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Real‑time segmentation method 
of billet infrared image based 
on multi‑scale feature fusion
Lixin Zhang1*, Qingrong Nan1, Shengqin Bian2, Tao Liu1 & Zhengguang Xu1

Obtaining the surface temperature of billets in heating furnaces has been a hot research in 
metallurgical industry applications. In order to accurately identify the billet location in infrared images 
and thus obtain the surface temperature of billets, this paper proposes a real-time segmentation 
network model based on multi-scale feature fusion to solve the problems of low resolution, low 
accuracy and slow detection speed of infrared images of traditional target image detection methods. 
In our method, a dataset with billet infrared images as the experimental object is firstly established, 
and the proposed network structure adopts multi-scale feature fusion to enhance the information 
interaction between feature maps at all levels and reduce the information loss during up-sampling 
by a dense up-sampling strategy. Meanwhile, a lightweight backbone network and deep separable 
convolution are used to reduce the number of network parameters and speed up the network 
inference, finally realizing real-time and accurate segmentation of the infrared images of blanks. The 
highest accuracy of the model in this paper reaches 94.89% . Meanwhile, an inference speed of 80fps is 
achieved on GTX2080Ti. Compared with the existing mainstream methods, the method in this paper 
can better meet the real-time and accuracy requirements of industrial production.

Infrared temperature measurement is a mature and dynamic technology that is widely used in many industries 
and organizations. It is useful for measuring temperature in some typical situations, i.e. when the object to be 
measured is moving or when a fast response is required1. In order to implement a fully automated thermal 
imaging analysis system for billet temperature, the location of the billet must first be accurately identified in the 
infrared image of the billet so that the corresponding temperature value can be fitted based on the pixel value. 
However, infrared imaging suffers from defects such as blurred edges, low contrast and uneven intensity, result-
ing in a limited segmentation accuracy for the target2.

At present, the specialized research for infrared image segmentation processing is significantly less than that 
for visible images, and is dominated by traditional segmentation algorithms, e.g., Zhou3 proposed an infrared 
image segmentation algorithm based on Otsu and genetic algorithm, but the algorithm has multiple thresholding 
calculations and the processing is relatively complicated. Ochoa4 also used threshold information to segment 
infrared images and applied it to fault detection of motors, but the segmentation effect for the target was slightly 
rough. Yin5 proposed a dual-even morphological gradient-based edge detection operator to identify and diag-
nose inferior insulators, and Wang6 designed a spiking neural network using the properties of spiking neurons 
to implement edge detection on infrared images of high-voltage equipment. both of the above methods have 
made certain contributions to edge detection algorithms for infrared images,but the segmentation effect is poor 
in cases where the gradient between the target and the background is small. Yu et al.7 successfully extracted the 
target information of IR images based on the region and gradient information of the image, but the algorithm 
used fuzzy clustering method in extracting the region information, which is more complicated to calculate and 
difficult to achieve real-time. Most of the above methods use traditional segmentation algorithms in achieving 
segmentation of infrared targets based on are using low-level features of images (information such as color, tex-
ture and shape), which are difficult to apply to billet identification in complex environments in heating furnaces.

In recent years, with the rapid development of computer processing technology, deep learning technology 
has been widely used in image recognition, semantic segmentation, target detection, and other fields.Different 
from traditional segmentation methods, the goal of semantic segmentation based on deep learning is to predict 
the class label of each pixel in the image8, and automatically learn features in various scenarios through a large 
number of sample training, so it has better generalization capabilities and robustness9.
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To meet the needs of the heating furnace control system and field personnel observation, the real-time and 
accuracy of the infrared image segmentation of the billet in the furnace is an important indicator of the effec-
tiveness of the segmentation method. Existing methods10–12 mainly focus on improving performance. However, 
achieving real-time performance with low latency is the most critical issue for real applications. At present, there 
are several ways to improve the speed of network segmentation.Some methods speed up network prediction 
by reducing the resolution of the input image, such as BiseNet13, DFANet14, etc., but it will lose some spatial 
information, especially edge information. Some other methods prune the number of feature channels to reduce 
the computational consumption, such as ENet15, SegNet16, etc., and this way will decrease the feature extraction 
ability of the network. Another common solution is to use fewer downsamples when extracting features, such 
as ESPNet17, ERFNet18, etc. These networks have an obvious defect that they cannot achieve sufficient receptive 
fields. In order to solve the dilemma of real-time semantic segmentation, many improved network architectures 
have been proposed, such as Spatial Pyramid Pooling (SPP)19, Atrous Spatial Pyramid Pooling (ASPP)12, and 
other structures that increase the receptive field.

In summary, the key to real-time semantic segmentation is how to obtain a larger receptive field and restore 
spatial information while maintaining a smaller computational cost. Therefore, this paper proposes a segmenta-
tion method based on multi-scale feature fusion. First, the information interaction between all levels of feature 
maps is strengthened through multi-scale feature extraction, and a larger receptive field and spatial informa-
tion recovery are obtained. Secondly, Dense Upsampling Convolution(DUC) strategy is used to retain more 
information during decoding, to improve the accuracy. Finally, Finally, this paper uses the lightweight backbone 
network ResNet-1820 and deep-wise separable convolution to reduce the computational consumption during 
feature fusion. Experiments have proved that the network proposed in this paper performs well in segmentation 
accuracy and efficiency, and achieves a detection speed of 80fps and 94.89% mIoU on GTX2080Ti.

Methods
In this paper, we propose a real-time segmentation method for infrared images based on a lightweight network, 
ResNet-18, for multi-scale feature fusion. The overall structure of this network is shown in Fig. 1. The specific 
steps are as follows.

•	 Improve the information interaction between the feature maps at all levels of the network through multi-scale 
feature fusion, and strengthen the multi-scale expression ability of the network;

•	 Use Dense Upsampling Convolution(DUC) strategy to reduce information loss, retain more image feature 
information, and improve segmentation accuracy;

Figure 1.   The network structure of the method in this paper.
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•	 Use hole convolution and asymmetric convolution to obtain a larger image receptive field, more fully integrate 
the context information of the image, and further improve the accuracy of segmentation;

•	 Reduce the number of network parameters through lightweight backbone network and depth-wise separable 
convolution, speed up model inference, and realize real-time segmentation.

Feature extraction module.  The feature extraction module of the method in this paper is shown in Fig. 2. 
Its main structure uses a lightweight network ResNet-1820, which has four different residual blocks, and each 
residual block contains two 3 × 3 convolutions and one skip connection, ResNet-1820 solves the problem of gra-
dient dispersion and gradient explosion in deep convolutional networks by using the residual structure, but it 
still has some drawbacks such as small receptive field and single feature extraction size.

In order to further reduce the parameters, expand the perceptual field and improve the segmentation accuracy, 
in this paper, asymmetric convolution21 and dilated convolution22 are applied in Resblock_ 3 and Resblock_ 4. 
Asymmetric convolution is the decomposition of a standard two-dimensional convolution into two one-dimen-
sional convolutions, i.e., the traditional n × n convolution is decomposed into n × 1 and 1 × n convolutions. This 
approach has two advantages23:increasing the nonlinearity of the network and improving the discriminative 
power of the network; and reducing the network parameters and computational effort. Dilated convolution can be 
considered as convolution with holes. The basic principle is to insert a hole (i.e. a pixel with a value of 0) between 
each pixel of the normal convolution kernel, increasing the field of view of the network without increasing the 
number of network parameters.

Muti‑scale feature fusion.  In semantic segmentation, to obtain a larger receptive field and a smaller 
computational cost, a down-sampling operation is required24. However, this will lose a large amount of spa-
tial information, especially information related to edges. Based on the above analysis, this paper proposes a 
method of fusing multi-scale feature information to improve the multi-scale expression ability of the network. 
Specifically, after each residual block of the backbone network, pooling operations of different scales are per-
formed to generate feature maps of different scales. In order to expand the receptive field and extract richer 
feature information, the pooling operation is used as the step size s = 2j , and the convolution kernel size is 
k = 2× s + 1 = 2j+1 + 1, j ∈ [1, 2, 3] , j is the pooling level. For the feature map of B ∈ B

C×H×W,after the pool-
ing operation, the size of the feature map is Oj ∈ B

C× H

2j × W
2j

 , (H, W)is the height and width of the feature map, 
and C is the number of channels in the feature map. We perform a 3-level pooling operation on the feature map 
output by Resblock_1, perform 2-level and 1-level pooling operations on Resblock_2 and Resblcok_3 respec-
tively, and finally aggregate the feature maps with the same resolution. Due to a large number of channels after 
aggregation, the depth-wise separation convolution25 is used for fusion to reduce the amount of calculation 
for fusion. By merging the feature information extracted from different layers in the backbone network, the 
interaction between low-level spatial information and high-level semantic information is strengthened, thereby 
improving the accuracy of the network.

Dense up‑sampling convolution.  There are three general up-sampling methods for networks under the 
semantic segmentation task: bilinear interpolation, de-pooling operation, and deconvolution operation. Among 
them, bilinear interpolation is not learnable, and detailed information will be lost, while the de-pooling opera-
tion and deconvolution operation will lose part of the information, which affects the segmentation accuracy. 
Based on the above situation, Panqu Wang et al.26proposed dense up-sampling convolution (DUC), which uses 
channel dimensions to make up for the loss in length and width. Specifically, the input image size is set to H × W, 
the feature map after the feature extraction stage is h× w × c(h = H/d,w = W/d) , and convolution is applied 
to this feature map. The resulting output feature map is h× w × (d2 × L) , where d is the down-sampling multi-
ple and L is the total number of categories of the segmentation task, and finally through pixel shuffle to H ×W×L.

In this paper, dense up-sampling convolution is used in the decoding part of the network structure, and the 
up-sampling task is allocated to each layer to fuse the information of different layers. The specific structure is 
shown in Fig. 3. When sampling on each layer, the feature graph is only restored to the size of the previous layer, 
and the information of each layer is merged with a small computational consumption, which further avoids the 
loss of information during decoding, and further improves the segmentation accuracy.

Figure 2.   The network structure of the feature extraction module.
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Experiment
Data set preparation.  In this study, the infrared images of billets at the exit of the heating furnace are used 
to intercept frames from the video surveillance data, and a total of 5000 images of billets in different states are 
intercepted, and a 512× 512 area in the center of the image (the area contains most of the information of the 
billets) is intercepted. The intercepted images are annotated to obtain the target images, and the training set, 
validation set and test set are divided according to the ratio of 7:2:1.

Experiment method.  In order to verify the effectiveness of the proposed network, we conducted detailed 
experiments on an experimental platform configured with GTX2080Ti, cuda 10.0, cudnn 7, and pytorch 1.1.0. 
the model was configured with an Adam optimizer, a batchsize size of 4, an initial learning rate of 1e−4, and 2000 
epochs of training rounds. in order to To enhance the robustness of the network, we used data enhancement 
methods such as random flip, random Gaussian blur, random brightness adjustment, and set random values of 
[0.5, 2] as the image scale for scaling.

Effectiveness of the network structure.  The method in this paper consists of three main parts: a multiscale fea-
ture fusion module, a dense upsampling convolution module, asymmetric convolution, and dilated convolu-
tion. In order to verify the effectiveness of the network structure proposed in this paper, we conducted detailed 
comparison experiments. The experimental results are shown in Table 1. from the experimental results, it can 
be seen that each optimization strategy proposed in this paper has certain superiority, among which Muti-scale 
Feature Fusion has obvious effect on the prediction of targets and has significant improvement on the prediction 
of target boundary regions. In this experiment, the basic network is a traditional U-Shape27 structured network.

Comparison of network inference speed and accuracy.  To further verify the segmentation performance, some 
commonly used real-time segmentation networks are selected for comparison experiments in this paper, includ-
ing ENet15, EspNet17, ErfNet18 and BiseNet13. in addition, to verify whether the selection of backbone network is 
reasonable in this paper, the backbone network is replaced with MobileNet28 for comparison experiments under 
the same training parameters. The experimental results are shown in Table 2, among which, BiseNet13 has the 
fastest prediction rate, but its prediction effect for the target is poor, especially in the boundary area of the target, 
ENet15 also has poor prediction effect for the boundary area of the target, and ErfNet18 has the closest prediction 
result with the method of this paper, but the processing efficiency is less than half of the method of this paper. 
Figures 4 and 5 show some of the results of the comparison experiments.

Figure 3.   Dense up-sampling module structure.

Table 1.   Experiment results of the effectiveness of the network structure.

Experiment Asymmetric + dilated convolution Muti-scale feature fusion Dense up-sampling mIoU (%) BIoU (%)

1 93.68 55.85

2 � 93.91 56.17

3 � 94.41 57.05

4 � 94.08 56.44

5 � � 94.46 57.12

6 � � 94.25 56.89

7 � � 94.74 57.53

8 � � � 94.89 57.71
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Conclusions
In this paper, we propose a real-time semantic segmentation method, based on the proposed multi-scale feature 
fusion strategy and dense up-sampling convolution strategy, and apply it to the segmentation of the infra-
red image of the heating furnace billet. Our network can achieve excellent segmentation accuracy and effi-
ciency, thereby greatly improving the segmentation effect of billets. Finally, by comparing with other existing 

Table 2.   Speed and accuracy analysis.

Model GFLOPs Parameters Frame (fps) mIoU (%) PA (%) BIoU29(%)

U-shape27 6.9 18.39M 83.80 93.68 98.84 55.85

MobileNet28 3.9 22.09M 121.41 93.54 98.61 52.08

ENet15 3.56 0.4M 26.57 93.69 98.63 46.07

ESPNet17 0.79 0.264M 40.26 94.28 98.77 52.47

ERFNet18 6.4 2.06M 46.25 94.74 98.89 57.58

BiseNet13 10.8 12.41M 125.98 93.46 98.60 46.08

Ours 8.6 20.23M 79.83 94.89 98.91 57.70

Figure 4.   Comparison of image segmentation results by different methods. (a) Ground truth, (b) ours model, 
(c) U-shape, (d) ERFNet, (e) ENet, (f) EspNet, (g) mobileNet, (h) BiseNet.

Figure 5.   Other comparison.
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segmentation methods, the results clearly show that our method has greater advantages in terms of segmentation 
accuracy and efficiency, meeting the temperature measurement requirements of real-time and segmentation 
accuracy.
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