The results justify 
that depth concatenation of distance and velocity stacked features significantly improves the classification per-
formance, which is also demonstrated by recent works like55 in different applications.

Comparison with other CNN models.  As mentioned before, the classification of grayscale encoded 
images using existing CNN models, pre-trained on large RGB datasets like ImageNet is not practicable due to 
the difference in patterns in encoded images as compared to natural scene images. Therefore, we have trained 
the CNN architecture from scratch on the encoded images for the feature extraction task. We have experi-
mented with different CNN backbones for feature extraction, keeping all other experimental modalities the 
same. Table 3 shows the comparison of classification accuracy using different CNN models as feature extractors 
with their respective parameter counts. It is observed that our proposed architecture achieves superiority over 
all other models in terms of classification accuracy with lesser parameters, resulting from a reduction in the 
number of channels. It is also observed from the table that, with a slightly higher parameter count as compared 
to the DenseNet201 architecture (18.4M for DenseNet201 vs. 21.8M for our proposed architecture for compact 
encoded distance features), DSwarm-Net outperforms the former’s result by a significant margin.

Comparison with other optimization algorithms.  For the feature selection step of the DSwarm-Net 
mode, ALO has been used, and to prove its efficacy over other algorithms, we implemented 7 different optimi-

Table 2.   Classification performance of the proposed DSwarm-Net model on three benchmark HAR datasets. 
Acc: Accuracy, F1: F1-Score.

Encoding Used

UTD MHAD NTU RGB+D 60 HDM05

Cross-subject Cross-view

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Distance encoded 95.62 96 84.49 85 87.24 88 88.45 89

Angle encoded 96.81 97 84.92 85 88.39 89 89.17 89

Distance velocity encoded 90.23 91 83.44 84 87.15 88 88.34 89

Angle velocity encoded 94.55 95 84.63 85 88.15 89 89.09 90

Compact distance encoded 97.56 98 84.81 85 88.92 89 89.46 90

Compact angle encoded 97.97 98 84.97 85 88.66 88 89.88 90

DSwarm-Net 98.13 98 85.45 86 89.98 90 90.67 92

Table 3.   Comparison in terms of the number of parameters and the classification accuracy of the proposed 
model with other CNN models on UTD-MHAD dataset.

Model

Compact distance encoded 
features Compact angle encoded features

No. of parameter Accuracy (%) No. of parameter Accuracy (%)

VGG19 57.9 M 83.45 105.7 M 88.45

VGG16 52.6 M 85.78 97.8 M 91.21

ResNet101 42.7 M 88.94 42.7 M 94.32

Inception v3 24.3 M 93.28 24.3 M 95.77

DenseNet201 18.4 M 92.64 18.4 M 95.24

DSwarm-Net 21.8 M 97.56 21.8 M 98.33
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zation algorithms (both classical and popular) for feature selection and classification. The algorithms used for 
comparison with ALO are: 

1.	 Mean Variance Optimization (MVO)56

2.	 Particle Swarm Optimization (PSO)57

3.	 Bat Optimization Algorithm (BAT)58

4.	 Grey Wolf Optimizer (GWO)59

5.	 Whale Optimization Algorithm (WOA)60

6.	 Firefly Algorithm (FFA)61

7.	 Moth-Flame Optimization (MFO)62

Table 4 shows the parameters set for each of the optimization algorithms used for comparison. All of the param-
eters hold their usual meaning, as referred to in the original papers cited. The same number of population and 
iterations were used throughout for all the OAs to maintain consistency. Table 5 shows the feature selection 
performance of ALO as compared to other feature selection algorithms. We can observe from this table that 
ALO can efficiently reduce the feature dimensionality and boost classification performance in comparison with 
others. From Table 5 it is observed that without selecting optimal feature set can lead to sub-standard classifi-
cation performance (as shown in row 1 of Table 5) due to the presence of misleading deep features extracted 
by the CNN, thereby substantiating the importance of optimal feature selection, leading to comparable results 
of end-to-end classification performance as shown in Tables 6, 7, and 8 for UTD-MHAD, HDM05 and NTU 
RGB+D 60 datasets respectively.

Table 4.   Parameter settings for the comparative meta-heuristic optimization algorithms. OA denotes 
Optimization Algorithms.

OA Parameter(s) Value(s)

MVO56 Minimum wormhole existence probability ( WEPmin)
Maximum wormhole existence probability ( WEPmax) 

WEPmin = 0.2

WEPmax = 1

PSO57 Inertia weight (I)
Acceleration Coefficients ( C1,C2 , C3)

I lies in [0, 1]
C1 = 2,C2 = 2,C3 = 1

BAT58

Initial loudness (A)
Pulse rate (r)
Minimum frequency ( Qmin)
Maximum frequency ( Qmax) 

A = 0.5

r = 0.5

Qmin = 0

Qmax = 2

GWO59 Convergence operator (a)
Exploration Parameter ( r1, r2)

a lies in [2 0]
r1, r2 lies in [0, 1]

WOA60

Random number (p)
Spiral Updating Probability (b)
Random Search Ability (r)
Random Encircling ability (e)

p lies in [0, 1]
b = 0.5

r = 0.1

e lies in [0, 0.5]

FFA61
Randomization Parameter, (α)
Attractiveness at r=0, (β0)
Absorption coefficient, (γ )

α = 0.5
β0 = 0.2
γ = 1.0

MFO62
Convergence parameter (a)
Shape of logarithmic spiral (b)
Closeness Parameter (t) 

a lies in [−2,−1]
b = 1

t lies in [−1, 1]

Table 5.   Comparison of results (accuracies in %) obtained by the different optimization algorithms (OAs) 
for feature selection (FS) in our DSwarm-Net model and that obtained without any FS, by end-to-end CNN 
model.

OAs UTD-MHAD

NTU RGB+D 60

HDM05Cross subject Cross view

Without FS 89.34 79.19 80.63 81.53

MVO56 96.26 84.67 89.16 90.41

PSO57 96.47 83.85 87.58 88.56

BAT58 95.74 84.01 88.52 87.42

GWO59 95.63 84.43 87.51 88.13

WOA60 95.26 84.22 88.13 86.87

FFA61 95.84 84.11 87.98 86.55

MFO62 95.53 83.89 89.51 89.93

ALO 98.13 85.45 89.98 90.67
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Comparison with existing models.  Several methods have been proposed in the recent past to address 
the HAR problem, and in Tables 6, 7, and 8, we show the performance comparison of our proposed DSwarm-Net 
model with some of these methods. 

From Table 6, it is clear that the proposed DSwarm-Net performs better than any other existing methods that 
have been proposed recently. By using skeleton data only, the proposed method outperforms63,64,67,70,71 that use 
skeleton data for action classification. Despite using RGB data, the authors of63,64,66,69 rely on temporal dynam-
ics mostly and hence cannot classify between action-classes like walk and jog with very subtle differences. Our 
method also outperforms68, that uses a similar image encoding algorithm, and recently developed Bayesian 
hierarchical dynamic model65.

Table 6.   Comparison of our DSwarm-Net model with some recent models on the UTD-MHAD dataset by 
cross-subject analysis.

Method Year Accuracy (%) Skeleton data RGB data Inertial data

Action machine63 2018 92.50 Yes Yes No

PEM64 2018 94.51 Yes Yes No

BHDM65 2019 92.80 Yes No No

Correlation Congruence66 2019 94.87 Yes Yes Yes

Gimme DSE67 2020 93.30 Yes No Yes

Fuzzy CNN fusion68 2020 97.91 Yes No No

SAKDN69 2021 98.04 Yes Yes Yes

Edge Motion70 2021 95.59 Yes No No

AMGC71 2021 95.11 Yes No No

DSwarm-Net 2021 98.13 Yes No No

Table 7.   Comparison of our proposed DSwarm-Net model with existing methods on the HDM05 dataset 
using 10 random split-mean protocol.

Method Year Classification accuracy (%)

HCN72 2018 86.51

PB-GCN26 2018 88.2

Deep STGC​27 2019 85.29

2S-AGCN29 2019 88.5

PGCN-TCA​30 2020 86.71

SGCN73 2021 85.45

Di-StddNet74 2021 82.32

DSwarm-Net 2021 90.67

Table 8.   Comparison of our DSwarm-Net model with some existing methods on the NTU RGB+D 60 dataset.

Method Year Cross-subject accuracy (%) Cross-view accuracy (%)

STVA LSTM23 2019 82.40 89.10

Deep STGC​27 2019 86.45 84.65

PC Net75 2019 85.25 91.37

Shift GCN32 2020 90.70 96.5

DS LSTM33 2020 77.79 87.44

AGC-LSTM76 2020 89.20 95.00

PA-ResGCN-B1977 2020 90.90 96.00

MV-IGNet78 2020 89.2 96.3

VIDA79 2020 79.40 84.10

MS-G3D31 2020 91.5 96.2

CTR-GCN80 2021 92.4 96.8

EfficientGCN-B481 2021 91.7 95.7

ST-TR82 2021 89.91 93.1

DSwarm-Net 2021 85.45 89.98
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Table 7 shows the comparison of the proposed method with the existing methods on the HDM05 dataset. 
Our method outperforms both CNN based models72,74 and GCN based methods26,27,73. Unlike26 which uses 
local body-part information, our method performs better in terms of accuracy by using CNN and optimization 
algorithm only.

Table 8 compares the performance of our method with the existing models on the NTU RGB+D 60 dataset. It 
is observed from Table 8 that our method significantly outperforms the LSTM based methods like23,33 because of 
incorporating spatial and temporal features for image encoding and classification, which are sensitive to patterns 
present in the skeleton sequence data. When compared to methods like27, they perform similar to our proposed 
method by utilizing the topological characterization of the action sequence. When compared to CNN-based 
methods, our model produces comparable results with75. Due to the recent success of graph-based methods 
for the HAR tasks, we have also included some GCN-based approaches like Shift GCN32, PA-ResGCN-B1977, 
MV-IGNet78, MS-G3D31, CTR-GCN80, and EfficientGCN-B481 to maintain fair comparison. It can be concluded 
from the observation that our proposed method outperforms the LSTM-based approaches, but fails to produce 
comparable results as the graph-based approaches. However, the computational complexity of these graph-based 
approaches is typically in the range of 15-25 GFLOPS, which often exceeds 100 GFLOPS as well32. This results 
in slower processing and inference speed, which is a major drawback of these methods and often makes them 
less scalable for real-world applications.

We observe that for some challenging classes of NTU RGB+D 60 dataset (e.g. Shake Head, Writing, Typing 
on a keyboard, etc.) our model does not perform well because of abundance in similarity of these classes with 
some other closely-knit classes in terms of spatial and temporal distribution of skeletal data. The class-wise per-
formance indicates that our proposed method fails to distinguish between classes like Reading and Writing, Take 
off a shoe and Wear a shoe, Typing on a keyboard and Writing, etc. because of the close correlation of those classes 
in terms of spatial movement of body joints. To mitigate this problem, we plan to utilize 3D flow information 
apart from the skeletal data to mine more discriminative features in our future work.

Statistical test.  To statistically analyze the significance of our proposed method, McNemer’s test83 is per-
formed between the ALO algorithm used in this method with several other metaheuristic optimization algo-
rithms, popularly used for feature selection. McNemer’s test is a non-parametric test, based on the null hypoth-
esis that states two models to be statistically similar84,85. If the obtained p-value from the test is < 5% , then the 
hypothesis is negated and it is assumed that the two models are statistically dissimilar. Our experimental analysis 
of the McNemer’s test is demonstrated in Table 9, where for every scenario, the obtained p-value is < 0.05 , justi-
fying our proposed method to be statistically dissimilar to them.

Stability of selected features.  Stability testing of a feature selection method has recently become an 
important metric for measuring the goodness of an optimization algorithm86. An algorithm’s stability in feature 
selection is usually measured by checking the overlap of features selected over multiple independent runs of the 
metaheuristic. In this work, we assess the feature selection stability using the Jaccard Index between the pairs of 
best-fit solutions obtained over 25 independent iterations. The pairwise overlap is thereafter computed, i.e. the 
percentage of instances where one feature is selected in both the solutions. This computation of pairwise Jaccard 
Index of the best-fit solutions produces a pairwise stability matrix, which is thereafter averaged to obtain the 
feature stability score for all the feature selection algorithms. Table 10 depicts the stability scores obtained for the 
metaheuristics on three HAR datasets. It is evident from the table that ALO demonstrates profound stability and 
consistency over the other optimization algorithms in feature selection task for all three datasets.

Conclusion
A 3D skeleton-based HAR problem has been addressed in this paper by incorporating compact spatio-temporal 
image encoding and evolutionary algorithm-based feature selection. The proposed method produces competitive 
results with the existing methods with lesser parameters by utilizing grayscale encoded images on three standard 
benchmark datasets. Results achieved on these datasets show the efficiency of the evolutionary optimization 
algorithm for feature selection. However, improvements can be made to the proposed framework in the future. 

Table 9.   Results (based on calculated p-values) obtained by performing the McNemar’s test between the ALO 
algorithm used in this paper and the other popular metaheuristics used for comparison.

McNemar’s test UTD-MHAD

NTU RGB+D 60

HDM05Cross subject Cross view

ALO vs. MVO 5.79E−03 4.10E−02 3.55E−02 1.96E−04

ALO vs. PSO 3.31E−02 3.43E−02 9.67E−03 4.31E−02

ALO vs. BAT 1.83E−02 3.98E−03 4.80E−02 4.78E−02

ALO vs. GWO 1.01E−02 1.19E−02 3.49E−02 2.45E−02

ALO vs. WOA 2.79E−02 6.31E−03 8.20E−03 1.85E−02

ALO vs. FFA 3.02E−04 3.76E−02 1.75E−02 2.62E−02

ALO vs. MFO 8.48E−03 1.76E−03 7.58E−03 4.83E−02
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In this work, we have used ALO for the feature selection step however, other more recent meta-heuristics opti-
mization algorithms may also be used for this purpose. To further improve the robustness of the framework, we 
intend to extend the experimentation to more HAR datasets and possibly to other domains which use skeletal 
data in the future. We also plan to extend the experimentation involving different modalities of data (RGB video, 
depth, IR sequence data, etc.) for providing additional information to the classification framework, in order to 
achieve better as well as robust classification performance.

Data availability
No datasets are generated during the current study. The datasets analyzed during this work are made publicly 
available in this published article.
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