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Impact of intrauterine growth 
restriction on cerebral and renal 
oxygenation and perfusion 
during the first 3 days after birth
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Intrauterine growth restriction (IUGR) is associated with a higher incidence of perinatal complications 
as well as cardiovascular and renal diseases later on. A better insight into the disease mechanisms 
underlying these sequalae is important in order to identify which IUGR infants are at a higher risk 
and find strategies to improve their outcome. In this prospective case–control study we examined 
whether IUGR had any effect on renal and cerebral perfusion and oxygen saturation in term neonates. 
We integrated near-infrared spectroscopy (NIRS), echocardiographic, Doppler and renal function 
data of 105 IUGR infants and 105 age/gender-matched controls. Cerebral and renal regional oxygen 
saturation values were measured by NIRS during the first 12 h after birth. Echocardiography alongside 
Doppler assessment of renal and anterior cerebral arteries were performed at 6, 24, 48 and 72 h of age. 
Glomerular and tubular functions were also assessed. We found a left ventricular dysfunction together 
with a higher cerebral oxygen saturation and perfusion values in the IUGR group. IUGR term infants 
showed a higher renal oxygen saturation and a reduced oxygen extraction together with a subclinical 
renal damage, as indicated by higher values of urinary neutrophil gelatinase-associated lipocalin 
and microalbumin. These data suggest that some of the haemodynamic changes present in growth-
restricted foetuses may persist postnatally. The increased cerebral oxygenation may suggest an 
impaired transition to normal autoregulation as a consequence of intra-uterine chronic hypoxia. The 
higher renal oxygenation may reflect a reduced renal oxygen consumption due to a subclinical kidney 
damage.

Intrauterine growth restriction (IUGR) birth is defined as a foetal growth rate below its genetically determined 
potential size per race and gender and is associated with a higher risk of cardiovascular morbidity, mortality and 
long-term neurological adverse  outcome1,2.

IUGR birth is mainly due to placental insufficiency, which can lead to chronic intrauterine hypoxia and 
prenatal haemodynamic disturbances, thus causing structural and functional changes of cerebral and renal 
circulation, which in turn may affect the renal and cardiovascular system in the long  term3–7. In fact, chronic 
hypoxia, together with increased placental vascular resistance, may cause abnormal cardiac function due to the 
pressure and volume overload of the foetal heart, and determine a preferential redistribution of the blood flow 
to the brain, so as to maximize cerebral  oxygenation8.

Previous studies demonstrated the presence of a cerebral vasodilation in small for gestational age (SGA) 
infants with changes in blood pressure and cerebral haemodynamic. This may reflect the extreme vulnerability 
of these neonates to perinatal  hypoxia9. However, only few studies so far have assessed the relation between 
cerebral and systemic perfusion and oxygenation in the early postnatal period of growth-restricted term infants.

Near-infrared spectroscopy is a non-invasive tool for studying organ haemodynamic processes by measuring 
oxygenation and haemoglobin concentration changes. Functional echocardiography has been increasingly used 
to examine blood flow from the upper body, including the brain, thus providing a reliable assessment of systemic 
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blood flow. The integration of these data may help to better understand the disease mechanisms responsible for 
the sequelae of IUGR and contribute to improve the identification of those IUGR neonates who are more likely 
to develop cardiovascular and renal diseases later on in  life1.

We hypothesized that IUGR would affect postnatal cardiovascular transition and alter cardiac and renal 
functions in term infants, thus affecting brain and renal oxygenation. The primary outcome of the study was 
renal and cerebral tissue oxygen saturation through the application of near-infrared spectroscopy. Second-
ary outcomes were conventional echocardiographic parameters, cerebral and renal blood flow, glomerular and 
tubular function soon after birth.

Methods
Study design and population. This prospective case–control study was carried out in the post-natal ward 
of the Department of Neonatology, University of Campania “Luigi Vanvitelli”, Naples, Italy. We consecutively 
recruited SGA term neonates with intrauterine growth restriction (IUGR) and appropriate-for-gestational- age 
(AGA) controls born between January 2018 and January 2021. Each neonate with IUGR was matched to one 
neonate with AGA based on the age and gender. The Medical Ethical Committee of the University of Campania 
“Luigi Vanvitelli” approved the study and all procedures were performed in accordance with the relevant guide-
lines and regulations. Written informed consent was obtained from parents or legal representatives.

SGA was defined as birth weight < 10th centile for gestational age while the definition of adequate-for-gesta-
tional age was a birth weight between the 10th and the 90th percentile, both according to local percentile  charts10. 
IUGR was defined according to the following criteria: estimated foetal birth weight below the 3rd percentile or 
below the 10th  percentile11 in combination with one or more of the following parameters: abnormal Doppler 
waveforms in the umbilical (> 95th percentile), middle cerebral (< 5th percentile), or uterine (> 95th percentile) 
arteries and/or abnormal cerebroplacental ratio (< 5th centile)12,13. Only the last Doppler measurements prior 
to delivery were considered for the analysis.

Exclusion criteria were the need for additional oxygen or positive pressure ventilation at the time of birth, 
major congenital anomalies, genetic diseases, congenital heart disease, kidney, and metabolic diseases.

Antenatal, birth, maternal and neonatal characteristics were collected. As part of our hospital protocol all 
the IUGR neonates had capillary blood drawn three hours after birth to rule out hypoglycaemia. Therefore, 
parameters such as blood glucose,  pCO2 and haemoglobin were only available for the IUGR group.

Near infrared spectroscopy (NIRS) monitoring. Regional cerebral and renal oxygenations (rSO2) 
were studied continuously by multi-probe NIRS (ForeSight Elite, Casmed, Branford, CT) for the first 12 h after 
birth. A NIRS transducer was applied to the forehead for cerebral rSO2 measurement and secured with a band-
age; another transducer was placed to the posterior flank at T12-L2 for renal rSO2. Proper transducer placement 
was verified concomitantly with renal ultrasound. Oxygen saturation of the blood (SpO2) and heart rate were 
measured simultaneously by pulse oximetry on the right hand (Nellcor pulse oximeter, Covidien, Boulder, CO, 
USA). Breast feeding and skin-to-skin care happened as usual without any interference from the research team.

Artefacts were considered as: (1) physiologically unexplained decrease or increase of at least 30% between two 
data points in rSO2 or other parameters, (2) changes in rSO2 combined with severely deformed accompanying 
variables, alternated with missing data points, together suggesting neonatal  movement14. Fractional tissue oxygen 
extraction (FTOE) was calculated off-line with the formula: FTOE = (SpO2 − rSO2)/SpO2. After removing the 
artifacts, we considered tissue oxygenation data with a 1-h interval for the analysis.

Echocardiographic and Doppler measurements. The echocardiographic and Doppler assessment was 
performed at 6, 24, 48 and 72 h of age using GE Logiq 7 (General Electric,USA) with 3–9 MHz transducer. Left 
Ventricular Cardiac Output (LVCO), Right Ventricular Cardiac Output (RVCO) and the superior vena cava 
(SVC) flow were calculated as previously  described15–17. Resistance index in renal and anterior cerebral arteries 
were also assessed. A renal ultrasound of both kidneys was performed within 72 h after birth to measure renal 
length. Further details on the echocardiographic and Doppler measurements are in Supplementary file S1.

Glomerular and tubular function. A blood sample was collected for serum creatinine and urea between 
48 and 72 h after birth, at the same time as the neonatal metabolic screening. A paired urine sample was collected 
for microalbumin (Immunonephelometric method, BNTMII, Siemens Medical Solution) as well as a neutrophil 
gelatinase-associated lipocalin (NGAL) measurement (ELISA kit, Biorbyt LLC, St Louis, Missouri, MO, USA) by 
using single sterile bags according to manufacturer’s instructions. The detection limit for NGAL measurement 
was < 40 pg/mL.

Renal function was estimated according to the Schwartz formula for the term babies: estimated glomerular 
filtration rate (eGFR) = 0.45 × length/Serum Creatinine (measured by Jaffé’s method) in milligrams per deciliter.

Statistical analysis. Continuous variables are presented either as means and SDs or median and interquar-
tile range depending on their distribution. Categorical variables are given as numbers and proportions.

Differences in echocardiographic and Doppler measurements between IUGR and AGA newborns were 
assessed by using a Wilcoxon matched-pairs signed ranks test. We used a linear mixed-model analysis for NIRS 
parameters with individuals as a random effect nested within the groups and a fixed effect for the groups (IUGR 
versus AGA) and in order to assess whether the groups behaved differently over time. Results according to these 
linear mixed models are presented using means and 95% confidence intervals (CI). We also examined the effect 
of gender within the IUGR group by using a linear mixed model with a fixed effect for time and sex (male vs. 
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female). A first-order autoregressive moving average covariance structure was used in these analyses. Statistical 
analyses were performed using SPSS Statistics V.24 (IBM). A p value < 0.05 was considered as significant.

We estimated a sample size of 85 patients for each group, based on the following assumptions: (i) the differ-
ence in the cerebral or renal rSO2 between the IUGR and control group would have to be at least 3%, (ii) SD 
for cerebral and renal rSO2 in control newborns is 8% and 6%  respectively18, (iii) a two-sided test of statistical 
significance, (iv) a probability of 0.05 for a type I error associated with the two-sided test, and (v) a probability 
of 0.1 for a type II error associated with the test (i.e., the power of the test is 90%), (vi) the sample size has been 
increased of 100 patients in each group to take into account missing data.

Results
Study flow and baseline variables. Two-hundred-ten neonates were recruited in the study period, 105 
of whom were SGA and 105 AGA term neonates (Fig. 1).

Birth weight, length and cranial circumference were significantly lower in the IUGR group (Table 1). SpO2 
and heart rate were not significantly different between the two groups (SpO2 main effect group: p = 0.57; interac-
tion time × group: p = 0.43) (heart rate main effect group: p = 0.764; interaction time × group: p = 0.89) over the 
whole observation period. Within the IUGR group, there was no difference between male and female neonates 
in SpO2 (interaction time × sex: p = 0.32; main effect sex: p = 0.21).

Primary outcome. Renal and cerebral rSO2 and FTOE. NIRS monitoring started at a mean time of 
68  min ± 22  min. Therefore, NIRS values are reported from the second hour after birth on. There were sig-
nificantly higher cerebral rSO2 (main effect group: p = 0.04; interaction time × group: p = 0.72) and lower FTOE 
values in the IUGR compared with the control group (main effect group: p = 0.03; interaction time × group: 
p = 0.463) over the whole observation period (Fig. 2).

Renal FTOE was significantly lower in IUGR versus control neonates (main effect group: p = 0.04; interac-
tion time × group: p = 0.39) whereas renal rSO2 was higher in IUGR versus control neonates (main effect group: 
p = 0.003; interaction time × group: p = 0.44) (Fig. 3). There was no significant correlation between haemoglobin 
concentration and renal and cerebral rSO2 at the different time points in the IUGR group (p > 0.05).

Secondary outcomes. Echocardiography and Doppler measurements. The SVC flow at 6 and 24  h af-
ter birth were significantly higher in IUGR than in the control infants (134 ± 61 versus 89 ± 30 ml/kg/min, 6 h 
p = 0.02; 115 ± 39 versus 80 ± 31 ml/kg/min, 24 h p = 0.0001). After 24 h SVC flow was not significantly different 
between IUGR and control infants (97 ± 53 versus 78 ± 43 ml/kg/min, 48 h p = 0.48; 85 ± 38 versus 74 ± 39 ml/
kg/min, 72 h p = 0.50). LVCO was significantly lower in IUGR than in control infants at 6 and 24 h after birth 

Term neonates with IUGR before 
birth (n=163) and controls (n=2700)  

(January 2018 and January 2021)

Neonates recruited
(n=210)

IUGR group n=105
Paired blood/urine samples n=75 

Urine samples alone n=6

AGA group n =105
Paired blood/urine samples n=66 

Urine samples alone n=12

Met pre-specified exclusion criteria (n= IUGR 22/Controls 88)
Consent refused (n= IUGR 16/Controls 39 )
Inves�gator not posted in neonatal unit (n=IUGR 20/
Controls 2468)

Figure 1.  Flowchart of patient selection.
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Table 1.  Baseline maternal and neonatal characteristics in the IUGR and control groups. Mann–Whitney 
U test was used for nonparametric data, Student’s t test for parametric data, and the χ2 test for categorical 
measurements. *Statistically significant (P < 0.05).

Variables Control group (n = 105) IUGR group (n = 105) P value

Gestational age, weeks, mean (SD) 39 (1.5) 39(1.6) 0.49

Primigravida, n (%) 47 (45) 46 (44) 0.89

Diabetes, n (%) 4 (4) 8 (7.6) 0.23

Hypertension, n (%) 12(11.4) 28 (26.7) 0.008*

Antibiotics during Pregnancy, n (%) 11 (10) 14 (13) 0.51

C section, n (%) 35 (33.3) 30 (28.6) 0.55

Female, n (%) 55(52) 55(52) -

Birth weight, g, median [IQR] 3180 [3000–3400] 2640 [2400–2780] 0.001*

Birth length, cm, median [IQR] 51 [50–53] 48 [47–49] 0.001*

Birth head circumference, cm, median [IQR] 34.7 [33.8–35] 33 [32–34] 0.001*

Apgar score 1 min, median [IQR] 9 [8.5–9] 9 [8–9] 0.77

Apgar score 5 min, median [IQR] 10 [9–10] 9 [9–10] 0.21

Cord blood pH, median [IQR] 7.29 [7.23–7.31] 7.31 [7.25–7.4] 0.11

Haemoglobin, g/dL, mean (SD) NA 19.1 (2.4) –

pCO2, mmHg, mean (SD) NA 50.8 (5.9) –

Blood glucose, mg/dL, mean (SD) NA 72.6 (29.7) –

Serum Cr, mg/dL, mean (SD) 0.57 (0.11) 0.69 (0.10) 0.13

Serum urea, mg/dL, mean (SD) 16.2 (7.7) 17.1 (2.0) 0.71

Figure 2.  Cerebral regional oxygen saturation (rSO2) and fractional tissue oxygen extraction (FTOE) values 
recorded during the first 12 h after birth in intrauterine growth restriction (IUGR) (n = 105) and control 
(n = 105) newborns. Grey filled circles represent IUGR and black hollow circles control infants. Data are given 
as mean (circles) and standard deviation (error bar). There was a significant group difference, but the groups did 
not behave differently over time.
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(188 ± 88 versus 245 ± 49 ml/kg/min, 6 h p = 0.03; 192 ± 62 versus 251 ± 40 ml/kg/min at 24 h, p = 0.004). Af-
ter 24 h LVCO was not significantly different between IUGR and control infants (202 ± 65 versus 206 ± 58 ml/
kg/min, 48 h p = 0.92; 195 ± 51 versus 209 ± 62 ml/kg/min, 72 h p = 0.71). RVCO was not statistically different 
between IUGR and control infants at all the time points (267.1 ± 85 versus 201 ± 76 ml/kg/min, 6 h p = 0.06; 
241.2 ± 76 versus 232 ± 78 ml/kg/min, 24 h p = 0.64; 217.8 ± 72 versus 208 ± 78 ml/kg/min, 48 h p = 0.75; 242 ± 72 
versus 188.7 ± 39 ml/kg/min, 72 h p = 0.09) (Fig. 4A).

A small patent ductus arteriosus (PDA) closed spontaneously in the majority of neonates by the second day. 
A PDA was present in 97 out of 105 (92%) in the IUGR versus 94/105 (89%) infants in the control group at 
6 h (p = 0.63). At 24 h 46/105 (44%) in the IUGR versus 49/105(47%) infants in the control group had a PDA 
(p = 0.78). Six out of 105 (6%) in the IUGR versus 4/105 (4%) infants in the control group still had a PDA at 48 h 
(p = 0.74). At 72 h 2/105 (2%) in the IUGR versus 3/105 (3%) infants in the control group had a PDA (p = 0.65).

The resistance index of the anterior cerebral artery was significantly lower in the IUGR group at 6 and 24 h 
(0.66 ± 0.11 versus 0.76 ± 0.14, 6 h p = 0.007; 0.65 ± 0.08 versus 0.73 ± 0.13, 24 h p = 0.04). At 48 and 72 h after 
birth, resistance index of the anterior cerebral artery was not significantly different between IUGR and control 
infants (0.66 ± 0.08 versus 0.69 ± 0.06, 48 h p = 0.46; 0.67 ± 0.09 versus 0.68 ± 0.05, 72 h p = 0.87). The resistance 
index of the renal artery was not statistically different between IUGR and control infants at the different time 
points (0.71 ± 0.11 versus 0.77 ± 0.08, 6 h p = 0.16; 0.72 ± 0.09 versus 0.69 ± 0.10, 24 h p = 0.76; 0.74 ± 0.10 versus 
0.67 ± 0.08, 48 h p = 0.18; 0.72 ± 0.07 versus 0.67 ± 0.03, 72 h p = 0.14) (Fig. 4B).

Glomerular and tubular function. One-hundred-fifty-nine urine and 141 blood samples were available for 
analysis (Fig. 1). Urine microalbumin and NGAL levels were significantly higher in IUGR compared with con-
trol infants (Urine NGAL 29.16 [IQR12.10–49.01] versus 13.36 [IQR 7.04–24.45] ng/mL, p = 0.04; urine NGAL/
Creatinine ratio 33.2 [IQR 15.61–58.26] versus 17.69 [IQR 11.24–27.16] ng/mg creatinine, p = 0.04; urine micro-
albumin 48 [IQR 25–62] versus 26 [IQR 21–35] mg/L, p = 0.01) (Fig. 5).

The eGFR was not significantly different between IUGR and AGA infants (36.5 ± 11.52 versus 40.6 ± 9.14 mL/
min/1.73  m2, p = 0.28). There was no statistically significant difference in the kidney size between IUGR and 
AGA neonates (right kidney 40 [IQR 38–43] versus 42 [IQR 40–44] mm, p = 0.13, left kidney 40.5 [IQR 37–43] 
versus 45 [IQR 42–47] mm, p = 0.24).

Figure 3.  Renal regional oxygen saturation (rSO2) and fractional tissue oxygen extraction (FTOE) values 
recorded during the first 12 h after birth in intrauterine growth restriction (IUGR) (n = 105) and control 
(n = 105) newborns. Grey filled circles represent IUGR and black hollow circles control infants. Data are given 
as mean (circles) and standard deviation (error bar). There was a significant group difference, but the groups did 
not behave differently over time.
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Discussion
Our study shows that IUGR term infants have an increased cerebral oxygenation and perfusion during the first 
day after birth, as indicated by a higher cerebral rSO2 and SVC flow values. This may reflect a persistence of 
the abnormal cerebral blood flow features present in growth-restricted foetuses. We also found a higher tissue 
oxygenation in the kidney without any significant difference in the renal blood flow.

Chronic hypoxia causes extensive haemodynamic changes in growth-restricted foetuses so as to preserve brain 
oxygen supply and protect the foetal brain in an unfavourable intrauterine environment. These changes include 
a decrease in the cerebral vascular resistance due to a local increase of adenosine, nitric oxide and  prostanoids19. 
In agreement with us, other researchers found that these intrauterine haemodynamic changes may persist dur-
ing the early neonatal period. In fact, significant changes in the middle and anterior cerebral artery resistive and 
pulsatility indices have been found in IUGR neonates in the first few days of  age9,20,21. Whether this altered brain 
blood flow and oxygenation themselves contribute to a higher vulnerability in the brain growth, has been the 
focus of different studies. Previous research has hypothesized that the postnatal continuation of the increased 

Figure 4.  Bar graph showing the mean echocardiography (A) and Doppler measurements (B) in intrauterine 
growth restriction (IUGR) (grey) and control (white) newborns at the different time points. Echocardiography 
and Doppler assessments were not performed in eight infants in the control and three infants in the IUGR 
group at 72 h. Error bars represent standard deviation. *Statistically significant (P < 0.05). SVC superior vena 
cava, LVCO left ventricular cardiac output, RVCO right ventricular cardiac output, ACA  anterior cerebral artery.

Figure 5.  Bar graph showing the median urinary neutrophil gelatinase-associated lipocalin (NGAL), NGAL/
Creatinine and urine microalbumin values in intrauterine growth restriction (IUGR) (grey) and control (white) 
newborns. Error bars represent the upper and lower quartiles. Paired blood/urine samples were available in 
75 IUGR and 66 control newborns. Urine samples alone were available in 6 IUGR and 12 control infants. 
*Statistically significant (P < 0.05).
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cerebral blood flow might cause hyperoxia, which may trigger a burst of free reactive oxygen  species22–24. This 
long-lasting oxidative stress and cell damage to oxygen-sensitive organs such as the brain may contribute to 
the neurological  damage24. Of note, postnatal changes in cerebral blood flow velocity have been suggested as 
prognostic markers for adverse neurodevelopment in IUGR  neonates25.

Our finding of higher cerebral rSO2 values in IUGR term neonates is in accordance with cerebral oxygenation 
data in IUGR preterm infants where higher values have been consistently reported in the first days after  birth26,27. 
Recently, Baik-Schneditz et al. also showed significantly higher cerebral rSO2 values and lower rates of oxygen 
extraction during the first 15 min after birth in IUGR preterm and term neonates when compared with AGA 
 peers28. In regard to cerebral oxygen extraction, we found that IUGR infants had a decreased cerebral FTOE 
after birth. This decreased cerebral oxygen consumption may be explained as the persistence of an adaptation 
phenomenon due to the reduced substrate delivery in case of foetal chronic hypoxia. This is supported by animal 
models, which indicate that chronic foetal hypoxia ultimately reduces oxygen consumption in order to decrease 
substrate requirements for energy and  growth29,30. This ability during foetal life has been shown to be critical to 
reduce the loss of white and grey matter volume in IUGR  infants31.

To date there is a paucity of data regarding the postnatal transition of IUGR term neonates and in many 
instances, there are no echocardiography data or simultaneous evaluation of peripheral circulation or 
oxygenation.

Our study pointed out a compromised systolic function, which may reflect the increased cardiac afterload 
due to the high placental resistance during the foetal life. Growth-restricted foetuses have been found to have 
an impaired systolic function as indicated by decreased peak systolic velocities in the cardiac outflow tracts 
and a diminished ejection  force32,33. However, there are conflicting results so far regarding whether a systolic 
dysfunction occurs also in the early postnatal period in IUGR infants, which highlights the heterogeneity of 
this population. In fact, while most of the studies performed in preterm IUGR infants reported a similar cardiac 
output in IUGR neonates and  controls34–38, a systolic dysfunction soon after birth has been found in IUGR term 
 infants39. These findings are likely to reflect the cardiac adaptation to prolonged IUGR. Unfortunately, we did 
not assess the intestinal blood flow. Therefore, we could not examine whether the decreased LVCO and higher 
renal rSO2 were related to a decreased intestinal with a preserved renal blood flow.

A better insight into how growth-restricted neonates utilize oxygen may help to understand the later devel-
opment of hypertension and chronic kidney disease. Only few studies have examined the renal rSO2 of IUGR 
neonates so  far40. Terstappen et al. assessed renal and cerebral rSO2 in 9 growth-restricted and 7 control preterm 
neonates and showed a higher cerebral and renal tissue oxygenation. Similar to our study, renal artery blood flow 
was not different when compared to controls suggesting that oxygenation differences were due to underlying 
renal development or  physiology41. This is supported by animal studies and antenatal Doppler data, which sug-
gested that mild hypoxemia does not affect foetal renal blood flow or urine production rate directly, but indirectly 
due to a decreased renal  growth42–44. Another research showed that neonates with an early diagnosis of growth 
restriction during pregnancy had a higher renal FTOE after birth compared to those with a later  diagnosis45.

We hypothesize that the higher renal tissue oxygenation without any significant difference in the renal blood 
flow may indicate lower oxygen consumption. Renal oxygen delivery is determined by three major factors 
which are renal blood flow, local tissue perfusion and blood oxygen content whereas oxygen consumption is 
mainly affected by glomerular filtration rate and sodium  reabsorption46. Our findings of higher NGAL and urine 
microalbumin levels in IUGR neonates indicate a subclinical kidney damage after growth restriction. NGAL is 
a protein produced by epithelial and neutrophils cells and represents a direct marker of tubular damage. Proxi-
mal tubules cells are extremely vulnerable to hypoxia. Therefore, in case of chronic intrauterine hypoxia such as 
placental insufficiency, these cells are likely to be affected. Previous research also reported that growth-restricted 
infants have subclinical kidney damage, as showed by significantly higher urinary NGAL and urinary NGAL /
Creatinine47.

Renal dysfunction is often due to impaired vascular tone and integrity after IUGR 48. Increased renal oxygena-
tion itself is closely linked to oxidative stress, which can trigger renal afferent arterioles vasoconstriction and 
myogenic response enhancement thus further promoting hypertension and nephropathy later in  life49.

Our study has strengths and limitations. Firstly, this study integrates serial data from echocardiography, 
Doppler and NIRS, thus providing further insights into the haemodynamic changes in IUGR infants during 
the first days after birth. IUGR neonates are a heterogeneous population with timing, severity and duration of 
hypoxaemia playing a role in the cardiovascular  transition50. Term IUGR infants are often delivered after milder 
forms of placental insufficiency and most cases have a late onset growth restriction. In contrast, the early onset 
growth-restricted fetus is more likely to be delivered  preterm50. We used stringent inclusion criteria to avoid any 
potential confounder due to this heterogeneity. The recruitment of other categories of neonates like preterm or 
term neonates requiring delivery room resuscitation, would have made it difficult to understand the contribution 
of each of these factors to the cerebral and renal oxygenation/perfusion without a much larger sample size. Sec-
ondly, we correlated NIRS parameters at birth with Doppler and renal function measurements so as to estimate 
renal oxygen consumption in IURG infants. Furthermore, we used also early markers of kidney damage like 
urinary NGAL and microalbumin. The main limitation of our study is that we did not assess the intestinal blood 
flow. Therefore, we could not explore the relation among decreased LVCO, renal and intestinal blood flow. In 
addition, there is a lack of data from the immediate transition period and a limited duration of NIRS monitoring 
(12 h). Finally, data on the renal function were available in only a subset of infants.
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Conclusions
This study shows that IUGR has a direct impact on the cerebral and renal oxygenation during the first days after 
birth in term infants. The increased renal oxygenation in IUGR neonates may be due to an impaired subclinical 
renal function with reduced oxygen consumption. The increased cerebral oxygenation may suggest an impaired 
transition to normal auto-regulation as a consequence of intra-uterine chronic hypoxia. Whether these obser-
vations correlate with short and long-term outcomes, it needs to be investigated in longitudinal studies with an 
adequate follow-up.

Data availability
Data are available upon reasonable request and once all the different sub-studies have been published.
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