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Specificity of scattering 
of ultrashort laser pulses 
by molecules with polyatomic 
structure
D. N. Makarov*, K. A. Makarova & A. A. Kharlamova

The theory of scattering of ultrashort laser pulses (USP) is the basis of diffraction analysis of matter 
using modern USP sources. At present, the peculiarities of interaction of USP with complex structures 
are not well developed. In general, the research focuses on the features of the interaction of USP with 
simple systems, these are atoms and simple molecules. Here we present a theory of scattering of 
ultrashort laser pulses on molecules with a multi-atomic structure, taking into account the specifics of 
the interaction of USP with such a substance. The simplicity of the obtained expressions allows them 
to be used in diffraction analysis. As an example, the scattering spectra of deoxyribonucleic acid (DNA) 
and ribonucleic acid (RNA) are presented. It is shown that the theory developed here is more general in 
the scattering theory and passes into the previously known one if we consider the duration of the USP 
to be sufficiently long.

X-ray scattering is at the heart of X-ray structural analysis (XRD)1–4. Similarly for X-ray ultrashort pulse (XRD) 
scattering on matter. XRD is one of the most important methods to study the structure and properties of matter, 
which is based on the use of X-ray diffraction. The structures of most crystals and many molecules have been 
determined with this method and underlie many modern discoveries in physics, chemistry, biology, medicine 
and crystallography, such  as2. At present, special attention is paid to the physics of ultrashort  pulses5–7 by creating 
new types of radiation sources, increasing the power and reducing the duration of ultrashort pulses, etc.5–9. Using 
such USP, it is possible to conduct research on the structure of matter with high temporal and spatial resolution. 
The more so now there is a technical possibility to conduct such studies. One of the most promising sources of 
USP are free-electron  XFELs10. At present, the formation of attosecond pulses is reported due to improvements 
in X-ray free-electron lasers  techniques11,12. Here also reached the subfemtosecond barrier with high peak power, 
which allows to study the excitation in the molecular system, the movements of valence electrons with high 
temporal and spatial resolution, for  example13. Due to the creation of high-power USP sources, there is a need 
for new theoretical approaches that take into account the specifics of the interaction of such USP with complex 
polyatomic  structures9,14.

It is well known that the theory of X-ray diffraction by various periodic and complex structures is based on 
the scattering of plane waves of infinite duration in  time15. The same theory is used to analyze and decipher 
the structures of various objects using USP. Scattering processes with femto- and especially attosecond time 
resolution on such structures have not been studied enough and are being actively developed  nowadays9,16–25. 
Usually such theories consider simple systems such as atoms, simple molecules, model systems, systems of 
one-part atoms, etc. A simple enough theory, which takes into account the specificity of X-ray scattering on 
complex polyatomic structures, currently does not exist. For  example20, developed the USP scattering theory in 
the general case, where there are no restrictions on the number of atoms in the scattering system. Although the 
expressions obtained in this theory are general and do not allow one to directly calculate the scattering spectra 
for complex multiatomic systems. In the  work26, the wave function of atomic and molecular electrons in the 
USP field was found. In the  articles21,22, the USP scattering theory was developed taking into account the first 
and second harmonics on the simplest polyatomic systems consisting of atoms of the same kind, while using the 
 works20,26.  In27, the theory of USP scattering was developed, but not without taking into account the specifics of 
USP scattering on complex polyatomic systems.
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In the present paper, such a theory, obtained on the basis of the sudden perturbation approximation, will be 
presented. The results will have a simple analytical form and can be applied to calculations of scattering spectra 
for complex polyatomic structures. It is shown that the well-known theory of X-ray diffraction analysis (XRD) 
may have errors when used for attosecond pulses. As an example, the case of scattering of X-ray USP on nucleo-
tides (adenine, guanine, cytosine, thymine), which are the basis of deoxyribonucleic acid (DNA), will be consid-
ered. It is shown that the scattering spectra are sensitive to spatial changes in the position of atoms in nucleotide 
structures. The results obtained can be easily extended to more complex structures, including deoxyribonucleic 
(DNA) and ribonucleic (RNA) acids.

Next, we will use the atomic system of units: � = 1; |e| = 1; me = 1, where � is the Dirac constant, e is the 
electron charge, me is the electron mass.

Specifics of scattering of X-ray ultrashort pulses
Consider a molecule with a complex polyatomic structure. USP falls on this molecule in the n0 direction. We 
assume that the duration of such a pulse τ is many times less than the characteristic atomic time τa ∼ 1 , i.e. 
τ ≪ τa . It is well known that this condition is applicable in the sudden perturbation approximation. In the sudden 
perturbation approximation, the intrinsic Hamiltonian of the system can be neglected, since the electron in the 
atom does not have time to evolve under the action of the USP  field26. The τ ≪ τa condition can be extended for 
X-ray USPs and consider that the sudden perturbation approximation is applicable at ω0τa ≫ 1 , where ω0 is the 
carrier frequency of the incident  USP22,26. Further, we will use the USP electromagnetic field strength in the gen-
eral form E(r, t) = E0h(t − n0r/c) , i.e. we will consider it spatially inhomogeneous, where E0 is the field ampli-
tude, and h(t − n0r/c) is an arbitrary function defining the USP form, c is the speed of light (in a.u. c ≈ 137 ). In 
the case of such pulses,  in26, when solving the Dirac equation, the wave function of an electron in the USP field 
with a strength E(r, t) was found, which we will use below. We will consider the fields not so strong as to account 
for the magnetic field of the USP, i.e., we will assume that E0/c2 ≪ 1 or in units of intensity I ≪ 1025W/sm2 . In 
this case, as shown  in26, the wave function of a complex multi-electron system can be represented as

where 
∑

a is the summation over all electrons in a complex polyatomic structures, ϕ0({ra}) is the initial wave 
function of all electrons in such a system.

To calculate the basic scattering characteristics, we will use the quantum theory of USP scattering, in which 
there are no restrictions on the number of atoms in the  system20. In this theory, general expressions for calcula-
tions of the main scattering characteristics are derived. As a result, using Eq. (1) and the theory  in20 we obtain 
an expression to calculate the scattering energy ε per unit solid angle �k ( k = ω

c n , where n is the direction of 
the scattered pulse) in the unit frequency interval ω (hereafter the spectrum)

where h̃(ω) =
∫ +∞
−∞ h(η)eiωηdη , and p = ω

c (n − n0) has the meaning of recoil momentum when a USP is scat-
tered on a bound electron. Next, we use the well-known model of independent atoms, see for  example22,27. In 
this case, the problem can be solved by passing to the electron density of individual isolated atoms that make up 
a complex polyatomic structure. Dividing the Eq. (2) by two, where the first term corresponds to the summation 
at a = a

′ , and the second term at a  = a
′ , we obtain

where Ne,i is the number of electrons in the atom i variety; NA,i is the number of atoms i variety; 
Fi = 1

Ne,i

∫

ρe,i(r)e
−iprd3r is the form factor of the i atom of the variety with electron density ρe,i(r) . The factor 

δi,j =
∑

Ai,A
′
j e

−ip(RAi−R
A
′
j
) depends only on the coordinates of atoms i of the variety (with number Ai) whose 

position is determined by the radius vector RAi . The Eq. (3) is analytic, which contributes to a fairly simple cal-
culation of the spectra. The main difficulty in the calculation is determined by the factor δi,j , since for complex 
systems it is difficult to find an analytical expression for it. This factor determines the interference and only in 
this factor the coordinates of atoms in a complex polyatomic structures are concentrated. For fairly simple sys-
tems consisting of a single variety of atoms such a factor has been found for many carbon  systems21,22: graphene, 
nanotube, atomic rings, “forest” of nanotubes, etc. Of greatest interest for XRD is the τω0 ≫ 1 case ( τ is the pulse 
duration, ω0 is the USP carrier frequency). If we assume that τ → ∞ , i.e. the radiation source is continuous, we 
get the well-known XRD theory. It is this theory that is used in XRD even in the case of ultrashort pulses, without 
taking into account the specifics of USP scattering. Let us show that the scattering theory elaborated here may 
differ from the well-known XRD theory when attosecond pulses are used in the case of τω0 ≫ 1 . To do this, we 
integrate the expression (3) with respect to frequency, taking into account that the main part in the integration is 
concentrated near ω0 . Indeed, choosing the τ → ∞ case, it is well known that the pulse form is h = e−i(ω0t−k0r) 
(plane wave). It is easy to see that in this case |h̃(ω)|2 = 2πTδ(ω − ω0) , where δ(ω − ω0) is the Dirac delta func-
tion, T is the time of action of the radiation on the system (in general, T = Cτ , where the constant C depends on 
the form of the USP). If τ  = ∞ , then the pulse form h = e−i(ω0t−k0r)f ((t − n0r)/τ) , where the f function defines 
the USP profile. It is easy to see that in this case h̃(ω) = τ f̃ ((ω − ω0)τ ) ( f̃ ((ω − ω0)τ ) =

∫∞
−∞ e−i(ω−ω0)τηf (η)dη 
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−
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i
∫ t
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∑
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is the Fourier transform of the function f (η)) . In this case, we see that after integration over frequency, Eq. (3) 
will have the form

where Fi(p0), δi,j(p0) are the expressions defined above, but with the difference that p → p0 = ω0

c (n − n0) and 
pτ = 1

cτ (n − n0) . In Eq. (4) it was taken into account that cτ � 1 . From Eq. (4) one can obtain the well-known 
expression in XRD for the intensity of the scattered radiation if one considers τ → ∞ . Indeed, for τ → ∞ the 
parameter βi,j(pτ ) → 1 . Also, if we consider a sufficiently large number of atoms in the system, so that we can 
neglect the first term in Eq. (4), i.e. we will assume that coherent radiation is dominant. In this case, we get

where ρ(R) =
∑

Ai

∫

δ(R − RAi − r)ρe,i(r)d
3r is the distribution of electron density in a polyatomic system in 

space, T = τ
2π

∫∞
−∞ |f̃ (x)|2dx . Eq. (5) is well known in XRD. Thus, in the case of multi-cycle pulses, i.e. when 

τω0 ≫ 1 and the polyatomic system Eq. (4) different from Eq. (5) when βi,j(pτ )  = 1 . This is only possible if 
pτ (RAi − RA

′
j) is not small, those. when we consider pulses with duration τ � 1 (in a.u.), which are attosecond 

pulses. It should also be added that differences appear not only for attosecond pulses, but also for sufficiently 
large polyatomic systems, where (RAi − RA

′
j) ≫ 1 . Such systems can be various nanosystems, biomolecules, etc.

Next, let’s analyze Eq. (3). Equation (3) takes into account both coherent USP scattering (second term) and 
incoherent scattering (first term). In the general case, the predominance of the coherent over the incoherent 
factor is determined by many factors. If the USP is multi-cycle, i.e. τω0 ≫ 1 ( τ is the pulse duration, ω0 is the 
USP carrier frequency), then coherent scattering prevails over incoherent scattering at �0 ≫ 1 . In the case of 
multi-cycle USP, the predominance of the incoherent term over the coherent one, the problem is determined not 
only by the condition �0 ≪ 1 but also by the number of atoms in the system in question. In the case of low-cycle 
and sub-cycle pulses, it is necessary to consider a particular polyatomic structures and the form of the USP to 
determine the predominance of coherent over coherent; this cannot be done in a general form.

If the polyatomic structures has a certain symmetry or periodicity, it is reflected only in the δi,j factor. For 
polyatomic systems it is difficult to analyze and calculate the scattering spectra during the numerical calculation 
of Eq. (3). In order to make the calculation and analysis simple, it is necessary for polyatomic structures having a 
certain symmetry and periodicity, to represent the factor δi,j in the analytical form. In general, for such systems 
the factor δi,j can be represented as

where α or β is some symmetry in the system, s is the number of symmetries in the system, Rnα or Rnβ is the 
radius vector that sets the symmetry position α or β respectively, Nα is the number of translations with a given 
symmetry, RAi is the radius vector specifying the position of the atoms of variety i within the region Rα,1 (analo-
gously RAj ), see Fig. 1. The importance of Eq. (6) is determined by the fact that it is not necessary to calculate 
numerically the parameter δi,j by summing up all positions of atoms in space. It is enough to determine the 
symmetry of the object under study and find the sum 

∑Nα
nα=0 e

ipRnα in analytical form. The sum 
∑

Ai∈Rα,1 e
ipRAi 

can be found analytically if there is symmetry inside the region Aj ∈ Rα,1 or numerically, where summation 
is sufficient only in the region Rα,1 . For example, in the simplest case of a one-atom cubic lattice: s = α = 1 , 
i = j = const = 1 , 

∑

Ai∈Rα,1 e
ipRAi = eipRA1 , since the atom within the symmetry is alone. As a result, for this case 

the factor δ1,1 =
∣

∣

∑Nα
nα=0 e

ipRnα
∣

∣

2 , which is well  known21 and calculated in a simple analytical form.

Specifics of scattering on DNA nucleotides
As shown above, the USP scattering for polyatomic systems differs from the well-known Eq. (5) for attosecond 
pulses. Therefore, let’s consider one of the most interesting examples of a polyatomic system - nucleotides: 
adenine, guanine, thymine and cytosine. Each of these nucleotides forms the backbone of DNA. Each of the 
nucleotides in the DNA molecule is repeated, which means that there is a symmetry that can be calculated in 
the factor δi,j . The most interesting thing is that this symmetry can be modified by modeling the contraction, 
stretching or twisting of the DNA molecule. The change in symmetry and the symmetry itself should be reflected 
in the scattering spectra calculated from Eq. (3). Let us calculate the scattering spectra on the following nucleo-
tides separately: adenine, guanine, thymine, and cytosine. In this case, we need to find the factor δi,j , with 
s = 1,Nα = 1 , then δi,j =

∑

Ai∈R1,1 e
ipRAi

∑

Aj∈R1,1 e
−ipRAj . These nucleotides are non-periodic and asymmetric 

systems, so the calculation of the scattering spectrum will be done directly by substituting the coordinates of the 
atoms in the nucleotide into the factor δi,j . To calculate scattering spectra we will use the model of independent 
 atoms28, in which molecules are represented by independent isolated atoms. The electron density of such atoms 

(4)

dε

d�k
= [E0n]

2

(2π)2c3
τ
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−∞
|f̃ (x)|2dx
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∑

i=1

Ne,iNA,i(1− |Fi(p0)|2)+
s

∑

i,j=1

δi,j(p0)βi,j(pτ )Ne,iNe,jFi(p0)F
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,
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−∞ |f̃ (x)|2e−ixpτ (RAi−R

A
′
j
)
dx
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ρe,i(r) = Ne,i

4πr

∑3
k=1 Ak,iα

2
k,ie

−αk,i r , where Ak,i ,αk,i are constant coefficients (for all varieties of atoms with number 
i) defined  in28. The result is a simple expression for Fi =

∑3
k=1

Ak,iα
2
k,i

p2+α2k,i
 . Next, we need to determine the form of 

the incident USP, which we choose as a Gaussian form h(t) = e−i(ω0t−k0r)e−α2(t−n0r/c)
2 , where α = 1/τ , 

k0 = n0ω0/c . The Gaussian USP is chosen as one of the best known for describing USP. For example,  in29 an 
exact description of the subcyclic pulse beam (SCPB) was found, where in the case considered in this paper 
( ω0/α ≫ 1 ) the solution has the form of a Gaussian impulse. In the chosen USP case, we obtain 
h̃(ω) =

√
π

α
e−(ω−ω0)

2/4α2 . Consider the case of multi-cycle momentum, i.e., when ω0/α ≫ 1 , which is mainly 
used in diffraction analysis of matter. Using the expression (4) we obtain

Let us show and compare the scattering spectra using the well-known XRD theory (see Eq. (5)) and the theory 
presented here (see Eq. (4)) at τω0 ≫ 1 . On Fig. 2, 3, 4, 5, 6, 7, 8 and 9 shows the results of calculations of USP 
scattering on nucleotides: adenine, see Fig. 2 and for scattering spectra, see Fig. 3; guanine, see Fig. 4 and for 
scattering spectra, see Fig. 5; thymine, see Fig. 6 and for scattering spectra, see Fig. 7; cytosine, see Fig. 8 and for 
scattering spectra, see Fig. 9. The calculation results in all figures are normalized to the maximum value of the 
scattering spectrum. The value is ω0 = 2c , and α = c/4 , which corresponds to the photon energy �ω0 = 7.46 
keV. The choice of intensity USP I ∝ E20 does not affect the spatial distribution of the scattering intensity, so these 
parameters can be omitted (taking into account the chosen normalization to the maximum value of the scattering 
spectrum). All presented figures show the scattering spectra depending on the direction of the scattered USP n . 

(7)
dε

d�k
= [E0n]

2

2c3α
√
2π

[ s
∑

i=1

Ne,iNA,i(1− |Fi(p0)|2)+
s

∑

i,j=1

δi,j(p0)e
− 1

2
(pτ (RAi−R

A
′
j
))2

Ne,iNe,jFi(p0)F
∗
j (p0)

]

Figure 1.  Schematic representation of the main parameters included in the factor δi,j calculated by the 
Eq. (6). Multicolored circles are atoms; one color specifies a certain kind of atoms. If the arrangement of 
atoms in the system is repeated—first, second, etc. up to Nα large circles, this sets the symmetry α , and 
R1,R2, . . . .Rnα , . . . ,RNα are radius vectors setting the position of 1, 2, . . . , nα , . . . ,Nα large circles. For example, 
the symmetry with α = 1 is represented in this figure, and with α = 2 the location, color, number of circles 
inside the big circle, number of big circles, and Rn2 would be different.

adenine z

USP

n0
n

y
x

Figure 2.  The adenine on which the USP falls is represented, as well as the chosen coordinate system. The 
calculation was performed in the spatial orientation of the adenine in relation to the USP in the chosen 
coordinate system shown in this figure.
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It should be added that scattering spectra are often presented in the literature as functions of the wave vector 
p = ω0/c(n − n0) . We will present the scattering depending on the direction of n , since in our theory calcula-
tions there is one more vector pτ = 1

cτ (n − n0) . It is obvious that only the vector n is a variable in scattering, all 
other parameters are specified, so our representation is more convenient. Although it can also be represented in 
terms of the p vector, this will complicate the analysis and interpretation of the results obtained. It should be 
added that there is no point in presenting the results of the calculations in absolute intensity units, because the 
maximum value of the scattered USP can easily be obtained from Eq. (7) and will be 

(

dε
d�k

)

max
= [E0n]

2

2c3α
√
2π

N2 , 

Figure 3.  Scattering spectra of USP on adenine are presented. (a) Contour plot of the normalized scattering 
spectrum calculated using Eq. (4) is shown on the left ( θ is the angle between the n vector and the z axis; φ is 
the angle between the projection of the vector n on the xOy plane and the x axis), and the 3D spatial scattering 
spectrum with a notch from the region where the scattering is most intense is shown on the right. (b) Contour 
plot of the normalized scattering spectrum calculated using Eq. (5) is shown on the left, and the 3D spatial 
scattering spectrum with a notch from the region where the scattering is most intense is shown on the right.

USP

guanine

n0

z
n

y
x

Figure 4.  The guanine on which the USP falls is represented, as well as the chosen coordinate system. The 
calculation was performed in the spatial orientation of the guanine in relation to the USP in the chosen 
coordinate system shown in this figure.
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where N is the number of electrons in the multi-atomic molecule in question. Therefore, it is easier to normalize 
the calculation results to this maximum value, i.e. the figures will show the results of calculations 
(

dε
d�k

)

/

(

dε
d�k

)

max
.

In all presented figures (a) and (b), one can see the same differences in the scattering spectra. First, at suffi-
ciently large scattering angles θ and φ , one can see significant differences in the spectra in all Fig. (a) and (b). This 
is due to the fact that large scattering angles θ and φ are responsible for scattering (more precisely, for diffraction) 
not only between closely spaced atoms in a nucleotide, but also distant from each other. When the atoms are far 
enough apart, the expression e

− 1
2
(pτ (RAi−R

A
′
j
))2 ≪ 1 shows that diffraction does not matter at such interatomic 

Figure 5.  Scattering spectra of USP on guanine are presented. The rest is the same as on Fig. 3.

z
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x

Thymine

USP

n0

USP

n0

Figure 6.  The thymine on which the USP falls is represented, as well as the chosen coordinate system. The 
calculation was performed in the spatial orientation of the thymine in relation to the USP in the chosen 
coordinate system shown in this figure.
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distances. This fact is reflected in figures (a), whose spectra were calculated from Eq. (4). Secondly, at sufficiently 
small scattering angles θ and φ the spectra are close to each other in Fig. (a) and (b). This can be easily explained 
if we see that at small scattering angles the quantity pτ (RAi − RA

′
j) is small, and hence the results of the calcula-

tion by Eqs. (4) and (5) will be close. It should be added that these are the results of calculations at the selected 
parameters of pulse duration τ and carrier frequency ω0 . If you choose ω0 more, the diffraction pattern will be 
more diverse, because in this case there will be more diffraction maxima. If a smaller value of τ is chosen, the 
differences in the calculations of Eqs. (4) and (5) will be more significant, since the parameter βi,j(pτ ) becomes 
more sensitive. The directions of the smaller peaks in all of the figures are complex and are set by the spatial 
arrangement of the atoms in a given molecule. The arrangement of the small peaks is asymmetric, which is due 
to the asymmetric arrangement of the atoms in the nucleotides. One can also see that, in general, the direction 
and size of most of the scattered peaks are located in the direction of the incident pulse.

Figure 7.  Scattering spectra of USP on thymine are presented. The rest is the same as on Fig. 3.

z
n

y
x

Cytosine

USP

n0

Figure 8.  The cytosine on which the USP falls is represented, as well as the chosen coordinate system. The 
calculation was performed in the spatial orientation of the cytosine in relation to the USP in the chosen 
coordinate system shown in this figure.
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Discussion and conclusion
Thus, we obtained a general Eq. (3) for calculations of scattering spectra of USP on complex polyatomic struc-
tures. The main value responsible for the spatial arrangement of atoms in the system is determined by the 
parameter δi,j , calculated by the Eq. (6). In the case of multi-cycle USP Eq. (3) can be represented as Eq. (4), and 
in the case of a multicycle Gaussian pulse, one can represent Eq. (7). The obtained expressions have an analytical 
form, which greatly simplifies the calculations and the interpretation of the results obtained. One important 
consequence of the theory developed here is that it differs significantly from the well-known XRD theory (see 
Eq. (5) for attosecond USPs and polyatomic molecules in the case of multi-cycle pulses. It should be added that 
multi-cycle pulses are currently used for XRD. In other cases, it makes no sense to compare the theory developed 
here with Eq. (5), since it is obvious that in the case of low-cycle pulses the differences will be large. The scatter-
ing, on the nucleotides considered, of the attosecond USP differs from the known XRD theory (see Eq. (5)). This 
is certainly an important result, since the study of DNA and RNA using modern USP sources (e.g., XFELs) is 
one of the most promising areas of science. For systems consisting of a small number of atoms, Eq. (3) must be 
used since the incoherent part in the scattering spectrum makes a significant contribution. This is easily shown 
using Eq. (7) at �0 ≪ 1 , then 

(

dε
d�k

)

max
∼ Ne + N2

e (�0/a)
4 , where a ∼ 1 and Ne is the total number of electrons 

in multi-atomic structures. For �0 ≫ 1 it turns out that 
(

dε
d�k

)

max
∼ Ne + N2

e  . This is an important refinement 
because the incoherent part in the scattering spectra of X-ray USPs is usually not taken into account.

The theory developed here is primarily important for XRD using attosecond pulses and polyatomic molecules 
(various macromolecules, biomolecules, including DNA and RNA, etc.). Because it is in this case that the theory 
presented here differs from the previously known theory of XRD. In the case of multi-cycle and long duration 
pulses (many times more attosecond pulses) and polyatomic molecules, the theory presented here coincides with 
the previously known XRD theory. It should be added that the theory presented here extends to USPs of any 
duration in the X-ray frequency range, with the exception of much shorter than attosecond ones, i.e. the theory 
presented here is correct for pulse duration τ ≫ 1/c2 ( τ ≫ 8.1× 10−21s.).
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