
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5209  | https://doi.org/10.1038/s41598-022-09156-2

www.nature.com/scientificreports

Ecological driving on multiphase 
trajectories and multiobjective 
optimization for autonomous 
electric vehicle platoon
Tang Xiaofeng

Autonomous electric vehicles promise to improve traffic safety, increase fuel efficiency and reduce 
congestion in future intelligent transportation systems. Ecological driving characteristics are first 
studied to concentrate on energy consumption, the ability to quickly pass its destination, etc. of 
autonomous electric vehicle plans (AEVPs) to maximize total energy efficiency benefits. To realize 
this goal, an optimal control model is developed to provide ecological driving suggestions to 
AEVPs. The Radau pseudospectral method (RPM) is adopted to put the optimal control model into 
nonlinear programs (NLP), and multiobjective optimization, including safety, economy and fast 
mobility, is considered, which conditions and constraints such as vehicle dynamics, traffic rules, and 
energy consumption. To enhance optimal model applicability, two ecological driving procedures are 
proposed. One procedure is that two-phase trajectory optimization and ecological driving states, such 
as velocity and acceleration, for the leading vehicle are developed according to RPM characteristics, 
while the other provides a set of targeted driving states to the following vehicles. The objective of 
the procedure is to minimize the total energy consumption of AEVPs, while travel comfort and safety 
are integrated into the schematization by optimization functions. Numerical experiments illustrate 
significance when ecological driving strategy for AEVPs considers energy consumption characteristics, 
thereby ensuring total energy consumption efficiency for AEVPs.

Background and motivation. The automotive industry has developed electric vehicles to reduce the 
dependency on petroleum fuels, improve energy efficiency and promote sustainable transportation. Many gov-
ernments have plans to accelerate the market shares of electric vehicles (EVs); therefore, EVs have experienced 
huge market penetration over the past decade. The U.S. EIA projects that over 30 million (24%), passenger cars 
on U.S. roads will be electricity powered by  20401. EVs will be common transportation in future.

Ecological electric vehicles (EEVs) are a new concept that adapts the driving strategy to an energy-aware 
anticipative driving strategy and have high potential to improve the safety and efficiency of the transportation 
 network2. EEVs mainly mean that energy consumption needs to be considered to cover travel activities due to 
battery technology limitations, combined with vehicle powertrains, vehicle dynamics, tire models, etc. Mean-
while, surrounding vehicle states and road information can be collected by connecting vehicle technologies to 
determine innovative driving state control and trajectory planning. Edwin proposed an approach to estimate 
the potential of eco-driving for reducing energy  consumption3. Maria introduced the Pontryagin maximum 
principle to optimize the calculated battery consumption, and connected vehicle technology was used to transmit 
with other  vehicles4. Hu proposed an optimal controller by using emerging connected technology to minimize 
the fuel efficiency for hybrid electric vehicles, including road topography and dynamic speed  limits5. Therefore, 
ecological driving is an effective integrated strategy that includes vehicle dynamics control, energy consumption 
calculation, vehicle driving state collection and connected vehicle technology. In particular, for electric vehicles, 
regenerative braking can recharge a portion of energy to the battery during deceleration. Existing study results 
demonstrate that regenerative braking could increase the EV driving range by 8–25%6.

A platoon is another energy-efficient vehicle driving control solution that can save battery fuel. Sun shows 
that the average reduction in fuel consumption for platoons can reach up to 10%7. Vehicle platoons are mainly 
used to control a suitable safety distance to reduce air resistance and energy consumption by installing sensors 
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such as radar, lidar or machine vision. Recently, connected vehicle technologies have been applied to platoons 
that can enable vehicles to drive a much closer distance upon information obtained from neighboring vehicles. 
Many studies mainly design optimal control models to obtain speed advisories for minimizing fuel consumption. 
Gong developed cooperative platoon control for a platoon mixed with connected and autonomous vehicles and 
human-driven vehicles by using the model predictive control optimal  method8. Jia builds a cooperative driv-
ing model by using connected vehicle technologies for studying time-delay  communication9. Luo introduced a 
mixed-integer linear program to minimize the total fuel consumed with multiple speed  options10. Li proposed 
a Lyapunov technique to study trajectory tracking control for connected vehicle platoons by considering the 
position error and velocity  difference11. The above studies generally concentrate on algorithm theories, optimal 
models and fuel energy consumption for human-driving vehicle platoons. However, fuel consumption calcula-
tions for vehicle platoons should be taken into consideration; in combination with vehicle dynamics and road 
information, the driving states of leading vehicles are usually assumed or ignored so that the total fuel energy 
consumption cannot be accurately calculated. In fact, regarding energy-efficient vehicle platoons, the driving 
states of leading vehicles are important, especially for electric vehicle platoons under congested traffic condi-
tions; therefore, multiobjective optimization, including safety, economic and fast mobility, should be calculated 
in ecological driving studies. Lorenzo introduced nonlinear model predictive control to develop an ecological 
driving of electric vehicles to minimize energy  consumption12. Makoto proposed adaptive neural networks to 
design electric vehicle  platoons13. Guo introduced an adaptive backstepping sliding mode of a high-level law to 
study the coordinated control method for autonomous electric vehicle  platoons14. Several studies have developed 
innovative control algorithms, stability analysis and parts of fuel energy consumption. However, the total fuel 
energy consumption minimization of electric vehicle platoons should be researched due to the energy consump-
tion characteristics of multivehicle platoons.

Autonomous electric vehicle. Recently, the majority of EV tasks have mainly focused on battery technol-
ogy limitations and charging infrastructure problems, while the driving efficiency of EVs should be studied in an 
intelligent transportation system environment. Autonomous electric vehicles, combined with connectivity, are 
considered a major issue supporting a more efficient and clearer transportation system. Gao thinks that adopt-
ing connected and automated vehicle technologies can promote energy efficiency via eco-driving functions in 
optimizing EV performance  effectively6. Riccardo proposed a mixed-integer linear program methodology for 
the optimization of charging with a vehicle-to-grid for a shared autonomous electric  vehicle15. Chen developed 
a passive fault-tolerant path following the control method of an autonomous distributed electric vehicle when a 
vehicle steering system is  fault16. Yi proposed a data-driven method to formulate a grid stochastic energy con-
sumption model of electric  vehicles17. Zhang developed a novel tracking control method of intelligent electric 
vehicles to realize path tracking based on lane detection and sliding mode control  methods18. Victor designs a 
static decision model to involve autonomous electrical  vehicles19. Li proposed a potential field method to achieve 
the trajectory control of autonomous electric vehicles with in-wheel  motors20. Doan proposed the Pontryagin 
maximum principle for the optimal allocation of wireless power transfer  systems21. The above studies mainly 
focus on performance optimization, algorithm theories, path-following methods and charging methods, etc., 
while fuel consumption energy has not been considered in the process of trajectory planning for autonomous 
electric vehicles. In fact, energy consumption is a vital factor for autonomous electric vehicles because limited 
energy should be used to ensure that autonomous electric vehicles arrive at the terminal position.

Another energy-efficient trajectory plan for autonomous electric vehicles is platooning, which shows good 
potential for fuel economy. As autonomous electric vehicle platoons (AEVPs) travel on roads, different energy 
consumption characteristics and constraints for different vehicles can be allocated through new technologies, 
such as vehicle-to-vehicle (V2 V) and vehicle-to-infrastructure (V2I) communications or algorithm innovation. 
In this way, if trajectory planning and ecological driving states of leading vehicles can be effectively designed, 
the following vehicles can realize safety, energy-efficient trajectory tracking and ecological driving states. In fact, 
many studies mostly focus on the driving states of the following vehicles, and the driving states of the leading 
vehicle are ignored so that the predictive driving states of the leading vehicle cannot be adjusted according to the 
specific driving environment. Therefore, the total energy consumption for AEVPs could not be truly realized. 
Choi proposes RFID tags to supply lines and estimate the position of vehicles, and connecting technologies are 
used to calculate distances between  vehicles22. Zhao developed V2 V communication to realize autonomous elec-
tric vehicle platoons, and thus vehicle interruptions were successfully  designed23. He develops an optimal control 
model as a foundation to provide ecological driving to mixed gasoline vehicles and EVs, and speed advisory and 
acceleration-based advisory strategies are used to study energy  consumption1. Bian studied a multiple-prede-
cessor following strategy to reduce time headway via vehicle-to-vehicle (V2 V) communication, and a constant 
time headway policy was proposed for general communication  topologies24. Qi designed a cooperative system 
in which vehicles and infrastructure are tightly integrated by using wireless  communications25. In addition, the 
impact of driving behavior, vehicle dynamics and data-driven energy consumption are also integrated into the 
framework. The above studies on AEVPs have been chiefly embodied in V2 V systems, optimal control models 
and algorithm innovation. In fact, ecological driving for AEVPs is a local minimum problem due to constraints 
imposed by neighboring vehicles. Therefore, to ensure the minimum total energy consumption of AEVPs, the 
ecological driving states of leading vehicles and following vehicles should be jointly studied. Especially impor-
tantly, ecological trajectories of leading vehicles should be designed to ensure effective vehicle tracking according 
to specific traffic environments.

Motion planning algorithm. Motion planning aims to plan motion trajectories in a short future hori-
zon to find collision-free trajectories under static and dynamic obstacles. The majority of existing studies in 
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motion planning algorithms of autonomous vehicles are found in the robotics field. There exist three category 
methods. First, the sampling-based method means that the state space is discretized or randomly sampled in 
lattices, such as the A* graph and RRT algorithm. Second, the decomposed method means that the planning 
problem is decomposed into two easier subproblems. Third, the motion planning problem is transferred into 
a mathematical programming-based method, such as model predictive  control26. Hu introduced an improved 
artificial potential method for path planning considering vehicle velocity to prevent unnecessary lane changing 
 behavior27. Song proposed an improved A* graph, and a new path smoothing process with three types of path 
smoothers was developed to improve path  performance28. Mohamed introduced the RRT algorithm to split 
planning into two efficient phases to reduce its computational time combined with the robustness of paramet-
ric vector valued splines. Other methods of motion planning have also been developed in recent  years29. Wu 
developed differential dynamic programming for a novel path planner combined with kinematic  feasibility30. 
Li proposed a novel integrated local trajectory planning and tracking control framework for motion planning 
of autonomous  vehicles31. The above studies are mainly focused on motion planning algorithms to realize spe-
cific driving behaviors. However, these algorithms only generate instantaneous commands, and the generated 
trajectories are not smooth or ignore vehicle dynamics and traffic rule safety constraints. Guo introduced a 
model predictive control method to design path-following schemes for autonomous vehicles, and a differen-
tial evolution algorithm was  adopted32. Makoto developed nonlinear model predictive control for autonomous 
vehicle motion planning, which can solve nonlinear vehicle dynamics and environmental  conditions33. Bian 
presents a systematic approach to connected vehicles at unsignalized intersections without global coordination, 
and a distributed observation algorithm is introduced to achieve trajectory  planning34. Indeed, safety require-
ments for autonomous vehicles are to ensure vehicle dynamics safety, especially when vehicles are at high speeds. 
Meanwhile, tire mechanics and rollover should be taken into consideration. However, autonomous vehicles are 
complicated engineering artifacts, so many problems in motion planning cannot be solved by simply relying 
on model predictive control methods. For example, multiphase trajectories for autonomous vehicles should be 
planned according to specific constraints for specific traffic scenes, the immersed local optimal problem should 
be solved to realize global optimization, and terminal states of autonomous vehicles should be defined according 
to specific road traffic environments. Sometimes we want to compute a trajectory from its current position to 
the destination as fast or as energy efficient as  possible35. Therefore, to achieve the requirements of autonomous 
vehicles, another trajectory planning method should be developed. The pseudospectral method was applied in 
the field of aerosols in the early stage. Few papers have been published using the pseudospectral method to solve 
motion planning for autonomous vehicles. Michael introduced a pseudospectral optimal control algorithm for 
motion planning of small unmanned ground  vehicles36. The pseudospectral algorithm is a direct approach in 
which numerical optimal control techniques are used to solve the motion planning of robots, and the above-
mentioned problems can be solved by the pseudospectral method. The pseudospectral algorithm is an effective 
optimal control method for autonomous vehicles.

Research contributions. This study aims to address the ecological driving on multiphase trajectories and 
multiobjective optimization for AEVPs by using the pseudospectral method and V2V communication technolo-
gies to minimize the total fuel consumption of AEVPs. Ecological driving means that the constraints of vehicle 
dynamics, traffic rules, energy consumption minimization, and the ability to quickly pass trajectories of electric 
vehicles should be taken into consideration when trajectory planning and driving states of AEVPs are designed 
in this paper. The first strategy shows that the pseudospectral method is used to design ecological driving on 
trajectory planning and driving states of the leading electric vehicle to ensure ecological driving of the leading 
vehicle. The second strategy shows that the following electric vehicles should track the planned multistage tra-
jectories, and the driving states of the leading vehicle can be transmitted to following electric vehicles by V2 V 
communication technologies under the conditions of ensuring the minimum total platoon energy consumption. 
In addition, a multiobjective optimal model including safety, economic and fast mobility mainly involves two 
parts: the minimum of total energy consumption and the ability to quickly pass its destination to realize ecologi-
cal autonomous driving.

The remainder of the paper is organized as follows. “System models for ecological drving of AEVPs” Sec-
tion provides system models including longitudinal vehicle kinematics models, vehicle dynamics models and 
platoon vehicle dynamics models for AEVPs. “Pseudospectral algorithm for solving system models” Section 
presents a pseudospectral method that is suitable for platoons with an automated leader and following electric 
vehicles. “Optimal control model formulation” Section proposes an optimal model that will be used to solve 
ecological driving states for AEVPs. “Numerical experiments” Section provides some experiments and conclud-
ing comments.

System models for ecological drving of AEVPs
Autonomous electric vehicles are researched in this paper to improve energy efficiency, promote sustainable 
transportation and realize green mobility, especially as ecological driving on AEVPs and reducing overall fuel 
consumption are helpful to realize high-quality green mobility. Autonomous electric vehicle applications are 
mostly focused on vehicle system models to improve efficiency through optimal powertrain operations. Vehicle 
dynamics models, longitudinal vehicle kinematics models, platoon dynamics models and energy consumption 
models are involved in system models. Longitudinal vehicle kinematics models are used to calculate the energy 
consumption of AEVPs, and vehicle dynamics models are used to design motion planning and driving states for 
the leading vehicle according to specific traffic scenes. System models are crucial to ecological driving for AEVPs.
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Longitudinal vehicle kinematics models. Longitudinal vehicle kinematics models of AEVs include 
traction force, ground resistance and wind resistance. Newton’s second law is adopted to build longitudinal 
models, as follows:

In the above equation, i = 1, 2, . . . ,N represents every vehicle in the platoon, si represents the motion of the 
vehicle at the position, and velocity vi is assumed to be a point mass at the center of gravity. Fresi represents the 
total resistive forces, and mei is the mass of EV. Fti is traction force.

Electric vehicle is assumed to front-wheel drive. The traction force can be expressed as:

where rd is the effective radius of the wheel, ig is the transmission ratio, τt is the powertrain torque output, and 
ηt is the total mechanical transmission efficiency.

The total resistive forces are aerodynamic drag ( Fwi ), grading resistance ( Fgi ), and tire rolling resistance ( Fri ). 
The Fresi can be expressed as:

Aerodynamic drag is related to vehicle velocity as follows:

where ρa is the air density, Af  is the vehicle frontal area, and CD is the aerodynamic drag coefficient.
Grading force can be expressed as:

Rolling resistance can be expressed as:

where g = 9.8m
/

s2 , µ is rolling resistance coefficient.

Energy consumption model. The driving of electric vehicles depends on motors; therefore, it is necessary 
to establish a mechanical power and energy consumption model of the motor, and vehicle braking energy recov-
ery is also considered. The energy consumption of electric vehicles depends on speed characteristics, accelera-
tion characteristics, road geometry characteristics and road traffic conditions. The regenerative braking system 
can recharge a portion of energy to the battery. Therefore, the relation between the mechanical power of the 
motor and energy can be shown as:

The driving power can be described as:

where ηMi is the motor transmission efficiency, PMi is the motor mechanical power, wMi is the energy required 
for mileage, and TMi is the motor torque. When the vehicle drives, the consumed power can be calculated in the 
first equation in Eq. (8). When the vehicle is regenerative braking power in brake mode, the second equation 
in Eq. (8) can be used.

Through the above formulation, it is known that the motor will consume part of the energy, and the function 
of regenerative braking energy recovery should be obtained when optimization models are built in the paper. 
The braking energy can be recovered by 60% when the braking force is small. In contrast, the braking energy 
can be recovered by 30%-40% when the braking force is large in this paper.

Vehicle dynamics model. Vehicle dynamics models are increasingly applied to realize ecological driving 
for AEVs and are mainly used to design motion planning and driving states for the leading vehicle according to 
specific traffic scenes. The following vehicles can track the planned trajectory and adjust its driving state by V2 
V communication technologies. Vehicle dynamics can be shown in Fig. 136.

According to Fig. 1, the vehicle dynamics model is expressed as follows:
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where x, y, θ is the vehicle position and direction, v, L is the vehicle velocity and distance, a, γ is the acceleration 
and steering angle ratio, w is the yaw angle, and u = [a,w]T are control variables that ensure system continuity.

Platoon dynamics model. The objective of platoon control is to track the driving states of the leading 
vehicle and maintain a desired distance between consecutive vehicles, as follows:

where d0 is the desired space between vehicles. To ensure safe driving for AEVPs, the relative vehicle velocity 
and relative distance are designed, and a desired space between vehicles is also designed to arrive at the goal.

The objective of this study is to form ecological driving for AEVPs, so the intelligent driver model (IDM)37 
is adopted as a vehicle-following model to research the speed and acceleration of vehicle platoons. The IDM 
formulates acceleration rate as follows:

where vdi  represents the desired velocity of vehicle i  , ai−i is the comfortable acceleration rate of vehicle i  , 
ai−i= 4m/s2 is used in this problem, �vi(t) is the speed difference between vehicles, �Hi(vi(t),�vi(t)) is the 
expected speed of the vehicle in free traffic flow, and �Hi(t) is the gap between the following vehicle and the 
leading vehicle.

The desired distance between vehicles is defined as follows:

where s0 denotes the jam distance, t  is the safety time headway, and adi  is the desired deceleration rate.

Pseudospectral algorithm for solving system models
Pseudospectral algorithm. Pseudospectral algorithms are direct methods in the numerical method field 
and can also be named global optimization algorithms, usually Lagrange interpolation is used to put a series of 
optimal problems into discretization and realize the global solution, while the real optimum sometimes can-
not be obtained. Generally, direct methods transcribe the continuous optimal control problem to nonlinear 
programs (NLPs) based on the discretization  method38. Pseudospectral algorithms can be categorized into the 
Gauss pseudospectral method (GPM), Legendre pseudospectral method (LPM) and Radau pseudospectral 
method (RPM). Pseudospectral methods have attracted much attention because of their exponential conver-
gence rates for problems with smooth and well-behaved  solutions39. In RPM, the Legendre–Gauss-Radau (LGR) 
collocation method is adopted to discretize the optimal control problem. In this study, RPM is proposed to 
develop ecological driving for AEVPs because it has the advantage of exponential convergence, and state inter-
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ẋ
ẏ
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Figure 1.  Vehicle Dynamics Model.
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polation, such as terminal points and constraints, is included. It also has the advantages of fast convergence, 
lower sensitivity to initial values and multistage trajectory optimization and can obtain higher accuracy results 
with less computational cost. Accordingly, an optimal control model based on RPM is studied to minimize the 
total energy consumption of AEVPs to realize ecological driving. In addition, for a platoon, the optimal model 
needs energy-optimal acceleration. Therefore, putting nonlinear optimal control problems into a nonlinear pro-
gramming problem (NLP) to realize total energy consumption minimization of AEVPs is an important method. 
The specific procedure using RPM is as follows:

First, time regions. To apply the RPM algorithm, the time region to achieve the optimal control problem is 
τ ∈ [−1, 1] . Therefore, the system optimization problem of time region 

[

t0, tf
]

 should be transmitted into [−1, 1] , 
and time variable t can be defined as follows:

If the ecological driving process of AEVPs has been divided into K phases that have consisted of K mesh 
intervals, the time region in every phase should be transmitted into [−1, 1].

Second, discretion state variables and control variables. The RPM principle shows that Lagrange interpolation 
is used to put a series of optimal problems into discretization by building Lagrange polynomials to approximate 
states x(π) and u(τ ) , especially in K phases of RPM. Suppose that the time variable has been divided into K sub-
regions: Sk = [tk−1, tk],(k = 1, 2, . . . ,K) . The state variable and control variable in mesh space k ∈ [1, 2, . . . ,K] 
are approximated as follows:

where Lki (τ ) =
∏Nk+1

j=1,j �=i

[

τ−τ kj

τi−τ kj

]

 , τ ∈ [−1, 1] , Lki (τ ) , i = 1, 2, . . . ,Nk + 1 is the interpolation basis function, and 

j = 1, 2, . . . ,Nk is the collocation point in k ∈ [1, 2, . . . ,K].
Third, Dynamical differential equation conversion. Equation (14) is derived and transformed into matrices 

as follows:

where Dki= L̇i (τk) =
∑K

l=0,l �=i

K
∏

j=0,j �=i,l

τk−τj

K
∏

j=0,j �=i
τi−τj

 , k = 1, 2, . . . ,K , i = 0, 1, . . . ,K.

Forth, Objective function. Through the above three steps, the optimization function can be calculated as 
follows:

where µi is integration weight of Gauss-Radau.

Boundary conditions and constraints. Ecological driving for AEVPs needs to take into consideration 
boundary conditions to make AEVPs safely, effectively and ecologically track trajectory and driving states. A 
multiobjective optimization model also needs to consider the constraints and conditions. The boundary condi-
tions and constraints include the driving states of the leading vehicle and following vehicles, initial boundary 
conditions and terminal boundary conditions. Initial boundary conditions are initial state variables at the begin-
ning of vehicles, and terminal boundary conditions are the conditions that need to be satisfied at the end of tra-
jectory. Two phase trajectories for AEVPs are studied, and multiobjective state constraints are set up according 
to specific traffic scenes.

In the first phase, the trajectory and driving states of the conditions and constraints of the leading vehicle 
should be set up as follows:

The initial states of the leading vehicle at the beginning include the vehicle position, velocity, heading angle, 
and front wheel angle as follows:

The terminal states of the leading vehicle at the end in the first phase can be set up as follows:
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The leading vehicle should obey traffic rules, and driving states should be restrained in specific ranges to 
ensure AEVP ecological driving according to specific traffic scenes. Therefore, the state constraints for the lead-
ing vehicle are:

Control variables should obey vehicle dynamics, and their constraints are:

In the second phase, the initial states of the leading vehicle at the beginning are equal to the terminal states 
of the leading vehicle in the first phase according to the principle of RPM:

The terminal states of the leading vehicle at the end in the second phase can be set up as follows:

The state constraints of the leading vehicle in the second phase are:

Initial states of following vehicle i at the beginning include distances between vehicles, and velocities should 
be set up as follows:

The terminal states of vehicle i at the end are:

The constraints of driving states for following vehicle i are:

Optimal control model formulation
The function of the proposed optimal control model is to minimize the total energy consumption of AEVPs 
to realize ecological driving and achieve automatic driving. Therefore, the objective of the optimal model is to 
minimize total energy consumption, comfort, safety and the ability to quickly pass its destination, which shows 
exponential convergence and high efficiency. Multi-objective optimization could arrive at a good effect, for 
example, when total energy consumption is calculated, vehicle safety is needed to considered to ensure the suit-
able speed planning, and the vehicle comfort is also considered, because the relation between velocity planning 
and vehicle comfort is demanded to balance. Many scholars are studied optimal relation such as optimal control 
for a semi-autonomous ecological driver assistance  system2, energy efficient speed planning for optimal control 
 problem40.Meanwhile, nonlinear optimal control problems are converted into NLP to solve the abovementioned 
objectives. For a platoon approaching road section that is prone to traffic accidents, the optimal control model 
needs energy-optimal acceleration, as follows:

Subject to:

Combined with Eqs. (17), (18), (21), (22), (24), and (25) and constraints Eqs. (19), (23), and (26), the optimal 
control model can be transferred to the NLP problem.

In the above optimal model, Eq. (27) is the total energy consumption minimizing model of AEVPs trave-
ling from the location to the next position and time to quickly pass its destination. The minimum target state 
considers instantaneous energy consumption calculations and the ability to quickly pass the traffic capacity of 

(18)Y1f=

{

x1f = xf , y1f = yf ,

θ1f = θf , v1f = vf , γ1f = γf

}

(19)
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, θ ∈ [θ1min, θ1max],
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(20)a ∈ [a1min, a1max],w ∈ [w1min,w1max]

(21)X20 = Y1f
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{
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}

(23)
x ∈ [x2min, x2max], y ∈
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y2min, y2max

]

, θ ∈ [θ2min, θ2max],

v ∈ [v2min, v2max], γ ∈ [γ2min, γ2max]

(24)s0i = s0, v0i = v0

(25)sfi = sf , vfi = vf

(26)si ∈ [simin, simax], vi ∈ [vimin, vimax]

(27)min
a(t),t

ξ = ℧1 · ξ1+℧2 · ξ2=℧1 ·
∑

i

∫ tf

0
Ei(vi(t), ai(t))dt + ℧2 · tf

(28)
ẋi (t) = vi(t), 0 ≤ t ≤ T , i = 1, 2, . . . ,N

v̇i (t) = ai(t), 0 ≤ t ≤ T , i = 1, 2, . . . ,N

(29)ai(t) = f (�xi(t − T1), vi(t − T1),�vi(t − T1))
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vehicles. Vehicle acceleration as a control variable should be set to reasonable optimal values to realize the energy 
consumption minimum, so the weight for instantaneous energy consumption should be set as a suitable value.

Ei(vi(t), ai(t)) represents the instantaneous energy consumption rate of vehicle i = 1, 2, . . . ,N  , which is a 
function of velocity vi(t) and acceleration ai(t) at time t. The ecological driving for AEVPs mainly optimizes 
acceleration. tf  means that the vehicle can be brought from the current position to its destination as fast as pos-
sible. ξ1 is the instantaneous energy consumption calculation equation, and ξ2 is the ability to quickly pass the 
traffic capacity of vehicles. It can be considered that the energy consumption minimum of AEVPs is important 
and that the quickly passing traffic capacity of vehicles cannot be accurately grasped. The weighting factor for 
℧1 can be set in the range of ℧1 ∈ [0.60.9] , and ℧2 ∈ [0.10.4].

Equation (28) represents longitudinal vehicle dynamics, such as velocity and acceleration at time t of AEVPs. 
Equation (29) represents a longitudinal vehicle-following model.

When AEVPs are driving on road scenes that are prone to traffic accidents, the leading vehicle may drive 
at different energy-optimal speeds to ensure that the platoon can traverse traffic scenes safely. Therefore, the 
leading vehicle can be divided into two states at two different velocities. Equation (27) can be reformulated as 
an NLP as follows:

The objective function (30) is formulated in two steps: (i) the leader drives at constant acceleration or decel-
eration a1 during time interval [t0, t1) , and (ii) the leader drives at constant acceleration or deceleration a2 during 
time interval 

[

t1, tf
)

 . The constraint equations are equal to those mentioned above.

Numerical experiments
Experiment cases. This section describes numerical experiments to demonstrate the ecological driving of 
AEVPs. Two phases of experiments can be studied in this paper. Two obstacles on roads are stochastically set up 
and marked in red under the road environment. The obstacles can be expressed by using the P-norm as follows:

When the value p is larger, the rectangular shape is closer to the vehicle. According to the above additions, 
the obstacle constraints can be set as follows:

where 
(

xc , yc
)

 is the center of obstacle. (a, b, c) are the given parameters. The path constraints can be defined as 
follows:

The experiments can be divided into two phases, and the average traffic speed of AEVPs is assumed to be 
10m/s . In the first phase, suppose that the platoon consists of two vehicles, and some important parameters can 
be set up in the following form:

 (i) The initial conditions for the leading vehicle and the following vehicle can be defined as follows:

 (ii) The terminal conditions for the leading vehicle and the following vehicle can be defined as follows:

Ecological driving study results for AEVPs are shown in the following graphics.
Figure 2 illustrates the trajectory optimization results and driving states of the leading vehicle. As seen from 

Fig. 2, the planned trajectories can effectively avoid obstacles by considering the energy consumption minimum, 
vehicle dynamics, the ability to arrive at its direction as fast as possible, etc., which can be regarded as a general 
path for AEVPs by using RPM. Figure 3 illustrates the driving states of the following vehicle. It can be shown 
that driving states for the following vehicle tend to arrive at ecological forms by connecting vehicle technology. 
Using RPM to optimize the driving states of leading vehicles helps platoons realize ecological driving, thereby 
ensuring the goal of minimizing energy consumption.

In the second phase, the leading vehicle drives at an acceleration state, and some important parameters can 
be set up in the following form:

 (i) The initial conditions for the leading vehicle and the following vehicle can be defined as follows:

(30)

min
a1,a2,t1,t2

ξ = ℧1·ξ1+℧2·ξ2+℧3·ξ3=℧1·
∑

i

∫ t1

t0

Ei(vi(t), ai(t))dt+℧2·
∑

i

∫ tf

t1

Ei(vi(t), ai(t))dt+℧3·tf ·

(31)
∥

∥

(

x, y
)∥

∥

p
=

(

[|x|]p +
[∣

∣y
∣

∣

]p
)1/p

, p = 1, 2, . . .

(32)h
(

x, y
)

= log

((

x − xc

a

)p

+

(

y − yc

b

)p)

≥ p · log c

(33)h
(

x, y
)

≥ 0

x1−0 = 0m, y1−0 = 0m, v1−0 = 10m/s

s1−0 = 12m, v1−0 = 10m/s

x1−f = 200m, y1−f = −2m, v1−f = 20m/s,

s1−f = 10m, v1−f = 10m/s
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 (ii) The terminal conditions for the leading vehicle and the following vehicle can be defined as follows:

Figure 4 illustrates trajectory optimization and driving states of the leading vehicle that accelerate in the 
second phase. An effective trajectory is designed by using RPM with position changes of obstacles. As shown 
in Figs. 4 and 5, the platoon can regulate driving states to realize ecological driving for AEVPs by using RPM 
to design the states of the leading vehicle. The results show that AEVPs can automatically adjust driving states 
when terminal conditions and discrete control variables and input variables in multiple phases are taken into 
consideration, while the energy consumption of all electric vehicles can be designed, thereby realizing ecological 
driving for AEVPs.

Suppose that the platoon consists of three vehicles, and the average traffic speed of AEVPs is assumed 10m/s 
to be to explain the ecological driving process. The driving states for AEVPs are studied in the first phase as 
follows:

 (i) The initial conditions for the leading vehicle and the following vehicles can be defined as follows:

 (ii) The terminal conditions for the leading vehicle and the following vehicles can be defined as follows:

   In the second phase, the initial conditions for the leading vehicle and the following vehicle are equal 
to the terminal conditions in the first phase.

 (iii) The terminal conditions can be defined as follows:

   The ecological driving study results for AEVPs are shown in the following graphics.

Figure 6 illustrates trajectory optimization and driving states of the leading vehicle. Figure 6 shows the driv-
ing states of the following vehicles. When the trajectory and driving states of the leading vehicle are developed 
by RPM, vehicle states can be transmitted to the following vehicles by V2 V technologies to effectively track the 
planned trajectory and driving states. Meanwhile, the minimum total energy consumption can be optimized by 
the optimal model. Figure 6 shows that the following vehicles can change driving states with the leading vehicle 
states. Obstacle position avoidance can influence trajectory planning and driving state constraints of the leading 

x2−0 = 200m, y2−0 = −2m,

v2−0 = 10m/s, s1−0 = 10m, v1−0 = 10m/s

x2−f = 400m, y2−f = 0m,

v2−f = 20m/s, s1−f = 6m, v1−f = 20m/s

x1−0 = 10m, y1−0 = 0m, v1−0 = 10m/s, s1−0 = 12m,

v1−0 = 10m/s, s1−0 = 12m, v1−0 = 10m/s

x1−f = 200m, y1−f = −2m, v1−f = 10m/s,

s1−f = 10m, v1−f = 10m/s, s1−f = 10 m, v1−f = 10m/s

x2−f = 400 m, y1−f = −2 m, v2−f = 10 m/s,
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Figure 2.  Trajectory optimization and driving states of the leading vehicle.
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Figure 3.  (a), (b), and (c) Driving states of the following vehicle.
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vehicle, thereby influencing the following vehicle driving states and interdistances. Usually, the leading vehicle 
tends to reduce platoon states to optimize overall energy consumption, so RPM is adopted to optimize and 
design driving states of the leading vehicle to expediently calculate total platoons of driving states. The great-
est advantage in AEVPs is that the automated leader can adjust its driving states according to a specific traffic 
environment, allowing other following vehicles to adjust their driving states smoothly, thereby minimizing total 
energy consumption and realizing ecological driving for AEVPs.

Comparative analysis. This section describes a comparative analysis of RPM in realizing multiphase tra-
jectories and multiobjective optimization for AEVPs. As trajectory planning is based on the optimal control 
method, the model predictive control method (MPC) is another trajectory planning method for autonomous 
electric vehicles. To reflect the advantage of the RPM method, the comparative analysis is studied. Trajectory 
planning based on MPC and vehicle velocity are set as 10 m/s and 20 m/s , respectively. The simulation process 
is as Figs. 7 and 8:

Figure 7 illustrates trajectory optimization and driving states of the leading vehicle under a velocity of 10 m/s , 
and Fig. 8 illustrates trajectory optimization and driving states of the leading vehicle under a velocity of 20 m/s . 
From Figs. 7 and 8, it can be seen that under different speeds, vehicles can realize obstacle avoidance. Compared 
with Figs. 2, 4 and 6, it can also be seen that the discrete points based on the RPM algorithm are uneven, which is 
used to design trajectory planning of autonomous vehicles. It can scatter more dense discrete points when there 
are some obstacle positions, and the discrete points are loose when the distance between vehicles and obstacles 
is far. The process can effectively realize the obstacle avoidance function and realize global optimization under 
the process of trajectory planning of autonomous vehicles. The discrete points based on the MPC algorithm are 
uniform and are used to design trajectory planning of autonomous vehicles. The discrete points are of identical 
density regardless of whether there are obstacles, which can cause the solution results to tend to fall into a local 
optimum and cannot ensure trajectory planning of global optimization. Therefore, the RPM algorithm is used 
to study the ecological driving of AEVPs and contributes to trajectory planning of global optimization. It has 
the advantage of multiphase trajectory planning where the energy consumption minimum is considered, the 
driving states of the leading vehicle are optimized according to traffic scenes, and the total energy consumption 
minimum of the platoon is finally realized.

Conclusions
AEVPs is a major research hotspot in future. This paper proposes an optimal control model for ecological driving 
to minimize the energy consumption of AEVPs. To enhance ecological driving efficiency, the proposed optimal 
control model develops NLP problems by using the RPM algorithm. NLP problems easily solve such propositions 
because they contain some decision variables and constraints. By solving the NLP formulation, the ecological 
driving states and trajectory of the leading vehicle can be obtained, and a sequence of driving states, such as 
acceleration and velocity, can be suggested to the following vehicles for automated vehicle platoons. Numerical 
experiments illustrate ecological driving strategies for AEVPs and demonstrate the benefits of connected and 
autonomous vehicle technologies in realizing energy efficiency and ecological driving of platoons. Numerical 
experiments also show that regarding energy consumption efficiency, connected and autonomous vehicle systems 
with platoons can effectively realize total energy consumption efficiency. Meanwhile, the multiphase trajectories 
of autonomous vehicles by the RPM algorithm can be further investigated during some complicated traffic scenes 
through complex communication topology. For example, when AEVPs drive at unsignalized intersections, so 
many autonomous vehicles come from different directions. To ensure that AEVPs safely drive, the complex 
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Figure 4.  Trajectory optimization and driving state of the leading vehicle.
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communication topology can be used to transfer vehicle state information to the surrounding vehicles to plan 
multiphase trajectory planning, which can be helpful to realize specific driving states during different driving 
phases. Combined with complex communication topology, multiphase trajectory planning by the RPM method 
can be used to solve so many complicated road traffic scenes, such as tunnel traffic scenes, road traffic in severe 
weather, and bridge traffic that has the features of wet and slippery roads.
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Figure 5.  (a), (b), and (c) Driving states of the following vehicle.
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(a) Trajectory optimization of the leading vehicle in the first phase

(b) Interdistance and speed between vehicles

(c) Trajectory optimization of the leading vehicle in the second phase

(d) Interdistance and speed between vehicles
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Figure 6.  (a–d) The driving states of AEVPs in two driving phases.
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