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Theoretical studies on quantum 
imaging with time‑integrated 
single‑photon detection 
under realistic experimental 
conditions
Byeong‑Yoon Go1,3, Changhyoup Lee2* & Kwang‑Geol Lee1*

We study a quantum-enhanced differential measurement scheme that uses quantum probes and 
single-photon detectors to measure a minute defect in the absorption parameter of an analyte under 
investigation. For the purpose, we consider two typical non-classical states of light as a probe, a twin-
Fock state and a two-mode squeezed vacuum state. Their signal-to-noise ratios (SNRs) that quantifies 
the capability of detecting the defect are compared with a corresponding classical imaging scheme 
that employs a coherent state input. A quantitative comparison is made in terms of typical system 
imperfections such as photon loss and background noise that are common in practice. It is shown 
that a quantum enhancement in SNR can be described generally by the Mandel Q-parameter and the 
noise-reduction-factor, which characterize an input state that is incident to the analyte. We thereby 
identify the conditions under which the quantum enhancement remains and can be further increased. 
We expect our study to provide a guideline for improving the SNR in quantum imaging experiments 
employing a differential measurement scheme with time-integrated single-photon detectors.

The capability to measure a small optical signal is of utmost importance in both fundamental studies and practi-
cal applications. For example, a microscopy technique measuring optical responses of an object has led to a wide 
range of development in the fields of biochemical and medical sciences1–4. The highly sensitive optical interfer-
ometer also enables the detection of gravitational waves5. However, the signal quality obtainable with a classical 
probe is fundamentally limited by the shot noise even when all technical noises are removed. The shot noise is 
originated from the discretized nature of light that composes a classical probe, i.e., a coherent state whose photon 
number statistics follows a Poisson distribution. The associated signal-to-noise ratio (SNR) is proportional to the 
square root of the intensity, 

√
I  , so that the SNR can be enhanced by increasing the intensity of light used for the 

measurement. However, increasing the optical power is not always acceptable due to optical damages or unwanted 
photo-sensitive effects that can be caused by the high intensity at incidence6–8. In such limited situations, an 
alternative way to reach an aimed SNR instead of increasing the optical intensity has been suggested9,10 and it is 
to use quantum probes with exploiting useful quantum properties of light, which are absent in classical probes11.

A number of experimental demonstrations for quantum sensing and imaging have shown that probing photo-
sensitive samples with quantum light can achieve sub-shot-noise limited behaviors in various aspects such as 
sensitivity or precision11. The most widely used quantum probe is the so-called twin-beam that possesses the com-
plete photon-number correlation between a signal and an idler mode12. They have been used in quantum imaging 
with an intensity-sensitive measurement13–18 and in quantum enhanced absorption measurement scheme19–21, 
while also been exploited in quantum phase estimation with phase-sensitive measurement22–25. Another useful 
quantum state in quantum imaging is a Fock state whose photon number statistics is sub-Poissonian. The Fock 
state is known to be optimal for intensity-sensitive measurement26. Although the generation of an arbitrary sub-
Poissonian field with high photon number has been studied theoretically and experimentally27, it is still demand-
ing in practice28–30. The most common quantum optical detector, on the other hand, is a single-photon threshold 
detector which distinguishes between vacuum ( n = 0 , i.e., ‘no click’) and photons ( n ≥ 1 , i.e., ‘click’)31,32. It has 
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been realized by an avalanche photodiode33 or a superconducting nanowire single-photon detector34. When 
multiple single-photon detectors are combined via a multiplexing scheme, they can provide pseudo photon 
number statistics35,36 or click statistics37,38. A single-photon detector is also often used in a simpler way for time-
integrated detection, which counts the number of ‘click’ events for an exposure time T = m�t , where m denotes 
the number of segment and �t represents the unit of time interval. The latter scheme has been applied to various 
sensing and imaging applications, e.g., single-photon quantum imaging39.

In the ideal lossless case, the aforementioned quantum resources exhibit remarkable behaviors including 
sub-shot-noise limited SNR40, but inevitable losses that are present in reality degrade the quantum enhance-
ment in SNR41,42. For example, a limited detection efficiency of a single-photon detector reduces a quantum 
gain since quantum features are very vulnerable to loss or decoherence43–45. Therefore, the losses need to be 
taken into account in quantification of quantum enhancement, which may suggest a guideline for the use of 
quantum resources in various imaging schemes. The effects of realistic imperfections have been considered in 
various manners, for example, finding optimal quantum probes for estimation of a lossy phase shift43,46, finding 
nearly optimal measurements in lossy Mach-Zehnder interferometer47, identifying optimal Gaussian resources 
in phase measurement48,49, improving indistinguishability of interfering photons50, robust preparation of the 
NOON state51, and reaching the ultimate quantum limit in chirality sensors measuring, e.g., optical activity52 
and circular dichroism53.

Along with theses, we investigate in this work the effect of losses and imperfections that are very common in 
practical experimental setups for quantum imaging. For the purpose, we consider a quantum imaging scheme 
with a twin beam differential measurement that can effectively eliminate the common excess noise33. As a detec-
tion scheme, we employ time-integrated single photon detection. Such a detection scheme has been used in a 
recent experimental study that investigates the photon number distribution and resultant non-classical features 
for compound twin-beams54. There, the compound twin-beams are composed of identical twin-beams that are 
sufficiently weak, used to substitute stronger genuine twin beams that require the use of photon-number-resolv-
ing detectors. On the other hand, our work focuses on establishing a theoretical model of the time-integrated 
single-photon detection scheme for various quantum states to analyze the effects of noisy quantum sensing envi-
ronments. In the presence of losses and imperfections, we compare the SNRs for two useful quantum states that 
are known to achieve quantum enhancement in intensity-sensitive measurement16; a two-mode squeezed vacuum 
(TMSV) state which can be produced by a spontaneous parametric down-conversion (SPDC) process16,55–57, 
and a twin-Fock (TF) state which can be produced by various kinds of photon sources. One can see that both 
quantum states exhibit maximum photon-number correlation between the two modes, which is very useful to 
minimize the uncertainty in differential measurement. The reduced uncertainty consequently enhances the 
SNR, which we characterize in this work by two parameters; Mandel Q-parameter58 and the noise reduction 
factor σ59, which have been ubiquitously used to distinguish various states of light. We then study the effect of 
loss and background noise (here, dark count) in the SNR when probing a sample with the two quantum states. 
Furthermore, we identify when a quantum enhancement remains in comparison with a classical imaging scheme 
that employs a coherent state of light.

Theoretical model
Imaging setup.  We consider an intensity-difference measurement scheme to detect a minute defect δα of 
the absorption parameter α of an absorptive sample, as depicted in Fig. 1. For simplicity, we assume that the 
two beams are collimated, so that they can be treated respectively as one-dimensional photon fluxes. Let us now 
consider an arbitrary two-mode state that consists of a signal (label ‘1’) and a reference (label ‘2’) mode, written 
in the basis of two-mode Fock states as

where 
∑∞

n1,n2=0

∣

∣Cn1,n2

∣

∣

2 = 1 . Here, the mean photon number Nj of jth mode is given as

|�� =
∞
∑

n1,n2=0

Cn1,n2 |n1�1|n2�2,

Figure 1.   Differential detection scheme for imaging of an absorptive analyte with minute defects. The signal 
(red) beam passes through the analyte, whereas the reference (blue) beam is kept unchanged. The intensities of 
the transmitted beams are measured at detectors, yielding their difference via post-processing. The mathematical 
formulation of the considered imaging scheme is described in the main text, where the photon loss and the 
background noise are also properly considered.
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where n̂j = â†j âj is the photon number operator and âj is the annihilation operator satisfying the bosonic commu-
tation relation [âj , â†k] = δjk for j, k ∈ {1, 2} . The signal mode of the two-mode state passes through an absorptive 
sample whose transmission coefficient is t1 , while the idler mode is kept unchanged as a reference, as depicted in 
Fig. 1. The interaction with the absorptive sample under study can be described in the Heisenberg picture by the 
relation between the operators â1 and â′1 of the modes before and after hitting the sample, respectively, written as12,

where v̂1 denotes an operator for a virtual mode associated with absorption. Such a relation implies that the 
absorption occurs for individual photons probabilistically with a rate α = 1− t21 , finally modifying the photon 
number distribution of the transmitted field. The lossless idler mode is described by an operator kept unchanged, 
i.e., â′2 = â2 , and is used as a reference to measure the change of intensity on the signal mode. Therefore, the 
intensity-difference I− to be measured is described by

and its noise is given as

where Cov(X,Y) = �XY� − �X��Y� denotes the covariance between X and Y, and the subindex ‘in (out)’ rep-
resents the expectation value calculated with respect to an input (output) state. The individual terms can be 
calculated as

From now on, we particularly concentrate on twin-mode states, which have the equal mean photon number 
and equal photon number variance in both modes, i.e., �n̂1�in = �n̂2�in = N and �(�n̂1)

2�in = �(�n̂2)
2�in . Such 

an assumption applies to most imaging scenarios, where the signal mode is compared with the reference mode. 
The above signal and noise can thereby be simplified as

where Q = �(�n̂)2�in/�n̂1�in − 1 denotes the Mandel Q-parameter58 and σ = �(�n̂−)2�in/(�n̂1�in + �n̂2�in) rep-
resents the noise reduction factor (NRF)59. Consequently, the SNR for I− can be written as57

Note that Q ≥ 0 for all classical lights, so the light exhibiting sub-Poissonian photon number statistics, 
i.e.,−1 ≤ Q < 0 , is called non-classical. Also, the NRF is greater than unity (i.e., σ ≥ 1 ) for all pure classical 
states (i.e., a product of two arbitrary coherent states). Hence, the product of two identical coherent states can 
be characterized by Q = 0 and σ = 1 . One can thus find useful pure quantum states of light with −1 ≤ Q < 0 
and  0 ≤ σ < 1 , improving the SNR of Eq. (1). These characteristic parameters allow one to understand the role of 
quantum effects in enhancing the SNR in the differential measurement scheme for an absorption parameter40,57.

Let us now introduce a minute defect δα in the absorption parameter α of the sample under investigation 
as in Fig. 1. The defect δα can be detected by comparing the transmitted intensities between the two positions 
in the samples, i.e., between ones with and without the defect. In other words, the transmitted signal having 
passed through the point with the defect needs to be distinguishable from the point with no defect. Their dif-
ference Ŵ− reads

It is obvious that the defect δα is detectable when the difference Ŵ− is greater than the photon number noise �I− , 
as depicted in Fig. 2. The larger the ratio of Ŵ− to �I− is, the more detectable the defect δα is. Hence, we thus 
define the SNR∗ to quantify the capability of detecting a minute defect as

This clearly indicates that the defect in the absorptive sample is more detectable when probing with light exhib-
iting small Q and σ . It is known that the smallest value of Q and σ can be achieved by the TF states |N�|N�11. 
However, experimental generation of large Fock states with N ≫ 1 is demanding within current technology28–30. 
Alternatively, one can use N single-photons13,32,60, or the TMSV state — the most common quantum probe in 
practical quantum imaging, which can be written as

Nj = ��|n̂j|��in,

â′1 = t1â1 + i

√

1− t21 v̂1,

I− = �n̂′−�out = �n̂′2�out − �n̂′1�out,

(�I−)
2 = �(�n̂′−)

2�out = �(�n̂′1)
2�out + �(�n̂′2)

2�out − 2Cov(n̂′1, n̂
′
2)out,

�(�n̂′1)
2�out = (1− α)2�(�n̂1)

2�in + α(1− α)�n̂1�in,
�(�n̂′2)

2�out = �(�n̂2)
2�in,

Cov(n̂′1, n̂
′
2)out = (1− α)Cov(n̂1, n̂2)in.

I− = �n̂′2�out − �n̂′1�out = αN ,

(�I−)
2 = N

[

α2Q + 2(1− α)σ + α
]

,

(1)SNR = I−
�I−

= α
√
N

√

α2Q + 2(1− α)σ + α
.

Ŵ− = �n̂′−(α + δα)�out − �n̂′−(α)�out = δαN .

(2)SNR∗ = Ŵ−
�I−

= δα

α
SNR.
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where r denotes the squeezing parameter and θs represents the squeezing angle. The TMSV state has been widely 
used in many applications including quantum imaging42, quantum illumination61–64, and quantum sensing12. They 
can be generated from a SPDC65–67 and the characteristic parameters r and θs can be tuned in a controlled man-
ner in experiments. The enhanced SNR by the use of TMSV states comes from the strong correlation in photon 
number between the signal and reference mode59,68–70, leading to σ = 0 regardless of the squeezing strength r. 
Despite the reduced NRF, the Mandel Q-parameter reads Q = N with a mean photon number N = sinh2 r for 
the TMSV state of Eq. (3), i.e., large r is rather detrimental.

Differential measurement with time‑integrated single‑photon detection.  The aforementioned 
imaging scheme implicitly assumes the capability of resolving photon numbers in detection, represented by the 
photon number operator n̂j . It can be achieved by superconducting transition-edge-sensors71–75 with high effi-
ciency, but they are still far from being widely used. A more commonly used detector in a number of quantum 
optics experiments is a single-photon threshold detector31,34, which can be realized by commercially available 
single-photon-counting module (SPCM). Therefore, it is more practical to consider the above differential meas-
urement scheme to be made by two identical SPCMs. We note that the SPCM suffers from the dead time in the 
order of  102 ∼ 103 ns, for which no detection can occur and which comes right after every detection fired. With 
such a feature, one can consider a time-integrated detection scheme that counts the number c of ‘click’ outcomes 
for an exposure time T = m�t , where m sequential detections with an interval �t are made, as depicted in 
Fig. 3. This scheme provides the number of ‘click’ events as a measurement outcome. In general, the distribution 
of c is different from the true photon number distribution obtainable by the aforementioned photon number 
resolving detector. They however become almost equal in the limit of N ≪ 1 , where SNR of Eq. (1) and SNR∗ of 
Eq. (2) can be used for the time-integrated single-photon detection scheme (see supplementary information for 
a rigorous justification). We therefore assume the small average photon number for all the states considered in 
this work, enabling to use the time-integrated detection scheme with a SPCM as an approximate photon number 
resolving detector.

Let us now consider the values of Q and σ for the three states considered above. First, for the TF state 
input |N�|N� , the SPCM always fires a detection event for any N ≥ 1 , i.e., no difference among N’s. When the TF 
states are consecutively injected with temporal spacing longer than the dead time of SPCMs, one can obviously 
see that QTF = −1 , and σTF = 0 . Again, these results are obtainable for any N ≥ 1 , so we focus on the simplest, 
but the most practical case of N = 1 , i.e., |1�|1� . Second, for the coherent state input |α�|α�, Qcoh = 0 originated 
from the Poisson photon number statistics and σcoh = 1 due to the absence of the photon number correlation 

(3)|TMSV� =
∞
∑

n=0

(−eiθs tanh r)n

cosh r
|n, n�,

Figure 2.   Illustration of the measurement outcomes of the intensity-difference I− that would be obtained 
with the noise �I− for a given state of light illuminated into an absorptive analyte with α . The presence of 
the defect δα is represented by a dip with a depth of Ŵ− in the noisy outcomes. If Ŵ− is not large enough with 
respect to the noise �I− , the presence of the defect cannot be recognized or is hardly distinguished (e.g., upper 
outcomes). Therefore, the use of a particular state of light yielding the reduced noise (e.g., lower outcomes) 
enables the defect to be more detectable under the noisy background.

Figure 3.   Time-integrated on/off detection is performed at each mode by a single photon counting module 
(SPCM) for an exposure time T that consists of m intervals of �t , i.e., T = m�t . The sequential measurement 
outcomes are obtained for time T, where the outcomes ‘0’ and ‘1’ denote the absence and the presence of 
photons, respectively.
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between the two modes. Third, for the TSMV state input, the reduced state for the individual mode is a thermal 
state, i.e., ρ1 = Tr2[|TMSV��TMSV|] = ρth under single-mode approximation76. However, the down-converted 
photon pairs produced by the SPDC process consist of multiple (in fact, continuous) frequencies in practice, 
i.e., the reduced state is given by a statistically mixed thermal states with the respective spectral modes. In 
most cases, the temporal detection resolution of SPCMs is much longer ( ∼ 10−9 s) than the coherence time of 
the down-converted photons for each mode ( ∼ 10−12s), so the statistical features of the individual modes are 
washed out. Therefore, the measurement results at individual modes are almost equal to the coherent state, i.e., 
we can thus put QTMSV = 0 . Nevertheless, the photon number correlation is still preserved at individual spectral 
modes, so σTMSV = 0.

Therefore, the SNR∗ s with respect to the three input states can be written as

where Neff = (δα)2c̄ denotes the effective mean photon number involved in detection for the average click num-
ber c̄ . The above SNR∗ s are compared in Fig. 4a in the absence of system loss and background noise. It is clear 
that using the considered quantum states exhibits larger SNR∗ than the case using a coherent state input. More 
specifically, the SNR∗

TF becomes larger as α increases or decreases from α = 0.5 and eventually diverges in the 
limit of small and large α . This is because the photon number uncertainty of the transmitted TF state becomes 
zero when α approaches zero (i.e., highly transparent) or unity (i.e., highly absorbing). On the other hand, 
the SNR∗

TMSV monotonically decreases as the absorption increases. It is interesting to see that SNR∗
TMSV ≃ SNR∗

TF 
in the limit of small absorption ( α ≃ 0 , i.e., highly transparent), whereas SNR∗

TMSV ≃ SNR∗
coh in the limit of large 

absorption ( α ≃ 1 , i.e., highly absorbing). This is because when α ≃ 0 , the transmitted TMSV state has the strong 
photon number correlation between the two modes, whereas when α ≃ 1 , the correlation is almost destroyed 
and the detected photon statistics are almost the same as the transmitted coherent state. Although it is evident 

SNR∗
coh =

√
Neff√
2− α

,

SNR∗
TF =

√
Neff√

α − α2
,

SNR∗
TMSV =

√
Neff√
α

,

Figure 4.   (a) The SNR∗ s obtainable when probing the analyze with a coherent state, the TF state, and the 
TMSV state as a function of the sample absorption α . The quantum gain R of the SNR∗ with respect to the 
benchmark SNR∗

coh is elaborated on two particular regimes: (b) small α and (c) large α . Here, δα = 10−3 
and c̄ = 106 (i.e., Neff = 1 ) are considered as an example.
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that the case using the TF state outperforms the cases using the other states at any value of α , the TMSV state 
can alternatively be used instead of the TF state when the absorption is small, i.e., α ≪ 1.

The amount of quantum gain in SNR∗ obtainable using a twin-mode state can be quantified by the ratio with 
respect to the benchmark SNR∗

coh , written as57

where the subindex s denotes a state of light to be considered. The quantum gain is thus identified by Rs > 1 , 
meaning that a larger SNR∗ is obtained in comparison with the case using a coherent state input. The ratio Rs of 
Eq. (4) can be reduced to Rs ≃ σ−1/2 when α → 0 , and Rs ≃ (Q + 1)−1/2 when α → 0 . This implies that for 
highly transparent samples ( α ≃ 0 ), the quantum gain is dominantly obtained from the non-classical correlation, 
whereas for highly absorbing samples ( α ≃ 1 ), the quantum gain is dominantly obtained from the non-classical 
photon number statistics at the individual modes. It explains the reason why the TMSV state case becomes similar 
to the TF state case when α → 0 (see Fig. 4b) and to the coherent state case as α → 1 (see Fig. 4c), respectively. 
Also note that the quantum gain quantified by R is independent of δα and c̄.

Effects of system imperfections
To see how the ideal analysis shown above is affected by experimental imperfections from a practical point of 
view, we take into account photon loss with a rate γ and dark count contribution in both modes. The photon loss 
addresses not only scattering and absorption that occurs in optical components or transmission channels but also 
imperfect detection of the detectors considered in this work. Quantum gain of Eq. (4) is significantly degraded 
by photon loss occurring via a probabilistic random process, which finally modifies the photon number distri-
bution and breaks the quantum correlations between the two modes. As for the background, we considered the 
external stray light and the internal spontaneous photocurrent of the detector which is often called dark count. 
The background counts {ndark} are assumed to follow Poissonian distribution since the internal photocurrent 
takes place randomly77,78, so reasonably assume that �(�n̂dark)

2� = �n̂dark� = Nd . In the presence of photon loss 
with γ , the transmission coefficients t1 and t2 can be expressed as t21 = (1− α)(1− γ ) and t22 = 1− γ , respec-
tively. Including the dark count, one can write the photon number variances of the two modes as

where η = Nd/N represents the ratio of the mean background count to the mean photon number of the input 
state. Then, the signal and noise modified by the imperfections are

respectively. Therefore, the SNR∗ for Ŵimp
−  can be described as

Before looking into the effect of system imperfection in SNR∗ of Eq. (5), let us discuss the typical ranges of the 
respective imperfection parameters, which are found under normal experimental conditions. First, the detection 
efficiency of SPCMs is in a range between 0.2 and 0.95, including the recently developed superconducting nanow-
ire single-photon detectors32,79,80. Photon loss occurring in optical components and in transmission channels, on 
the other hand, varies depending on detailed experimental conditions. Hence, we consider the loss rate γ in a 
range from 0 to 1 in this work for generality. Note nevertheless that moderate values of γ only make sense because 
experiments with very small γ are not realistic and experiments with too large γ should be avoided. Second, and 
at the same time, currently available SPCMs suffer from the dead time ( ∼ 10−7s), for which the detector is irre-
sponsive to any arriving photons. The dark count events, on the other hand, occur with 101 ∼ 103 cps, implying 
that the value of η can thus be set in a range 10−6 ∼ 10−1 when the input flux is assumed to be 104 ∼ 107 cps.

From now on, let us concentrate on two particular regimes of interest: small α close to zero (i.e., highly 
transparent analytes) and large α close to unity (i.e., highly absorbing analytes), where a considerable quantum 
enhancement in SNR∗ has been observed in the absence of imperfections in the previous section. Figure 5 
shows SNR∗ s as functions of γ and η in the two regimes of α = 0.01 and α = 0.99 for Neff  chosen as an example 
corresponding to the case that δα = 10−3 and c̄ = 106 . Figure 5a, b present the SNR∗ for the case using a prod-
uct coherent state input, setting the classical benchmark. Note that the SNR∗ is always smaller than unity for 
both cases of small and large α , but can be improved by increasing Neff  . Figure 5c, d show the SNR∗ for the case 
using the TF state input. For both cases of small and large α , one can find a particular regime of γ and η , where 
the SNR∗ greater than unity can be achieved (see regions indicated by dashed line). The SNR∗ for the TSMV state 
input coincides with that for the TF state input in the limit of small α (see Fig. 5c) and with that for the product 
coherent state input in the limit of large α (see Fig. 5b), as discussed before. It is evident to see that the SNR∗ is 
robust to the background η , but becomes degraded conspicuously when η > 0.01 . The effect of the background 

(4)Rs =
SNR∗

s

SNR∗
coh

=
√

2− α

α2Q + 2(1− α)σ + α
,

�(�n̂′1)
2�out = (1− α)2(1− γ )2�(�n̂1)

2�in + {(1− α)(1− γ )(α + γ − αγ )+ η}N ,

�(�n̂′2)
2�out = (1− γ )2�(�n̂1)
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Ŵ
imp
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with η can be understood in the critical loss rate γc defined as the maximum acceptable loss rate for SNR∗ > 1 , 
which is generally written as

where N = Neff − α2
Q + 2(1− α)(1− σ) . This clearly shows that the background effect becomes significant 

when the third term in Eq. (6) is not negligible, e.g., when η is greater than about 0.01. For negligible contribu-
tion of the background ( η ≪ 1), γc ≃ 1− (2− α)/N and SNR∗ > 1 can be achieved with the TF state input 
when γ < 0.332 and γ < 0.495 for the cases of α = 0.01 and α = 0.99 , respectively. Although the SNR∗ depends 
sensitively on the photon loss and the background, the quantum gain when using the TF state or TMSV state is 
always greater than unity in the whole range of the system parameters.

As already noticed above, the effective mean photon number Neff needs to be large enough to achieve SNR∗ > 1 
for given system parameters. To see the role of Neff in details, let us now elaborate on the SNR∗ as a function of the 
effective photon number Neff and the loss rate γ for the four cases considered in Fig. 5. Here, we assume Nd = 103 
as an example. Figure 6 shows that the required Neff  for SNR∗ > 1 increases as the system loss increases. It is 
also clear that the TF state requires smaller Neff  for SNR∗ > 1 in comparison with the case using the coherent 
state input (see solid and dashed lines in Fig. 6c, d). The effect of the background noise in the required effective 
photon number is only noticeable when system loss is very small (see dashed lines marked by η = 0 in Fig. 6c 
and d), so it is negligible in most cases except highly lossy conditions.

The aforementioned behaviors can also be understood analytically. In the individual regimes of small α (i.e., 
highly transparent samples) and large α (i.e., highly absorbing samples), one can derive from Eq. (5) the condi-
tions for SNR∗ > 1 , written as

(6)γc = 1− 2− α

2N

(

1+
√

1+ 8ηN

(2− α)2

)

≃ 1− 2− α

N
− 2η

2− α
, ( for small η)

Figure 5.   SNR∗ of Eq. (5) in logarithmic scale as functions of γ and η for Neff = 1 assumed as an example. 
The SNR∗ s for the cases using the coherent (upper panel), TF state (low panel), and TMSV state (upper and 
lower panels where appropriate) are respectively shown in the regimes of small α (left column) and large α (right 
column). In lower panel, the region where SNR∗ > 1 is clearly distinguished by the red dashed line according to 
Eq. (6).
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Note that the last two terms in both regimes are common for all twin-mode states under study in this work, but 
the first terms play a crucial role in determining the minimum Neff  for SNR∗ > 1 . The first terms depend on the 
kind of a twin-mode state input. In the first regime (small α ), the condition of Eq. (7) has no dependence of Q, so 
the TMSV state input exhibits the same behavior as the TF state input. In the second regime (large α ), on the other 
hand, the condition of Eq. (8) is independent of σ , the TMSV state input behaves as the product coherent state. 
For large values of γ (i.e., highly lossy) and η (i.e., highly noisy), the last two terms in Eqs. (7) and (8) predominate 
over the first terms with σ and Q, respectively, so the conditions of Eqs. (7) and (8) becomes independent of the 
kind of a twin-mode state input. In other words, all the twin-mode states yield nearly the same SNR∗ when setup 
is extremely lossy and noisy, consequently causing no quantum enhancement over the product coherent state.

The quantum gains obtainable from the use of TF and TMSV states have already been shown clearly in Fig. 4b, 
but it would be also meaningful to discuss the required brightness of a probe for SNR∗ > 1 since using less intense 
input resources is more favorable to minimize the optical damages on an analyte. As discussed above, the effect 
of the background noise is negligible unless system loss is too small. Putting η = 0 in good approximation, one 

(7)Small α:Neff > 2σ + 2γ

1− γ
+ 2η

(1− γ )2
,

(8)Large α:Neff > Q + 1

1− γ
+ 2η

(1− γ )2
.

Figure 6.   SNR∗ of Eq. (5) in logarithmic scale as functions of γ and Neff for �n̂dark� = 103 and δα = 10−3 
assumed as an example. The SNR∗ s for the cases using the coherent (upper panel), TF state (low panel), and 
TMSV state (upper and lower panels where appropriate) are respectively shown in the regimes of small alpha 
(left column) and large alpha (right column). The region where SNR∗ > 1 is clearly distinguished in both upper 
and lower panel by the red dashed line according to Eq. (6). In lower panel, solid lines denote the boundary 
of SNR∗

coh = 1 for the coherent state input as in the upper panel, distinguishing the region with no quantum 
gain. Yellow dashed lines refers to the case of �n̂dark� = 0.
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can simplify the conditions of Eqs. (7) and (8) for SNR∗ > 1 , which are shown in Table 1 for the three states at 
the two regimes of interest.

Conclusion
We have studied the use of practical quantum state inputs in quantum imaging in comparison with the case 
using a coherent state input. As an imaging scheme, we have employed a differential measurement scheme based 
on time-integrated single-photon detection. The defect-detection capability SNR∗ s have been investigated in 
detail with and without experimental imperfections, respectively. We have shown that the SNR∗ s is significantly 
degraded by the system loss, but the quantum gain over the classical benchmark is still achievable under a mod-
erate background noise. We have also discussed quantitatively when the background noise starts to significantly 
affect the SNR∗ s. Our analyses clearly demonstrate what quantum characteristic of quantum state inputs play a 
critical role for a given experimental environment. Since the two parameters of Mandel Q-parameter and the 
noise reduction factor σ of light sources are used as the characteristics of used light sources, any other quantum 
state can be easily estimated its sensing performance by simply investigating those two parameter values for the 
balanced detection scheme. With the analyses provided in this work, we hope that our result can be used as a 
guide for designing practical quantum optical imaging schemes of an absorptive analyte under realistic condi-
tions. An interesting scenario found in our analyses is that, even for a highly absorptive analyte, the SNR∗ can 
diverge when the TF state is utilized as an input. This will be useful for monitoring a small defect embedded in 
an opaque sample. Alternatively to the TF state input, we can consider an ideal single photon source which can 
be generated from a single emitter excited in a regular excitation interval. Within current technology, the single 
emitters can be used to produce partially indistinguishable single photons with good quality15,81,82. The purity 
and the fidelity of those single photons at room temperature are close to the unity, although several obstacles are 
still to be resolved. It would thus be interesting to implement those single photons for detecting small detects 
in opaque conditions.
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