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Self‑guided quantum state 
tomography for limited resources
Syed Tihaam Ahmad, Ahmad Farooq   & Hyundong Shin  *

Quantum state tomography is a process for estimating an unknown quantum state; which is innately 
probabilistic. The exponential growth of unknown parameters to be estimated is a fundamental 
difficulty in realizing quantum state tomography for higher dimensions. Iterative optimization 
algorithms like self-guided quantum tomography have been effective in robust and accurate 
ascertaining a quantum state even with exponential growth in Hilbert space. We propose a faster 
convergent simultaneous perturbation stochastic approximation algorithm which is more practical 
in a resource-deprived situation for determining the underlying quantum states by incorporating the 
Barzilai–Borwein two-point step size gradient method with minimal loss of accuracy.

Quantum state tomography is a field in quantum information that focuses on determining the unknown quan-
tum state. A quantum state can be represented in a Hilbert space, and different known sets of bases are used as 
projections to extract the information about this quantum state. An enormous ensemble of the unknown state 
is used to extract the quantum state using the set of known bases. These bases could either be fixed or adap-
tive depending on the feasibility of the method according to the available resources and required metrics1–3. A 
renowned conundrum in quantum state tomography is the exponential growth of associated parameters with an 
increase in the dimensionality of the quantum state4. This curse of higher dimensionality requires large ensem-
bles of the same state which is practically infeasible. For a d dimensional quantum system, d2 − 1 parameters 
are required to be estimated using the standard quantum state tomography. With an increase in dimension d, 
the required parameters scale as O

(

d2
)

 . Additionally, more copies of the quantum state are required to achieve 
better infidelity5. The prime goal of the field of quantum state tomography revolves around the improvement of 
fidelity, for which the field has evolved from standard quantum state tomography methods to better and differ-
ent approaches ranging from maximum-likelihood estimation, reduced density matrix estimation, variational 
quantum circuit for state tomography, to recently popular optimization, machine-learning and neural-network 
approaches for noisy intermediate-scale quantum computing6–10.

With the advent of the noisy intermediate-scale quantum computing era, quantum state tomography demands 
resource-efficient robust methods11. One such method was proposed a few years ago as self-guided quantum 
tomography (SGQT)8. One of the prime contributions of SGQT is its robustness which has become a vital part 
of quantum state tomography since the beginning of noisy intermediate-scale quantum computing era. The 
robustness of SGQT is a result of its adaptive bases on each iterative step which cannot be attained using fixed 
basis standard quantum state tomography method i.e., Pauli or computational basis. SGQT uses simultaneous 
perturbation stochastic approximation (SPSA) which is a pseudo-gradient descent stochastic optimization algo-
rithm rather than an estimation one12. It is an iterative method that optimizes the unknown quantum state to the 
true state by iteratively maximizing the overlap between them13,14. This simple iterative algorithm uses only two 
measurements per iteration regardless of the dimension of the quantum system. Though it has several advan-
tages over other already available methods but the robustness of SGQT to various noise sources is preeminent. 
However, for higher dimensions, SGQT converges very late to the desired accuracy. Hence, the total number of 
copies required for tomography increases. Most of the practical applications in quantum information science 
are performance-demanding and resource-constrained. For example, in practical quantum state tomography the 
goal is to achieve the best infidelity with a minimum number of quantum state copies in an ensemble.

In this paper, we introduce a new non-monotonic step size method in SPSA to make it resource-efficient. 
The Barzilai–Borwein (BB) gradient method is efficient for solving large-scale unconstrained problems to mod-
est accuracy and has a great advantage of being easily extended to solve a wide class of constrained optimiza-
tion problems15–18. Our method, a BB-based with clever step-size choice is adapted for SPSA optimization. BB 
methods are well-known gradient descent based algorithms featuring faster convergence due to clever choice of 
step length16,19,20. Our method successfully overcomes slow convergence in SGQT by explicit use of first-order 
information of the cost function and the simultaneous implicit incorporation of approximation of Hessian i.e. 
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second-order information of the cost function which is contained in the step size calculation. BB methods have 
proven to give global convergence for strictly convex quadratic problems and even for non-quadratic cases, 
the incorporation of BB in a globalization strategy establishes global convergence15,19,21. As BB methods yield 
non-monotonic cost function evaluations, they are combined with line search algorithms i.e. SPSA in our case, 
along with the maximum of cost functions for previous iterations rather than a monotonic sufficient decreasing 
conditions for the cost function. This non-monotonic method still gives practically good performance for SGQT 
with faster convergence in resource deprived tomographic conditions.

Motivated by numerical aspects and practical performance of BB methods, we consider a more practical 
and resource-efficient environment i.e., self-guided quantum tomography with BB method. In this paper, we 
extend the BB method for SPSA based self-guided tomography and propose a new step size to accelerate the 
SPSA method by incorporating accelerated BB step size. Furthermore, by gradient averaging we smooth our 
convergence graph. Extensive numerical simulations show that our strategies of properly inserting monotone 
SPSA steps into the non-monotone BB method could significantly improve its performance and the new resulted 
methods can outperform the most successful iterative optimization algorithm SPSA demonstrated in the recent 
literature of self-guided tomography for fewer iterations. BB method is a non-monotonic method that gives 
faster convergence than the normal step size of SPSA. We add monotonic step size condition in traditional BB 
non-monotonic step size to achieve faster convergence and SPSA like accuracy.

Method
In this section, we first describe how a standard SPSA algorithm works, then we propose a method to make it 
more resource-efficient. By utilizing the normal step size with the Barzilai–Borwein step along with gradient 
averaging and smoothing can achieve better results in terms of resource efficiency. Any arbitrary d-dimensional 
pure quantum state is given by the linear combination

where 
∑

i |ci|
2 = 1 . To retrieve the information from the quantum system, we need to perform the measurements. 

The outcomes of the quantum state are obtained by elementary projectors through Born’s rule

where 
∑

i |φi��φi| = I.
SGQT is a stochastic optimization iterative technique with two measurement settings. At each iteration 

of SGQT, it performs measurements in {f (φ±), I − f (φ±)} . These measurement settings are used to calculate 
gradient gk(φk) and the estimated state is updated at each iteration. Starting from a random state |φ0� , SGQT 
performs the measurements on 

∣

∣φ±
k

〉

= |φk ± βk�k� at each iteration, where �k is a vector whose entries are 
chosen uniformly from the discrete sample space {−1,+1} , and βk = b/(k + 1)t where k is the iteration number 
and (b, t) are the hyper-parameters. The gradient gk(φk) of the given direction is then calculated as

 

(1)|ψ� =

d−1
∑

i=0

ci|i�,

(2)f (φi) = |�ψ |φi| |�
2,

(3)gk(φk) =
f (φk + βk�k)− f (φk − βk�k)

2βk
�k .

Figure 1.   Convergence plot on Bloch sphere for N = 10, 100, 1000 for a simple qubit system. We can see that 
BB-SPSA converges faster with increase in number of measurements per setting.
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The next estimated state is obtained by the following update rule

Here, gain parameter αk which controls the convergence and decreases with the number of iterations k is given by:

Here again (a,A, s) are hyper-parameters for which the optimal parameters are given in22,23. At each step, the 
self-guided tomography is steered by the gradient gk(φk) and will thus converge to the underlying state after a 
sufficient number of iterations. SGQT claims s = 0.602 , A = 1000 , a = 0.3 , b = 0.1 , and t = 0.101 as good con-
vergence parameters which worked for SPSA based quantum tomography. However, the asymptotically optimal 
values suggested by Spall for SPSA, s = 1 and t = 1/6 perform equally well22.

The core of the non-monotone methods is based on remembering the data calculated by the preceding itera-
tions. The non-monotone method i.e Barzilai–Borwein method approximates the Hessian matrix and considers 
the second-order information in the step-size calculation. BB method has already proven to outperform the 
standard steepest descent methods by Barzilai and Borwein16. For an unconstrained optimization problem for 
minimizing an objective function f (x) is given by

The standard steepest descent method calculates the next point using a negative gradient. The next point is given 
by the update rule

For Barzilai–Borwein method, the αk is calculated by solving

where � · � is norm-2 and ∇x = xk − xk−1 . By solving this the new BB step size αk is given by

In this paper, we extend a non-monotonic BB method already proven efficient for the steepest descent method 
for the SPSA algorithm when considering quantum state tomography for fast convergence. We compute the step 
size using the non-monotonic method suggested by Barzilai and Borwein16. To further enhance the results, and 
make BB method more stable and suitable for our certain problem type, we add gain smoothing and gradient 
averaging. In the following subsections, we describe the significance of these additions in our proposed method.

Since SPSA relies on a monotone step size αk , it has a slow convergence rate, which is not preferred when 
considering resource efficiency. Moreover, this step size is obtained by experimentation for each problem type. 
The optimal parameters for quantum state tomography are given in SGQT. The step size parameters for SGQT 
were obtained by the hit and trial method. However, BB step size does not need hit and trial hyper-parameters. 
It extracts the second-order information for its following step sizes and hence is adaptive to its convergence 

(4)
∣

∣φk+1

〉

=
∣

∣φk + αkgk
〉

.

(5)αk =
a

(k + 1+ A)s
.

(6)min
x∈R

f (x).

(7)xk+1 = xk − αkgk .

(8)min
α

�∇x − αk∇g�,

(9)αk =
∇x∇g

∇g∇g
.
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regardless of the dimension of the system. To reduce the convergence time, we propose the non-monotone BB 
method step size as

Here ∇ ĝ
(

φ̂

)

= ĝk

(

φ̂

)

− ĝk−1

(

φ̂

)

 and ∇φ̂ = φ̂k − φ̂k−1 . We use α̂k to indicate it is an estimate rather than a 
closed form given in SGQT. Sometimes the gain can be negative such that ∇φ̂T∇ ĝ

(

φ̂

)

< 0 . This is possible 
because the Hessian of gradient function might include negative eigenvalues at ∇φ̂24. Consequently, it is neces-
sary to set closed boundaries around the gain to ensure it is monotonic. Therefore, the current gain becomes

Due to SPSA’s stochastic nature and noisy measurements, the gradients ĝk
(

φ̂k

)

 can distort the convergence 
direction. To mitigate such side the effect, the current and the previous m gradients are averaged as a gradient 
estimate at the current iteration

We also add gain smoothing in our method to avoid instability. It essentially averages the gains at the current 
and last two iterations. So our current gain α̂′

k is updated by gain smoothing as

where t = 2.

Results
In this section, we simulate our results numerically and show the improvement over the SGQT algorithm. We 
use infidelity as a figure of merit to compare the performance of our algorithm. The infidelity 1− F between two 
pure quantum states is given by

where F is the fidelity between two quantum states.
First, we performed our numerical analysis for a single qubit case and experiment with the number of copies 

to observe the difference of performance with the number of copies. Through experimentation, we found that 
by increasing the number of copies per iteration, the algorithm converges faster as shown in Fig. 1.

We observe that our algorithm performs almost equally well as SGQT with a marginal difference for d = 2 
but our algorithm is more advantageous for higher dimensions. We performed our experiments by taking median 

(10)α̂k =
∇φ̂T∇ ĝ

(

φ̂

)

∇ ĝT
(

φ̂

)

∇ ĝ
(

φ̂

) .

(11)α̂′
k = max

{

αmin,min
{

α̂k ,αmax

}}

.

(12)ĝk

(

φ̂k

)

=
1

m+ 1

k
∑

n=k−m

ĝn

(

φ̂k

)

.

(13)α̂′′
k =

1

t + 1

k
∑

n=k−t

α̂′
n.

(14)1− F = 1− |�ψ | φ�|2,

Figure 2.   Average infidelity plots for qubits d = 16,32,64 obtained from 100 randomly generated qubits using 
Haar measurement. Blue lines show the median infidelity plots for our algorithm, and red dotted lines show the 
same plots for SGQT. Here, we choose N = 104 number of measurements per iteration.
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infidelity of our algorithm and SGQT for 100 randomly generated quantum states using Haar measure for each 
dimension d = 16, 32, 64 . In our simulations, we refer N as the number of measurements per estimate; M as the 
number of estimates per iteration; and k as the number of iterations. Hence, the total number of measurements 
performed after k iterations is Ntot = kMN . It is to be noted as one of the advantages of SGQT over standard 
finite gradient estimation where M = 2d for n pure qubits, d is the real dimension of the state space given as 
d = 2(2n − 1) , which grows exponentially8. For SGQT, M = 2 which is fixed for any dimensional quantum 
system. Thus, we restrict our attention to N and k, with the understanding that Ntot = 2Nk . We choose N = 104 
to have a fair comparison with self-guided tomography. From experimentation, we observe our proposed method 
outperforming SGQT for resource-constrained quantum estimation. Even for lower dimensions, our algorithm 
almost works equally well with marginal difference in performance. We observe our algorithm converging 
noticeably faster for higher dimensions as compared to convergence observed in SGQT given in Fig. 2. The scal-
ing of SPSA algorithm used in SGQT was analyzed by Spall22,23. This convergence analysis implies that the 
infidelity decreases at the rate O

(

dγ

Ntot

)

 , where d is the dimension of the quantum system and γ is problem-
dependent8. In SGQT, the asymptotic scaling of infidelity is found to be O

(

dγ

Ntot

)

 with γ ∈ (1.02, 1.35) . We present 
the infidelity improvement scaling of BB-SGQT over SGQT in Table 1. BB method finds the solution faster than 
the SPSA with a small sacrifice in accuracy.

To demonstrate that our efficient method is equally robust, we use doubly stochastic matrix � . This doubly 
stochastic matrix models the depolarizing noise in a faulty measurement device25. The matrix � is defined as

where � corresponds to the strength of noise in measurement outcomes. We perform our experiments for d = 8 
with and without depolarizing noise i.e., � = 0.9 . The settings are similar as used in aforementioned case. We can 
clearly see that our algorithm does not loses its robustness by introducing high noise model as shown in Fig. 3.

Conjugate gradient-descent (CGD) and projected gradient-descent (PGD) based approaches have been also 
used for quantum state tomography26,27. These approaches are used as post-processing techniques on maximum 
likelihood estimation or standard quantum tomography to give better fidelity. However, these approaches cannot 
be extended to be used within the experiment but just as post-processing techniques. These methods require a 
well-defined loss function. Due to the unknown target state to be measured, a well-defined loss function cannot 
be attained in quantum state tomography and hence gradient cannot be calculated. Hence, we cannot apply gra-
dient-descent algorithm solely in quantum state tomography. Nevertheless, SPSA algorithm, a pseudo-gradient 
descent technique can be applied, which approximates the gradient from noisy loss function measurements and 
performs very well in quantum state tomography.

We also compare our method with other already suggested gradient-descent based methods such as conju-
gate gradient-descent and projected gradient-descent with maximum likelihood estimation to emphasize the 
robustness advantage over other optimization techniques. We run the experiments for d = 4 with � = 0.2 (low) 
and � = 0.4 (high) depolarizing noise to see the practical quantum state estimation results over total number of 
resources used in our simulation as shown in Fig. 4. We observe that BB-SGQT keeps on improving the fidelity 
of a quantum state with increasing number of resources, even in high depolarizing noise experiment. However, 
other methods are saturated and cannot give any better fidelity even with high number of resources and low 
noise, making them impractical for experimental quantum tomography.

(15)�i,j =

{

1− �+ �/d, when i = j
�/d, otherwise,

Figure 3.   Average infidelity plots for d = 8 with 90% depolarizing noise (red and blue) and without 
noise (green and black) are plotted by taking the average for 100 randomly generated qubits using Haar 
measurements. Red and black represent standard SGQT graphs, while blue and green color is for our BB-SGQT 
method. Here, we fixed N = 104 the number of measurements per iterations for each method.
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Discussion
With the promising practicality of noisy intermediate-scale quantum computers, robust and resource-efficient 
quantum state tomography for higher-dimensional quantum systems has become inevitable9. All the recent 
state tomography methods have failed to provide either robustness or resource efficiency. Likewise, self-guided 
tomography provides robustness but is not suitable for resource-constrained quantum state tomography. How-
ever, the proposed Barzilai–Borwein method has proven to overcome this deficiency of self-guided tomography, 
particularly for higher-dimensional quantum states. Also, hyper-parameters required by step size used in SGQT 
were obtained using the hit and trial method as compared to our method that adaptively computes its step size 
for any dimensional quantum system without the need for hyper-parameters.

Even though our proposed method is practically more feasible than SGQT when there are fewer copies, it 
still does not outperform SGQT in the long run when the resources are enough. After performing our empirical 
experiments, we noticed that our method, though resource-efficient, loses its accuracy as compared to self-guided 
tomography in the long run. It performs equally well for higher-dimensional quantum systems with marginal 
accuracy difference to standard self-guided tomography.

Self-guided tomography has already been experimentally implemented11,28. Standard SGQT relies on using 
entangled basis on each iteration which is very hard to implement practically. However, it has been shown that 
by approximating the entangled basis from the combination of Pauli basis which are easy to prepare, SGQT still 
outperforms the standard quantum state tomography algorithm in a noisy environment28. We know that Pauli 
measurement-based SGQT gives a poor performance as compared to standard SGQT yet it is advantageous over 
standard quantum state tomography methods in terms of fidelity, post-processing cost and robustness28. With 
a small change in step size in self-guided tomography, our method can also be achieved in experiments. Hence, 
making it totally resource-efficient, robust, and most importantly, practical.

Figure 4.   Average infidelity plots for d = 4 with 20% and 40% depolarizing noise (solid and dashed) are plotted 
against total resources Ntot by taking the average for 100 randomly generated qubits using Haar measurements. 
Blue, red and green represent BB-SGQT, PGD and CGD respectively.

Table 1.   Scaling of performance in BB-SGQT vs SGQT with qubit dimension.

k BB-SGQT SGQT Improvement

d = 16

101 8.39× 10−1 9.75× 10−1 ×1.16

102 3.24× 10−1 9.39× 10−1 ×2.89

103 4.93× 10−3 5.94× 10−3 ×1.20

104 5.23× 10−5 4.73× 10−5 Marginal difference

d = 32

101 9.41× 10−1 9.74× 10−1 ×1.03

102 6.07× 10−1 9.25× 10−1 ×1.52

103 9.66× 10−2 4.48× 10−1 ×4.63

104 2.50× 10−4 7.29× 10−4 ×2.91

d = 64

101 9.54× 10−1 9.55× 10−1 Same performance

102 9.18× 10−1 9.20× 10−1 Same performance

103 3.70× 10−1 5.33× 10−1 ×1.44

104 1.76× 10−2 1.42× 10−1 ×8.06
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Data availibility
The data generated from empirical results and the source code that support the findings of this study are available 
from the corresponding author upon reasonable request.
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