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Identification of hub genes 
for adult patients with sepsis 
via RNA sequencing
Qian Zhang1,2, Yingchun Hu3, Peiyao Wei1, Liu Shi1, Lei Shi1, Jianzhou Li1, Yalei Zhao1, 
Yunru Chen1, Xi Zhang1, Feng Ye1, Xiaojing Liu1* & Shumei Lin1*

To screen out potential prognostic hub genes for adult patients with sepsis via RNA sequencing and 
construction of a microRNA–mRNA–PPI network and investigate the localization of these hub genes 
in peripheral blood monocytes. The peripheral blood of 33 subjects was subjected to microRNA and 
mRNA sequencing using high-throughput sequencing, and differentially expressed genes (DEGs) 
and differentially expressed microRNAs (DEMs) were identified by bioinformatics. Single-cell 
transcriptome sequencing (10 × Genomics) was further conducted. Among the samples from 23 adult 
septic patients and 10 healthy individuals, 20,391 genes and 1633 microRNAs were detected by RNA 
sequencing. In total, 1114 preliminary DEGs and 76 DEMs were obtained using DESeq2, and 454 DEGs 
were ultimately distinguished. A microRNA–mRNA–PPI network was constructed based on the DEGs 
and the top 20 DEMs, which included 10 upregulated and 10 downregulated microRNAs. Furthermore, 
the hub genes TLR5, FCGR1A, ELANE, GNLY, IL2RB and TGFBR3, which may be associated with the 
prognosis of sepsis, and their negatively correlated microRNAs, were analysed. The genes TLR5, 
FCGR1A and ELANE were mainly expressed in macrophages, and the genes GNLY, IL2RB and TGFBR3 
were expressed specifically in T cells and natural killer cells. Parallel analysis of mRNAs and microRNAs 
in patients with sepsis was demonstrated to be feasible using RNA-seq. Potential hub genes and 
microRNAs that may be related to sepsis prognosis were identified, providing new prospects for sepsis 
treatment. However, further experiments are needed.

Sepsis is a complex syndrome involving host response malfunction and life-threatening organ damage caused 
by  infection1. It is a common but severe emergency affecting approximately 19 million patients worldwide each 
 year2. The incidence rate of sepsis in the ICUs of hospitals in China is approximately 20.6%, and the mortality 
rate of sepsis remains high despite the timely use of antibiotics and other beneficial adjutant therapies. The fatal-
ity rate of patients with severe sepsis can reach 50% or  higher3. The pathogenesis of sepsis is complex and has 
long been the focus of medical research. The Multiple Organ Dysfunction (MOD) score and Sequential Organ 
Failure Assessment (SOFA) score are widely used for evaluation of organ damage and prognosis in patients with 
sepsis, but research has shown that do not adequately predict death or survival in individuals with  sepsis4. Rapid 
diagnosis is an important means to improve the survival rate of sepsis and reduce sepsis-related organ dysfunc-
tion. At present, the diagnosis of sepsis mainly depends on recognition of clinical infection symptoms and blood 
cultures, for which there is a lack of rapid and sensitive  biomarkers5. Currently, studies on biomarkers of sepsis 
are increasing. The level of procalcitonin (PCT) in patients with sepsis or septic shock at admission is considered 
to be a better prognostic indicator than other inflammatory  markers2. Nevertheless, the critical value of PCT 
for determining death or survival in patients with sepsis cannot be  determined6, and PCT cannot be used for 
sepsis prognosis prediction. C-reactive protein and white blood cells also exhibit poor specificity and sensitivity 
for the diagnosis of bacterial  infection7. In particular, under the standard of Sepsis 3.0 standards, further study 
of the pathogenesis of sepsis and discovery of new biomarkers related to sepsis are urgently needed to provide a 
theoretical basis for clinical diagnosis and treatment.

High-throughput sequencing methods such as RNA sequencing (RNA-seq) have gained increasing atten-
tion with advances in science and technology and are now widely used in the transcriptomics field for applica-
tions such as including gene expression profiling, novel transcript discovery, and sequence variation  detection8. 
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RNA-seq can be applied to investigate different species of RNA, such as messenger RNA (mRNA), microRNA 
(miRNA) and long noncoding RNA, and it provides detailed insights into gene expression and the transcriptome. 
Combined with bioinformatic data analysis, RNA-seq is a promising approach for investigating different physi-
ological and pathological  conditions9. Compared with microarrays, RNA-seq has also shown great advantages; 
for example, it enables more accurate quantitative gene expression, requires fewer RNA samples, and enables 
the detection of transcriptome dynamics across different  conditions10. In addition, RNA-seq has helped improve 
clinical diagnosis of patients with diverse  diseases11,12. Using RNA-seq, it is feasible to investigate the key genes, 
miRNAs and immunometabolic features in  sepsis13,14.

miRNAs are endogenous RNAs of approximately 23 nucleotides (nt) that play important roles in cell dif-
ferentiation, growth, metabolism, cellular homeostasis, and other  processes15. miRNAs regulate gene expression 
by binding to the 3′-untranslated regions (UTRs) or 5′-UTRs of their mRNA targets and alter transcriptional 
processes, as has been demonstrated in many diseases, including  sepsis16. miRNAs are crucial regulators in the 
diagnosis and staging of sepsis and play a key role in determining the outcome of  sepsis17.

RNA-seq is the gold standard for screening of differentially expressed genes (DEGs). However, selecting the 
core targets from thousands of DEGs is a challenge, so network analysis methods based on bioinformatics have 
become essential. Protein–protein interaction (PPI) networks can be applied to analyse the potential target genes 
in an integrated manner according to the principle of protein interactions, and a miRNA regulatory network 
can then be constructed based on miRNA-mediated posttranscriptional regulation of target genes. The joint 
construction of the two networks (which produces a miRNA–mRNA–PPI network) is expected to enable more 
efficient and accurate identification of potential core targets from multiple perspectives.

In the current study, we used RNA-seq to sequence miRNAs and mRNAs in peripheral blood cells of adult 
patients with sepsis in order to construct a sepsis miRNA–mRNA–PPI regulatory network. We screened the genes 
Toll-like receptor 5 (TLR5); FCGR1A; elastase, neutrophil expressed (ELANE); granulysin (GNLY); interleukin-2 
receptor (IL-2R) β chain (IL2RB) and transforming growth factor beta receptor III (TGFBR3) as being associated 
with the prognosis of sepsis and identified miRNAs that negatively regulate these key genes. Furthermore, we 
confirmed the locations of the genes in peripheral blood mononuclear cells (PBMCs).

Methods
Subject recruitment and blood sample collection. Septic patients (n = 23) hospitalized in the EICU of 
the Department of Emergency Medicine at the Affiliated Hospital of Southwest Medical University from January 
2019 to December 2019 were recruited for this study. Peripheral blood samples were collected from the septic 
patients and healthy volunteers (n = 10) using PAXgene Blood RNA tubes (BD Bioscience, San Diego, CA, USA) 
according to the manufacturer’s instructions and stored at − 80 °C in the Biological Sample Bank of the Affili-
ated Hospital of Southwest Medical University. The inclusion criteria were as follows: (1) diagnosis with sepsis 
and admission to the EICU; (2) compliance with the Sepsis 3.0 diagnostic criteria for sepsis (infection + SOFA 
score ≥ 2) published by the Society of Critical Care Medicine (SCCM) and the European Society of Intensive 
Medicine (ESICM) in 2016, (3) age ≥ 16 and ≤ 65 years old, and (4) agreement (by the subjects or their legal rep-
resentatives) to enter the study and sign the informed consent form. Patients were excluded from the study if (1) 
they had previous organ failure, (2) they had previous immunological disorders, (3) they had a history of blood 
system diseases, or (4) they did not want to be included in the study. This study conformed to all the guidelines 
and principles stated in the Declaration of Helsinki.

RNA-seq. The blood samples of each patient were sent for mRNA and miRNA sequencing at the same time. 
mRNA and miRNA sequencing were performed with the assistance of BGI (Shenzhen, China).

Briefly, total RNA was extracted from peripheral blood cells using TRIzol (Invitrogen, Carlsbad, CA, USA), 
and the RNA integrity number (RIN) was qualified and quantified with an Agilent 2100 bioanalyzer (Agilent, 
Santa Clara, USA). For quality control, mRNA had to meet the requirement of 28S/18S > 1, while miRNA had 
to meet the requirement of 28S/18S > 1.5.

After removal of ribosomal RNA (rRNA) from total RNA and solid-phase reversible immobilization (SPRI) 
bead purification, the RNA was fragmented into small pieces according to the kit manufacturer’s protocol. After-
wards, the fragmented RNA was reverse-transcribed into cDNA and amplified with polymerase chain reaction 
(PCR) to create a cDNA library. Quality control and quantification of the libraries were performed with an the 
Agilent 2100 bioanalyzer and real-time quantitative PCR (qPCR) (TaqMan Probe). The qualified libraries were 
subjected to mRNA sequencing on a DNBSEQ platform (BGI-Shenzhen, China).

After quality control and quantification, 1 μg of total RNA for each sample was prepared to construct a miRNA 
library. The total RNA was purified by electrophoretic separation, and small RNA regions that corresponded to 
the 18–30 nt bands in the marker lane (14–30 ssRNA ladder marker, TAKARA) were recovered. After anneal-
ing, the adapter-ligated small RNAs were transcribed into cDNA using SuperScript II Reverse Transcriptase 
(Invitrogen, Carlsbad, CA, USA), and the products were enriched via several rounds of PCR. The PCR products 
were screened by agarose gel electrophoresis for binding to target fragments of 110–130 bp and then purified 
with a QIAquick Gel Extraction Kit (Qiagen, Valencia, CA). The miRNA libraries were qualified using an Agilent 
2100 Bioanalyzer and quantified via qPCR (TaqMan Probe). The final ligation PCR products were subjected to 
miRNA sequencing on a BGISEQ-500 platform (BGI-Shenzhen, China).

The sample reads were trimmed to remove reads with an unknown base (N) content greater than 5%, adapt-
ers and low-quality bases using Trimmomatic software and aligned with the reference genome using HISAT 
and Bowtie2 software.
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Differential gene and miRNA expression analysis. The data were divided into the sepsis group and 
the healthy control group. Bioinformatics analysis was performed according to the specific workflow of the 
online platform iDEP0.918. The raw data were normalized with edgeR (V4.0)19, the expression values were con-
verted by the log2(CPM + 4) values, genes with low-quality values were removed, and the preliminary DEGs and 
differentially expressed miRNAs (DEMs) were analysed using  DESeq220 iDEP0.9 with thresholds of a false dis-
covery rate (FDR) < 0.05 and a log2 (fold change) (log2FC) value > 2. Afterwards, the top 20 miRNAs in ascend-
ing order of by FDR were selected as DEMs in sepsis. To further explore the potential miRNA regulators of 
core target genes, samples from the same patients were subjected to RNA-seq analysis to facilitate calculation 
of the relationships between miRNAs and target genes. For a regulatory relationship to be accepted, at least two 
conditions had to be met. First, complementary base pairing had to occur between the miRNA and mRNA. 
miRWalk3.021 (http:// mirwa lk. umm. unihe idelb erg. de/) was used to predict the potential target genes of DEMs 
in view of the principle of base pairing. Second, according to the mechanism of mRNA inhibition by miRNAs, 
there had to be a negative correlation between the expression values of the miRNA and the mRNA, the screen-
ing criteria were defined as a P value < 0.05 and a cor value < − 0.4. Among the preliminary DEGs, genes with 
a negative correlation with the DEMs were identified by OmicShare (https:// www. omics hare. com/), and inter-
sected with the predicted target genes of DEMs. The intersecting genes were defined as the final DEGs (hereafter 
referred to as DEGs).

Enrichment analysis of DEG function. To further understand the integrated information on the DEGs 
from a broad perspective, the Metascape database (https:// metas cape. org/) was employed to conduct DEG Gene 
Ontology (GO) analysis, gene–disease association  analysis22, and gene-organization distribution  analysis23. The 
Metascape database integrates multiple authoritative data resources, such as the GO, Kyoto Encyclopedia of 
Genes and Genomes (KEGG), UniProt and DrugBank. Metascape provides provide comprehensive and detailed 
information about each gene and can be used to complete not only pathway enrichment and bioprocess annota-
tion but also gene-related protein network analysis, gene–disease association analysis, and gene-organization 
distribution analysis.

Construction of a miRNA–mRNA–PPI network. A PPI network was constructed based on previous 
research. In a PPI network, proteins with an interaction relationship are connected. If a specific target protein 
has more connections than other proteins, it is located at the core of the network. Therefore, researchers can infer 
whether a gene has potential research value on the basis of the network. The DEGs were subjected to PPI analysis 
using the STRING database (https:// string- db. org/)24. In this study, the lowest value of the connection strength 
parameter between two proteins was 0.4. To ensure the reliable prediction, only experimentally verified results 
were included. The potential miRNA–mRNA relationships were predicted according to the posttranscriptional 
regulation mechanism and the negative correlation between miRNA and mRNA. On the basis of the above PPI 
network, the core genes were added to the miRNA–mRNA regulation relationships to provide potential clues 
for follow-up mechanistic research. The miRNA–mRNA–PPI network was visualized with OmicShare (https:// 
www. omics hare. com/) to screen potential core genes.

Hub gene survival analysis. The GSE65682  dataset25 was downloaded from the Gene Expression Omni-
bus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/) and included clinical information such as gene expres-
sion data and survival time for 479 patients with sepsis in the ICU, including 365 sepsis survivors. The patients 
were divided into a high-expression group and a low-expression group according to the specific gene expression 
values. The survival data of patients with sepsis in GSE65682 were applied to conduct survival analysis for the 
core genes in the miRNA–mRNA–PPI network, and the survival curve was generated with GraphPad Prism 
(version 7.0) software, and the potential hub genes related to the prognosis of sepsis were selected. The log rank 
test was used for statistical analysis, and P < 0.05 was considered to indicate statistical significance.

Negative regulation of miRNA–mRNA pairs. To understand the mechanism of the six hub genes in 
sepsis and the miRNAs involved in their regulation, directed network analysis between the core genes and the 
top 20 DEMs was performed using OmicShare tools (https:// www. omics hare. com/ tools). The regulatory rela-
tionships between six specific hub genes and upstream miRNAs were derived from the local network module 
described above (see above for relevant screening conditions).

10 × single-cell RNA sequencing and data analysis. Five PBMC were collected from 2 healthy con-
trols, 1 systemic inflammatory response syndrome (SIRS) patient and 2 septic patients, and were subjected 
to single-cell RNA-seq analysis (10 × Genomics). The 10 × Genomics platform applied microfluidic technol-
ogy according to the manufacturer’s protocol. The experimental data were further quality controlled for qual-
ity based on a preliminary quality control step with Cell Ranger to exclude data from mutliplets, doublets, or 
unbound cells. Cells with gene numbers and unique molecular identifier (UMI) numbers within the mean ± 2 
standard deviations (SDs) and cells with fewer than 20% UMIs mapped to mitochondrial genes were considered 
high-quality cells. The results were visualized in two-dimensional space by t-distributed stochastic neighbour 
embedding (tSNE; nonlinear dimensionality reduction).

Statistical analysis. The clinical data of the subjects were analysed with SPSS 22.0 software. Continuous 
variables are expressed as the mean ± SD and were analysed with unpaired Student’s t test; the chi-square test was 
adopted for categorical variables, and a P value < 0.05 was considered to indicate statistical significance.

http://mirwalk.umm.uniheidelberg.de/
https://www.omicshare.com/
https://metascape.org/
https://string-db.org/
https://www.omicshare.com/
https://www.omicshare.com/
https://www.ncbi.nlm.nih.gov/geo/
https://www.omicshare.com/tools
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Ethics approval. This study was approved by the ethics committee of the Affiliated Hospital of Southwest 
Medical University (NO. ky2018029), and written informed consent was obtained from all participants all or 
their legal designates. The clinical trial registration number is ChiCTR1900021261. This study conformed to all 
the guidelines and principles stated in the Declaration of Helsinki.

Consent for publication. No individual participant data are reported that would require consent from the 
participant to be published.

Results
Subjects’ clinical characteristics. The experimental flow chart of this study is shown in Fig. 1. A total of 
23 patients with sepsis and 10 healthy volunteers were recruited for the current study. As the clinical information 
shown in Table 1, there were no significant differences in age, sex, or platelets (PLT) counts, alaninetransaminase 
(ALT), aspartate aminotransferase (AST), or creatinine (Crea) between the septic patients and the healthy con-
trols, but considerable differences were found in white blood cell (WBC) counts, neutrophils counts, neutrophil/
lymphocyte ratios (NLRs) and haemoglobin (HGB) levels. In addition, the levels of procalcitonin (PCT), pro-
thrombin time/international normalization ratio (PT-INR), and lactic acid (LAC) were considerably higher than 
normal in the sepsis group. Blood cultures were positive in 12 (52%) sepsis cases, and gram-negative bacteria 
were the predominant microorganism (8, 66%). In addition, surgical sites were the major primary sites of infec-
tion (10, 43%). Compared with the healthy controls, the Charlson Comorbidity Index (CCI) that was used to 
predict 10-year survival in patients with multiple comorbidities, was higher and statistically significant in sepsis.

DEGs and DEMs in sepsis. To identify plasma prognostic biomarkers and potential mechanisms of sep-
sis, RNA-seq including mRNA and miRNA sequencing was utilized for each specimen simultaneously, mRNA 
sequencing for 33 subjects yielded the relative transcript levels of 20,391 genes. Furthermore, 1633 miRNAs were 
detected via miRNA sequencing.

Afterwards, bioinformatics was used to analyse the above sequencing data to obtain the DEGs and DEMs. 
During normalizing, principal component analysis (PCA) was applied to remove the heterogeneous samples 
among the sepsis samples and control samples (Fig. 2A,B). A total of 1114 preliminary DEGs (767 upregulated) 
and 76 DEMs (45 downregulated) were initially screened out by DESeq2 (Fig. 2C,D) between the sepsis group 
and the healthy control group. According to the FDR values in ascending order, the top 10 upregulated and 10 
downregulated miRNAs were considered as DEMs in sepsis (Table 2). Intersection analysis of the DEGs that were 
negatively associated with DEMs and the predicted target genes based on the DEMs with miRwalk3.0 yielded 454 

Figure 1.  Experimental flow chart of this study. RNA-seq was applied to sequence mRNAs and miRNAs in the 
peripheral blood of a total of 33 subjects. Combined with bioinformatics, this analysis was used to screen out the 
key genes and corresponding miRNAs in sepsis.
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differentially expressed genes (DEGs), the majority of which (361, 79.5%) were upregulated in sepsis. A detailed 
workflow for screening DEGs is shown in Fig. 2E.

Enrichment analysis of DEG function. We deem it essential to comprehensively elucidate the biologi-
cal functions of the DEGs. Enrichment analysis showed that the identified DEGs were significantly related to 
neutrophil degranulation, regulation of defence, response to bacteria, and chemotaxis (Fig. 3A). Gene–disease 
association analysis revealed that these genes may be involved in inflammation, immunosuppression, pneumo-
nia, and bacterial infection (Fig. 3B). Furthermore, gene-organization distribution analysis revealed that these 
genes are mainly distributed in natural killer (NK) cells, the bone marrow, the spleen, adipocytes, the blood, and 
the liver (Fig. 3C).

miRNA–mRNA–PPI regulatory network. The DEMs and DEGs were submitted to the STRING data-
base (https:// string- db. org/), and the OmicShare (https:// www. omics hare. com/). A miRNA–mRNA–PPI regula-
tory network for sepsis was constructed (Fig. 4A,B), and the 30 potential key genes located at the centre of the 
miRNA–mRNA–PPI network were screened out as the potential core genes involved in sepsis and presented in 
a heatmap (Fig. 4C). In the two groups of different expression trend modules, the core genes such as CD160, 
GATA2, GNLY, IL2RB and TGFBR3 were downregulated in the sepsis group, while genes such as ELANE, 
IL1R1, TLR5, FCGR1A, MAPK14 and PCSK9 were upregulated.

Hub gene survival analysis. Based on the data from GSE65682, we explored associations between the 
potential core genes and sepsis outcomes, Survival analysis showed that the genes TLR5, FCGR1A and ELANE 

Table 1.  Clinical information of the subjects. SOFA score Sequential Organ Failure Assessment score; WBC 
white blood count; NEU neutrophile; PCT procalcitonin; PLT platelet; NLR neutrophile/lymphocyte ratio; 
HGB hemoglobin; LAC lactic acid; ALT alaninetransaminase; AST aspartate aminotransferase; Crea creatinine; 
PT-INR prothrombin time/international normalization ratio; CCI Charlson Comorbidity Index.

Clinical variable Healthy control (n = 10) Sepsis  (n = 23) P value

Age (years) 50.7 ± 2.181 56.65 ± 3.621 0.3

Gender (F/M) 4/6 7/16 0.59

WBC (×  109/L) 6.843 ± 0.628 13.8 ± 1.57 0.0076

NEU (×  109/L) 4.141 ± 0.4236 12.19 ± 1.557 0.0021

PLT (×  109/L) 215.3 ± 15.44 172.3 ± 20.13 0.19

NLR 2.04 ± 0.1536 23.83 ± 4.385 0.0028

HGB (g/L) 143.6 ± 8.755 104.1 ± 5.819 0.0007

ALT (U/L) 19.42 ± 1.912 86.22 ± 37.36 0.2517

AST (U/L) 20.55 ± 1.024 142.2 ± 56.79 0.1716

Crea (μmol/L) 67.15 ± 3.652 121.4 ± 26.79 0.1958

PT-INR N/A 1.806 ± 0.429

PCT (ng/mL) N/A 29.65 ± 7.549

LAC (mmol/L) N/A 3.236 ± 0.69

SOFA score N/A 6.609 ± 0.8637

Primary sites of infection (n)

Surgical 10

Dermatological infection 5

Trauma 3

Respiratory 4

Urinary tract 1

Pathogens

Klebsiella pneumoniae 3

Bacillus coli 3

baumanii 1

Streptococcus pneumoniae 3

Acinetobacter Jones 1

Pseudomyomyces white 1

Comorbidites (n)

Neoplasm 5

Diabetes 3

Hypertension 3

CCI 0.5 ± 0.1667 2.87 ± 0.5528 0.0092

https://string-db.org/
https://www.omicshare.com/
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Figure 2.  Bioinformatics analysis of RNA-seq data. (A) PCA of mRNAs. (B) PCA of microRNAs. Both panel 
A and panel B show that there was good consistency within the groups and a significant difference between 
the groups. (C) Volcano plot of mRNAs. (D) Volcano plot of miRNAs. (E) A workflow for screening DEGs. 
Red nodes, upregulated genes or miRNAs in sepsis; blue nodes, downregulated genes or miRNAs; gray nodes, 
genes or miRNAs with no considerable difference between the sepsis group and the NC group. Log2 fold change 
(log2FC) = 2, FDR < 0.05. NC the healthy control group, SEPSIS the sepsis group, FDR false discovery rate.
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whose expression was upregulated in sepsis, and the genes GNLY, IL2RB and TGFBR3, whose expression was 
downregulated in sepsis, were significantly associated with sepsis outcomes, Higher expression of the genes 
TLR5, FCGR1A, GNLY, IL2RB and TGFBR3 was associated with the better the clinical outcomes in patients 
with sepsis (P < 0.05). The relationship between the gene ELANE and sepsis outcomes showed the opposite trend 
(P < 0.05) (Fig. 5A–F). Consequently, the genes TLR5, FCGR1A, ELANE, GNLY, IL2RB and TGFBR3 genes were 
ultimately identified as hub genes in sepsis.

Negative regulation of hub miRNA–mRNA pairs. Directed network analysis with OmicShare (https:// 
www. omics hare. com/) was used to analyse the regulatory relationships between hub genes and miRNAs, and a 
directed network diagram was drawn. The miRNAs associated with these core biomarkers were identified and 
are presented in Fig. 6A–F.

Location of hub genes in cell clusters. We compared gene expression patterns in PBMCs among healthy 
controls, SIRS patients and septic patients and identified 9 transcriptionally distinct cell clusters (Fig. 7A), The 
markers CD14and CD3E represented monocytes and NK-T cells, respectively (Fig.  7B,C). The genes TLR5, 
FCGR1A and ELANE genes were mainly expressed in macrophages (Fig. 7D–F), while the genes GNLY, IL2RB 
and TGFBR3 genes were expressed specifically in T cells and NK cells (Fig. 7G–I). The expression abundance 
values and ratios of each hub gene in different cell clusters are shown in Fig. 7J. These findings lay a foundation 
for subsequent mechanistic studies.

Discussion
RNA-seq, also referred to as transcriptome sequencing, is a newly developed technique for transcriptome analysis 
that use deep sequencing technology and can quantitatively detect RNA expression  levels12. RNA-seq can be 
applied to identify DEGs in healthy and diseased tissues and provide a platform for further study of the mecha-
nism of sepsis. Sepsis is a health- and life-threatening condition. Despite early administration of antibiotics 
and the improvements in organ support, the rates of mortality remain high among patients with sepsis. The 
development of immune response and the prognosis of sepsis are the focuses of medical research. The aim of the 
present study was to distinguish molecular differences between patients with sepsis and healthy controls and to 
determine associations with sepsis outcomes. We conducted RNA-seq (including mRNA and miRNA sequencing) 
on 23 patients with sepsis and 10 healthy controls and distinguished 454 DEGs (361 upregulated) and 20 DEMs 
in patients with sepsis compared to healthy volunteers. Based on clinical phenomena, hundreds of DEGs were 
screened, and functional enrichment analysis was carried out to understand the overall change characteristics of 
the genes. To further explore which genes play keys role in sepsis, a miRNA–mRNA–PPI regulatory network was 
constructed through integrated transcriptomics analysis for the above DEGs and 20 DEMs. We obtained dozens 
of potential core targets and determined their mutual regulatory relationships via network analysis. Moreover, 
survival curves were analysed for the potential core targets, and six hub genes were ultimately identified, includ-
ing the upregulated genes TLR5, FCGR1A and ELANE and the downregulated genes GNLY, IL2RB and TGFBR3. 

Table 2.  The top 20 DEMs between patients with sepsis and healthy controls. DEMs differentially expressed 
miRNAs, FC fold change, FDR false discovery rate, miRNAs microRNAs.

DEMs Log2FC FDR Regulation

hsa-miR-9-5P 9.218126562 9.61E−06 Up

hsa-miR-149-5P 4.431721624 5.72E−05 Up

hsa-miR-218-5P 4.103297275 0.000375427 Up

hsa-let-7c-5P 3.56709988 0.000556136 Up

hsa-miR-212-5P 3.63722981 0.000644706 Up

hsa-miR-153-3P 8.003693486 0.002226582 Up

hsa-miR-187-3P 4.736627079 0.002656874 Up

hsa-miR-129-5P 6.215312507 0.005233831 Up

hsa-miR-124-3P 6.307683489 0.017232704 Up

hsa-miR-219a 6.147353433 0.02806464 Up

hsa-miR-454-3P −2.627679377 2.02E−06 Down

hsa-let-7f-5P −2.613757362 4.60E−06 Down

hsa-miR-190b-5P −2.175214826 2.05E−05 Down

hsa-miR-20a-5P −2.620742801 5.87E−05 Down

hsa-miR-144-5P −2.866873271 9.02E−05 Down

hsa-miR-196b-5P −2.471814233 0.000177083 Down

hsa-miR-144-3P −3.236825564 0.000263461 Down

hsa-miR-32-5P −2.327794713 0.000494179 Down

hsa-miR-126-5P −2.262718884 0.000571466 Down

hsa-miR-101-3P −2.025473487 0.001640951 Down

https://www.omicshare.com/
https://www.omicshare.com/
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Moreover, these genes are highly related to the prognosis of sepsis. In addition, the biological functions of the 
core genes were probably associated with bacterial infection, inflammation, immunosuppression and chemotaxis. 
The localization of these hub genes in PBMCs was further clarified by single-cell sequencing.

miRNAs have been proposed as to be good biomarkers because they are stably present in biofluids and bio-
specimens, including blood, urine, and saliva; this availability enables relatively easy collection and analysis using 
different methods, such as RNA-seq and  qPCR26,27. Abnormal miRNA expression is correlated with the severity 
of sepsis and may serve as a potential diagnostic and prognostic biomarker in  sepsis16,28. A variety of miRNAs, 
including miR-150, miR-133a, miR-223 and miR-23a have been described to play roles in sepsis or sepsis-related 
organ  injury29–31. Furthermore, based on integrated analyses of miRNAs and mRNA, miR-106b-5p, miR-128-3p, 
and miR-144-3p and their mRNA targets are new potential diagnostic and therapeutic  indicators13. In the present 
study, we assessed the hub genes that bind with DEMs and found that they were negatively regulated by differ-
ent miRNAs, providing beneficial opportunities for studying the pathogenesis of sepsis. We observed that the 

Figure 3.  Enrichment analysis of DEGs via the Metascape database. (A) Biological processes associated with 
the DEGs between septic patients and healthy controls. (B) Diseases that may be associated with the DEGs. (C) 
Cell- or tissue-specific distribution of the DEGs. DEGs differentially expressed genes.
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downregulated miRNAs miR-20a, miR-101-3p, let-7f and miR-196B-3p and the upregulated miRNAs miR-212a, 
miR-129-5p, miR-149-5p, miR-219a, miR-124-3p and miR-9-5p potentially regulate these hub genes.

TLR5, a core member of the Toll-like receptors (TLRs) family, is a receptor of bacterial motile compo-
nents that targets extracellular flagellin and thus induces inflammatory cytokines production and the immune 
 response32. Previous studies have demonstrated that TLR5 not only participates in H. pylori  infection33 and 
 SIRS34, but also prevents systemic inflammation and liver damage caused by B. pseudomallei infection. TLR5 
deficiency facilitates bacterial growth and  dissemination35. Another paper has indicated that increased TLR5 
expression on monocytes is associated with mortality in patients with  sepsis36, which is not consistent with our 

Figure 4.  miRNA–mRNA–PPI regulatory network for identification of potential key genes. (A) miRNA–
mRNA–PPI network of upregulated DEGs and downregulated DEMs. Red squares, upregulated DEGs; red lines, 
protein–protein interactions; blue triangles, downregulated DEMs; blue lines, miRNA–mRNA interactions. 
(B) miRNA–mRNA–PPI network of downregulated DEGs and upregulated DEMs. Blue squares, upregulated 
DEGs; red lines, protein–protein interactions; red triangles, downregulated DEMs; blue lines, miRNA–mRNA 
interactions. (C) Heatmap of the 30 potential key genes based on genes located at the centre of the miRNA–
mRNA–PPI network. Data from controls are shown in blue and data from septic patients are shown in red. PPI 
protein–protein interaction, DEMs differentially expressed miRNAs, DEGs differentially expressed genes, NC 
healthy control group.
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founding that elevated TLR5 expression in peripheral blood is associated with attenuated mortality of septic 
patients. This discordance might be explained by the different samples used; more experiments are needed to 
confirm this hypothesis. FCGR1A, also named CD64, is expressed on most myeloid cells and is a high-affinity 
Fc receptor (FcγRI), that binds to monomeric  IgG37. It participates in a number of functions, including phago-
cytosis, antigen presentation, and cytokine  production38. Neutrophils FCGR1A is involved in tuberculosis (TB), 
regardless of HIV  infection39,40, and can be used to differentiate TB from latent TB  infection41. A previous study 
has indicated that neutrophil CD64 expression is an important diagnostic marker of infection and sepsis in 
hospital  patients42. In the current study, elevated expression of FCGR1A in peripheral blood was associated with 
a good outcome in sepsis, and FCGR1A was mainly expressed in macrophages. The gene ELANE encodes an 
elastase that exists in neutrophils, and plays an important role in pathogen killing. A previous study found that 
ELANE was overexpressed in septic patients via gene expression profile  analysis43, which is in accordance with 
our conclusions. Moreover, inhibition of ELANE-mediated histone H3 proteolysis contributes to mononuclear 
macrophage  differentiation44. GNLY is a cytotoxic granular protein secreted by cytotoxic T lymphocytes and NK 
 cells45 that exerts toxic effect on bacteria, fungi, parasites, and  tumors46, GNLY acts as an immune alarmin and 
promotes antigen-presenting cell activation through  TLR447. GNLY is associated with the efficacy of pegylated-
interferon-alpha therapy in Chinese patients with HBeAg-positive chronic  hepatitis48, rheumatoid  arthritis49, and 
Mycoplasma pneumoniae  pneumonia50. IL2RB, a subunit of IL-2R, mediates signal transduction for IL-2R and 
IL-15R51, Mutations in human IL2RB result in immune dysregulation, cytomegalovirus (CMV)  susceptibility52, 
reduced T reg frequency, and an abnormal NK  compartment53. Gene expression profiling and bioinformatics 
analysis have indicated that IL2RB is weakly expressed in sepsis, which indicates that IL2RB may be a potential 
diagnostic tool for  sepsis54,55. Our findings are consistent with this possibility. TGFBR3, also known as betagly-
can, is a coreceptor of the TGF-β superfamily, and plays important roles in cardiomyocyte  apoptosis56, renal cell 
 carcinoma57, keratinocyte  proliferation58, cervical  carcinoma59, and  angiogenesis60. To our knowledge, there is 
little evidence of a role of TGFBR3 in sepsis.

In summary, we comprehensively analyzed miRNA–seq, mRNA–seq and single-cell sequencing profiling and 
established an integrated miRNA–mRNA–PPI network to screen hub genes in sepsis, the potential hub genes 

Figure 5.  Identification of core genes for sepsis. The survival analysis of the potential core genes was based on 
dataset GSE65682. The relationships between the expression levels of hub genes and the 28-day survival times of 
the septic patients were explored. Higher expression of the genes TLR5 (A), FCGR1A (B), GNLY (D), IL2RB (E) 
and TGFBR3 (F) was associated with higher survival rates of patients with sepsis (P < 0.05). Higher expression of 
the gene ELANE (C) was associated with a poorer outcome in septic patients (P < 0.05).
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Figure 6.  Graph of the network between the hub genes and miRNAs. (A) TLR5 may be negatively regulated 
by miR-20a, miR-101-3p, and let-7f. (B) miR-20a may negatively regulate FCGR1A. (C) Negative regulatory 
relationship between ELANE and miR-196b-3p. (D) GNLY may be negatively regulated via miR-129-5p, miR-
149-5p. (E) miR-212-5p may negatively regulate IL2RB. (F) TGFBR3 may be negatively regulated by miR-219a, 
miR-149-5p, miR-124-3p, miR-9-5p.
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TLR5, FCGR1A, ELANE, GNLY, IL2RB and TGFBR3 and miRNAs that are possible posttranscriptional and 
regulatory factors related to sepsis prognosis were screened out, the findings provide new prospects for explora-
tion of the physiopathologic mechanisms, diagnosis, and treatment of sepsis. Nevertheless, some limitations of 
this study should be mentioned. First, this study was performed in a single centre with a small sample size; and 
we will increase the sample size in further research. Second, the mechanisms of the hub genes in sepsis must be 
validated in subsequent experiments, as they were not confirmed in the current study.

Data availability
The RNA-seq dataset analysed during the current study is available in the China National GeneBank DataBase 
(CNGBdb) and can be found below: https:// db. cng. org/, under the accession: CNP0002611.

Received: 13 January 2022; Accepted: 16 March 2022

Figure 7.  Locations of hub genes in cell clusters. (A) Nine transcriptionally distinct cell clusters were 
distinguished. (B) CD14 was the hallmark of monocytes. (C) CD3E was a characteristic marker of the NK cells 
and T cells. (D–F) The genes TLR5, FCGR1A and ELANE were distributed in monocytes. (G–I) The genes 
GNLY, IL2RB and TGFBR3 were expressed in NK cells and T cells. (J) Bubble plots showing the expression 
abundance values and ratios of each hub gene in different cell clusters.

https://db.cng.org/
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