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A machine learning model 
to estimate myocardial stiffness 
from EDPVR
Hamed Babaei1, Emilio A. Mendiola1, Sunder Neelakantan1, Qian Xiang2, Alexander Vang3, 
Richard A. F. Dixon2, Dipan J. Shah4, Peter Vanderslice2, Gaurav Choudhary3,5 & 
Reza Avazmohammadi1,6,7*

In-vivo estimation of mechanical properties of the myocardium is essential for patient-specific 
diagnosis and prognosis of cardiac disease involving myocardial remodeling, including myocardial 
infarction and heart failure with preserved ejection fraction. Current approaches use time-consuming 
finite-element (FE) inverse methods that involve reconstructing and meshing the heart geometry, 
imposing measured loading, and conducting computationally expensive iterative FE simulations. In 
this paper, we propose a machine learning (ML) model that feasibly and accurately predicts passive 
myocardial properties directly from select geometric, architectural, and hemodynamic measures, thus 
bypassing exhaustive steps commonly required in cardiac FE inverse problems. Geometric and 
fiber-orientation features were chosen to be readily obtainable from standard cardiac imaging 
protocols. The end-diastolic pressure-volume relationship (EDPVR), which can be obtained using a 
single-point pressure-volume measurement, was used as a hemodynamic (loading) feature. A 
comprehensive ML training dataset in the geometry-architecture-loading space was generated, 
including a wide variety of partially synthesized rodent heart geometry and myofiber helicity 
possibilities, and a broad range of EDPVRs obtained using forward FE simulations. Latin hypercube 
sampling was used to create 2500 examples for training, validation, and testing. A multi-layer 
feed-forward neural network (MFNN) was used as a deep learning agent to train the ML model. The 
model showed excellent performance in predicting stiffness parameters af  and bf  associated with fiber 
direction ( R2

a
f

= 99.471% and R2

b
f

= 92.837% ). After conducting permutation feature importance 

analysis, the ML performance further improved for bf  ( R2

b
f

= 96.240% ), and the left ventricular volume 

and endocardial area were found to be the most critical geometric features for accurate predictions. 
The ML model predictions were evaluated further in two cases: (i) rat-specific stiffness data measured 
using ex-vivo mechanical testing, and (ii) patient-specific estimation using FE inverse modeling. 
Excellent agreements with ML predictions were found for both cases. The trained ML model offers a 
feasible technology to estimate patient-specific myocardial properties, thus, bridging the gap 
between EDPVR, as a confounded organ-level metric for tissue stiffness, and intrinsic tissue-level 
properties. These properties provide incremental information relative to traditional organ-level indices 
for cardiac function, improving the clinical assessment and prognosis of cardiac diseases.

Alteration of myocardial wall stiffness is known to be a key myocardial remodeling mechanism in many car-
diac diseases, including heart failure with reduced and preserved ejection fraction. Non-invasive techniques 
to assess myocardial stiffness can facilitate early and precise diagnosis of structural heart disease and advance 
patient-specific treatment to reduce the incidence and mortality of heart  diseases1. Cardiac imaging modali-
ties, including cardiac magnetic resonance (CMR) and computed tomography (CT), as well as hemodynamic 
assessment via invasive catheterization and non-invasive echocardiography indices, provide a large amount of 
data primarily describing the cardiac anatomy and function at the organ  level2. These organ-level measurements 
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provide important geometric and boundary condition information required for patient-specific cardiac inverse-
FE modeling to estimate cardiac properties at smaller length scales including tissue and fiber. Despite significant 
advances in such modeling paradigms in the past 10 years, their translation to clinical use remains limited, par-
ticularly due to the exhaustive efforts required to prepare and conduct these models. Therefore, there remains 
an unmet need to create a predictive, yet clinically feasible, modeling tool to infer myocardial properties from 
standard cardiac imaging and functional assessment modalities.

Many early studies of myocardial biomechanics consisted of ex-vivo mechanical testing of fresh myocardial 
tissue to quantify passive behavior of the  myocardium3–5. These studies provided a deep understanding of highly 
nonlinear and anisotropic behavior of myocardial tissues prompting several constitutive modeling efforts to 
effectively capture the passive behavior of myocardium in  3D6,7. The ex-vivo mechanical testing, once conducted 
properly, may serve as “ground-truth” measurements for any in-vivo estimated myocardial properties that often 
rely on integrated imaging-inverse FE modeling to deliver properties in an ideally non-invasive  manner8–12. With 
the goal of estimating passive properties, the inverse problem is often built to minimize the difference between 
the end diastolic pressure volume relationship (EDPVR), measured through catheterization, and the EDPVR that 
is generated through imaged-based FE modeling using pressure-controlled boundary conditions. The minimi-
zation problem involves searching through the constitutive parameter space (using gradient-based13 or genetic 
algorithm methods) and iteratively adjusts the error until the objective function falls below the target error. Such 
an FE inverse problem typically involves the following steps leading to the optimal constitutive parameters: (1) 
reconstruction of the heart geometry using imaging data and meshing, (2) prescription of constitutive modeling 
as the material model, (3) recovering an unloaded state from a known loaded state (e.g. end-diastole)14, and (4) 
setting up a nonlinear optimization problem and iteratively fine-tuning the parameters to matches the target 
EDPVR. As described, the typical pipeline to conduct inverse-FE  simulations15–18 is quite exhaustive, involving 
steps from image segmentation to iterative inverse simulation, and often taking a few days with high-performance 
computing resources to yield the desired results. Expectedly, such computational and processing demands ham-
per the feasibility of this approach in time-sensitive clinical applications.

Recently, machine learning (ML) techniques, particularly deep  learning19, have emerged as a promising 
 tools20–23 to fill the gap between traditional FE simulations and the realization of the inverse modeling approach in 
imaging-driven clinical cardiovascular applications. Several studies to replace FE simulations with ML surrogate 
models have already been conducted for vascular applications. For instance, Liang et al. studied the feasibility of 
deep learning to estimate the steady-state distributions of pressure and flow velocity inside the thoracic  aorta24. 
They also used deep learning to predict the zero-pressure  geometry25 and stress  distribution26 of the human 
thoracic aorta in separate works. In these works, Liang et al. used FE analysis to generate training dataset. Also, 
Liu et al. proposed a multilayer neural networks to estimate in-vivo constitutive parameters of aortic  wall27. The 
application of ML in enhancing patient-specific cardiac modeling has recently gained increased interest as well. 
Dabiri et al. used eXtreme Gradient Boosting (XGBoost) and  Cubist28 as well as feed-forward and a recurrent 
neural network with long short-term  memory29 to predict left ventricle (LV) pressures, volumes and stresses. Cai 
et al.30 developed a ML surrogate model that maps the material parameter features to low-dimensional param-
eterized expressions for LV pressure-volume and pressure-strain relations. Despite these emerging advances 
in synergizing ML and FE cardiac modeling, these studies have primarily focused on demonstrating the feasi-
bility, reliability, and accuracy of ML surrogate models in replacing forward-FE simulations with various ML 
approaches. There remains a critical need to investigate how inverse-FE simulations to estimate patient-specific 
cardiac characteristics, typically the end goal of cardiac modeling applications, could benefit from ML surro-
gate models. Moreover, recent studies have focused on the applications of ML when the heart geometry and/
or microstructure is fixed, while the ultimate need to produce a ML surrogate that could deliver predictions for 
new cardiac anatomy and architecture still remains.

In this paper, we present a novel and feasible ML model to estimate patient-specific myocardial stiffness in 
the LV in-vivo using the LV-EDPVR. The model is intended to replace the costly and exhaustive FE approach 
to predict myocardial properties using the EDPVR as input. We designed and trained our ML model on a large 
and partially synthetic dataset of rodent heart geometry, fiber orientation, and loading response (EDPVR). The 
model is able to predict myocardial properties directly from input features that includes limited information 
about heart geometry, fiber data, and EDPVR. The geometric features were chosen such that they can be easily 
measured using standard CMR and cardiac CT protocols. Rat-specific geometries were used to generate a large 
and partially synthesized database of biventricular examples. A broad range of fiber architectures and mate-
rial properties were created. The Latin hypercube sampling (LHS)31, as a statistical method for generating a 
near-random sample of parameter values from a multidimensional distribution, was used for effective coverage 
of parameter space and avoiding clustered sample points. The EDPVR for each example was computed using 
forward-FE simulations to complete inputs and outputs of our supervised ML model. Relevant parameters for the 
geometry, fiber orientation, and material properties were sampled using LHS. A multilayer feed-forward neural 
network (MFNN) was trained as an inverse model to predict myocardium stiffness as an output given geometric 
features, fiber orientation, and EDPVR as the inputs. The trained and tested ML model was examined further to 
predict myocardial properties for new rodent hearts and compared against rat-specific ex-vivo “ground-truth” 
measurements of the properties. Finally, our ML model was used to predict myocardial properties in a human 
heart with cardiac MRI data.

Materials and methods
Animal models. A total of 25 male rats were used in this study. The group included nine Sprague-Dawley, 
nine Fischer-344, and seven Wistar Kyoto rats. The cohort consisted of healthy rats (n=8), rats with pulmo-
nary hypertension (PH; n=11), and rats with myocardial infarction (MI; n=6). The hypertensive rats were of 
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Sugen5416-hypoxia model of  PH32, and the infarcted rats developed MI via ligation of the left anterior descend-
ing  artery33. All experiments were carried out in accordance with relevant guidelines and regulations as described 
in the Methods section. The surgical and experimental protocols for the MI rats were approved by Institutional 
Animal Care and Use Committee (IACUC) at the Texas heart institute (Protocol 2020-0023). The surgical and 
experimental protocols for the PH rats were approved by IACUC at the Providence VA Medical Center (Proto-
col 2019-009). The methods used for animal research in this study have been reported according to the Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.

Image acquisition and reconstruction. In this study, high-resolution anatomical magnetic resonance 
imaging (MRI) scans were performed on the harvested hearts using a Bruker Biospec 7T (Billerica, MA) scan-
ner. The hearts were fixed approximately at end-diastole  shape5 and the scans were performed at an isotropic 60 
µ m resolution (FOV = 15 × 15 × 20 mm, TR = 40 ms, and TE = 7.5 ms). The segmentation and reconstruction of 
3-D full heart geometry from the MRI scans were performed using the Mimics Innovation Suite (Materialise, 
Leuven, Belgium). Epicardial and endocardial surfaces were isolated from reconstructed geometries to create a 
library of epicardial and ventricular surfaces. Surfaces were used to expand our geometry database for ML train-
ing . All the geometries were truncated below the valve plane and meshed using quadratic tetrahedral elements.

Machine learning model versus FE inverse model. The estimation of myocardial stiffness (as tissue-
level properties) from the EDPVR (as an organ-level input) depends on the geometry of the heart and fiber 
architecture in the myocardium. We propose a ML approach that maps the input space including geometry, fiber 
orientation, and EDPVR features to the output, namely myocardial properties, based on the example input-
output pairs in the training dataset. Contrary to the time-consuming, image-based inverse FE method that, for 
each given heart, needs to be set up and conducted separately to determine myocardial properties, we present 
a ML model trained by FE-produced input-output pairs that can determine the myocardial properties for each 
new heart in a split second only through limited, and commonly available, input data on geometry, fiber orienta-
tion, and EDPVR.

The workflow for our proposed ML approach has two main parts (Fig. 1): (i) creating a complete input and 
output space (left panel in Fig. 1), and (ii) using MFNN as a deep learning agent to train ML on sampled input-
output pairs (right panel in Fig. 1). The creation of geometry, architecture, and EDPVR input space is described 
in detail in the “ML input features and sampling” subsection and the MFNN training and testing is detailed in 
the “Deep learning model” subsection. Here, it is important to note that we advantageously trained our ML 
inverse model on forward-simulated FE input-output pairs without solving an inverse FE problem. Indeed, myo-
cardial properties were first considered as “known” input to create EDPVR on sampled (geometry, architecture, 
myocardial properties space). After sampling and creation of all the required EDPVR curves using forward FE 
simulations, each calculated EDPVR was grouped with their respective geometric and architectural counterparts 
and the corresponding properties were taken as output to produce proper input-output examples for ML for 
supervised learning. The myocardial properties parameter space (output space) and geometry, architecture, and 
EDPVR database (input space) are described next.

Figure 1.  The flowchart for traditional inverse FE approach versus the proposed ML approach.
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Myocardial material properties. The myocardium is an anisotropic soft tissue exhibiting a nonlinear 
and exponential-like stress-strain behavior within the physiological range of deformation. It is often modeled 
as a hyperelastic incompressible solid characterized by the stored energy function �(C) with C being the right 
Green-Lagrange strain tensor. A reduced version of structurally based constitutive model proposed by Holzapfel 
and  Ogden34 was considered in this work representing the myocardium as a transversely isotropic solid with the 
local preferred direction f035. The resulting energy function thus takes the form

where a, b, af  and bf  are four positive material constants, a and af  have stress dimension whereas b and bf  are 
dimensionless. Also, the kinematics I1 and I4f  are defined as I1 = tr C and I4f = f0·(C f0) which are intended 
to capture the deformation in the ground matrix and along the myofiber direction, respectively. Using standard 
notation, the resulting Cauchy stress tensor, defined as σ = F ∂ψ/∂F− p I , is given by

where p is the hydrostatic pressure, B = F F
T is the left Cauchy-Green tensor, F is the deformation gradient, 

f = F f0 , and I is the identity tensor. The incompressiblity constraint J = det F = 1 is enforced.
Our pilot inverse-FE estimation of the constants {a, b, af , bf } from EDPVR indicated that a and af  , represent-

ing the ground matrix and fiber stiffness, respectively, have a strong correlation and make, quantitatively differ-
ent, but qualitatively similar contributions to the EDPVR (an example is detailed in the “Myocardial parameter 
identifiability”) subsection. Such correlations were noted in previous  studies2,8,36 considering the full version of 
the H–O model and addressed by (independent) parameter reduction.

Therefore, to improve parameter identifiability in our inverse problem and, given our interest in estimating 
myofiber properties and a low contribution of the ground matrix to myocardial mechanical  behavior37, we set 
a = 0.22 kPa and b = 1.62 as reference values for the ground matrix in healthy LV  myocardium30,38 and let {af , bf } 
to be the only material parameter variables in this work. Indeed, our preliminary inverse model studies verified 
that {af , bf } can be uniquely calculated using an EDPVR input.

ML input features and sampling. Our input space consisted of EDPVR, geometry, and architecture 
(Fig. 2). Using LHS for sampling, we produced 2,500 input-output examples. In the following subsections, geom-
etry and architecture input spaces and their respective features are separately discussed followed by the details 
of our sampling method and the generation of EDPVR curve to be used as input along with the geometry and 
architecture.

(1)� =
a

2b
exp[b(I1 − 3)] +

af

2bf
{exp[bf (I4f − 1)2] − 1}

(2)σ = a exp[b(I1 − 3)]B− p I+ 2af (I4f − 1)exp[bf (I4f − 1)2]f ⊗ f

Lo
ad
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g 

(E
D
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R

)

2,500 examples were created in 
Geometry-Architecture-Loading
input space for training and 
testing the ML model.

Variations 
in EDPVR

Figure 2.  ML model feature space including geometry, fiber architecture, and loading (EDPVR).
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Geometry database and feature extraction. Each of 25 MRI-based reconstructed geometries, referred to as “par-
ent” hearts, were used to create additional geometries via resizing the LV and right ventricle (RV) endocardial 
surfaces (Fig. 3) using an automated workflow. The chambers were resized isotropically in X-Y plane while main-
taining the center of area on the base (truncated) plane. The epicardial surface was kept fixed in each “parent” 
heart. The resizing factors, denoted by constants fLV and fRV for the left and right ventricles, respectively, were 
obtained using LHS discussed in the “Sampling method: LHS” subsection. Our automated workflow led to the 
creation of 2,500 different geometries.

The role of heart geometry is significant in the estimation of myocardial properties from an organ-level meas-
urement (i.e., EDPVR) and any proposed geometric features should capture this role. Moreover, motivated by 
clinical applications of the proposed ML, the geometric features need to be compatible with the routine in-vivo 
scanning protocols of the heart using common cardiac imaging modalities, including CMR, CT, and echocardi-
ography. Given these considerations, we propose to begin with the following 12 features for the geometry (Fig. 4): 
volume and endocardial area of the LV chamber, denoted by LVV and LVA , volume and endocardial area of the 
RV chamber, denoted by RVV and RVA , the area of six, equally-spaced, short-axis slices from the base plane 
towards the apex, denoted by SA1 to SA6 with SA1 denoting the basal slice, and finally the interior volume and the 
area of the epicardial surface, denoted by EpiV and EpiA . These features were designed to be feasibly acquired via 

1 25N

N1 N2 N3 N100

X
YZ

25 MRI-based reconstructed rodent hearts from normal, PH, and MI groups

100 additional anatomies were created from each rodent heart by resizing the LV and RV chambers

Figure 3.  Creation of partially synthetic heart geometries using MRI-based reconstructed biventricular hearts.

Figure 4.  Geometric features: Volume and endocardial area of the LV ( LVV and LVA ), volume and endocardial 
area of the RV ( RVV and RVA ), interior volume and area of the epicardial surface ( EpiV and EpiA ), and the area 
of six, equally-spaced, short-axis slices ( SA1, SA2, ..., SA6).
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CMR acquisitions. We calculated these features using reconstructed geometries; however, they can be calculated 
using only segmented slices reducing the post-processing needed to quantify the geometric features.

Fiber architecture. All the geometries were meshed and fiber orientations were assigned to each FE model using 
Laplace-Dirichlet rule-based  algorithm39. The algorithm involves solving several Laplace-Dirichlet boundary 
value problems to determine the relative depth of each tetrahedral element and its local material axes within the 
myocardial wall. All the myocardial walls in our anatomies were divided to four depths (layers) and each layer 
was assigned a scalar identifying its fiber orientation relative to the circumferential direction. The fiber helicity 
was assumed to linearly turn from a positive value at endocardium towards a negative value at epicardium. Posi-
tive and negative angular values within (−π/2, π/2) at endo- and epicardium, denoted by θendo and θepi , respec-
tively, were chosen as two features characterizing myocardial architecture. All possible values were considered 
(given the sign constraint at endo- and epicardial surfaces) in LHS sampling.

Sampling method: LHS. LHS31 was used to generate a near-random sample of parameter values from a mul-
tidimensional distribution. LHS can effectively avoids issues associated with points being clustered together, 
occurring in other commonly used sampling methods such as grid sampling or uniform sampling. Briefly, sam-
pling for six features fLV , fRV , θendo, θepi , af , bf  , the range of each each was divided into 2,500 equally probable 
intervals. Next, 2,500 sample points were chosen to satisfy the Latin hypercube constraint preventing any two 
sample points to share the same feature. That is, all the 2,500 examples had different geometric, architectural, and 
loading features. In this study, out of 2,500 samples chosen by LHS, 2,400 examples were used for training and 
validation and the remainder for testing.

As mentioned in the “Machine learning model versus FE inverse model” subsection, LHS was applied to the 
(geometry, architecture, myocardial properties) parameter space, and the resulting samples were used to generate 
EDPVR curves. In turn, the generated data were re-grouped to produce desired input-output (geometry, archi-
tecture, EDPVR - myocardial properties) pairs for ML training. The limits of introduced features for sampling 
were set as 0.7 < fLV < 1.6 , 0.7 < fRV < 1.6 , 0◦ < θendo < π/2 , −pi/2 < θepi < 0◦ , 0.01 < af < 100 (kPa), and 
0.01 < bf < 20 . The resizing factors ranges were chosen to ensure the LV and RV resizing without the intersec-
tion of surfaces. The fiber angles ranges assured a negative helical slope from endocardium to epicardium. And, 
the ranges for myocardial properties were chosen to produce a wide variety of EDPVR possibilities based on 
EDPVR examples in Klotz et al.40.

EDPVR. The EDPVR was used as the input to estimate passive properties of the myocardium. The EDPVR 
was calculated for each sampled geometry-architecture-properties using forward FE simulations in ABAQUS 
(Simulia, Providence, RI, USA). The basal surface was fixed in the long-axial direction (Z). A linearly ramped 
pressure from 0 to 30 mmHg was applied to the LV endocardial surface with 100 equal loading steps. The pres-
sure in the RV was considered to be 20% of LV pressure. The volume of the LV chamber was recorded in each of 
the 100 loading increments, and the recorded points served as 100 EDPVR features.

Deep learning model. The proposed machine learning task in this study is a supervised learning regression 
problem for which a strongly nonlinear relation between input features and the output is expected. Although 
several regression methods such as regular nonlinear regression, decision-tree ensembles e.g. XGBoost, and 
K-nearest neighbour (KNN), could be used for this problem, the multilayer perceptron method MFNN was 
chosen for the following three reasons: (i) our hybrid image-based-synthetic dataset includes several thou-
sands examples identifying as a large dataset for which deep learning algorithms are known to outperform most 
machine learning  methods41, (ii) deep learning has proven as an effective tool to identify very complex nonlinear 
relationships between input and  outputs42 compared to most machine learning methods, and (iii) deep learn-
ing offers thorough and automated feature engineering serving as a crucial step in developing effective machine 
learning models. Concerning the last point, feature engineering is performed manually in traditional machine 
learning methods, excessively depending on the knowledge of domain experts, whereas neural networks benefit 
from intrinsic automated feature engineering capability through automatically transforming the original fea-
tures into a set of new  features43.

Since our data to be learned is neither sequential nor time-dependent, a MFNN was used as a nonlinear 
supervised learning module. That is, information travels forward through the perceptron units in the network (no 
loops are permitted) to compute a nonlinear function f on fixed-size input x such that f (x) ≈ y for training pairs 
(x, y) . Each perceptron unit with n-dimensional input z and n-dimensional weight w and bias b, and activation 
function g(u) has a 1-dimensional output o = g(w.z + b) . The input layer had 114 units which includes 12 geo-
metric features, two fiber orientation features, and 100 EDPVR features (volume values collected at 100 equally 
spaced points on EDPVR). We used two hidden layers with 512 units, and finally the output layer representing 
the two material properties {af , bf } . TensorFlow version 2.4.0 was used as the deep learning training library.

Error estimation and cross-validation. The inputs were standardized removing the mean and scaling to unit 
variance, however, outputs were normalized using the maximum absolute value of each dimension. These 
choices were based on our preliminary explorations of the normalization and the prediction assessment. After 
training, the predicted material properties were rescaled to their original range. We used mean absolute error 
(MAE) as the loss function, defined as
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where ȳ and ˆ̄y are actual and predicted normalized material parameters, respectively, and n is the number of 
data points (input-output pairs). The subscript i denotes the ith material parameter and superscript (j) is the 
index for input-output pair.

The discrepancy between actual and predicted material parameters are quantified by normalized mean abso-
lute error (NMAE). The NMAE of the ith material parameter is defined as

We also calculated the coefficient of determination, R2 , as

Adaptive moment estimation (Adam) method was used for the optimization. The rectified linear unit (ReLu), 
g(x) = x+ = max(0, x) , was used for the activation function. The ML model was trained on training/validation 
dataset and the trained ML model was used to predict the material parameters in the testing dataset. We used 
2,400 examples for training and validation dataset, and 100 examples for testing dataset.

Performance of the deep learning model was evaluated using a ten-fold cross-validation approach. In each 
step of the cross-validation, 90% of training/validation data points were randomly selected as the training data 
and the remaining 10% were used for validation. Number of layers and units in each layer were adjusted in the 
ranges of 1 to 3 and 64 to 1,024, respectively, to minimize the average NMAE in the cross-validation step. To 
prevent overfitting, early stopping was performed to secure optimized results at epochs with minimum validation 
error. In the cross-validation step, 2,000 epochs were performed with 0.0001 learning rate, and 10,000 epochs 
were performed for final training and predictions on testing dataset, once the network structure was tuned.

Comparisons with ex-vivo mechanical test measurements. To further evaluate our ML model, we 
compared the myocardium stiffness predicted by ML for one new healthy male rat heart against the ground-
truth stiffness obtained from ex-vivo equibiaxial tension test of the harvested LV free wall (LVFW) specimen. 
Short-axis echocardiography images was performed using a Philips iE33 Echocardiography machine (Bothell, 
WA,98021, United States) with a S12-4 transducer (12 MHz). Rat-specific pressure-volume (P-V) measurements 
were obtained at the terminal point using a rat-size P-V catheter (1.4F, Millar Instruments Inc., Houston, Texas). 
Geometric features were approximated from the combination of short-axis images and catheter-based volume 
measurements (Supplementary Fig. 1). Following a similar approach as in Klotz et al.40, the EDPVR data was 
generated using (PED , VED) data point obtained from the P-V loop. Briefly, a universal EDPVR curve was cre-
ated using 2,500 training examples in the “ML input features and sampling” subsection using the normalization 
approach described in Klotz et al.40 (Supplementary Fig. 2). The universal EDPVR was used to generate the indi-
vidual EDPVR for the new rat using (PED , VED) . The transmural fiber orientation was measured using histological 
sectioning parallel to the epicardial surface. The angles at four depths were quantified as 1.06◦,−12.88◦,−20.31◦ , 
and −21.48◦ in the LVFW from endo- to epicardium, respectively (Supplementary Fig. 3). Equibiaxial tension 
test along longitudinal and circumferential directions was used to characterize the in-plane mechanical behavior 
of the  LVFW44. The trace of the first Piola-Kirchhoff (1st PK) stress tensor P , i.e., P11 + P22 where P = J σ F

−T , 
measured from biaxial tests as the function of the stretch was fit to the respective stress expression using Eq. 
(2), and doing appropriate algebra, to calculate the constants {af , bf } with a = 0.22 kPa and b = 1.62 being kept 
constant as before. The ML model predictions for {af , bf } were obtained using the quantified geometric features, 
fiber orientations, and the EDPVR, and compared against {af , bf } obtained using equibiaxial testing.

Application to human heart. We used input from a human heart and compared the predictions of the 
trained ML model for myocardial properties against those from an inverse FE simulation. The data belonged to a 
patient with mitral valve prolapse (MVP) and mitral valve regurgitation. Cine CMR scans were acquired using a 
3.0-T clinical scanner (Siemens Verio; Siemens, Erlangen, Germany) with phased-array coil systems. A standard 
CMR examination for mitral valve assessment consisted of a cine-CMR for anatomic and functional assessment 
in a short axis stack using a steady-state free-precession sequence with typical flip angle of 65-85 degrees; repeti-
tion time of 3.0 ms; echo time of 1.3 ms; in-plane spatial resolution of 1.7–2.0 × 1.4–1.6 mm; slice thickness of 
6 mm with 4 mm interslice gap; and temporal resolution of 35–40 ms. CMR scans were used to reconstruct the 
heart geometry at ED (Fig. 5a).

The geometric features (Fig. 4) were quantified from the reconstructed anatomy. Since diffusion tensor imag-
ing was not performed for the subject, the fiber orientation angles were set to +60◦ and −60◦ at endo- and epicar-
dial surfaces, respectively, and vary linearly in between, as typically assumed in cardiac modeling of the human 
 heart45. The EDPVR curve was obtained using the Klotz-like universal curve discussed in the rodent example 
(Supplementary Fig. 2) and the P–V data point at ED. The volume at ED was estimated from the reconstructed 
anatomy and PED = 18 mmHg was used for the pressure reported as a mean value for the ED pressure in the LV 
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(j)
i

)2

∑n
j=1

(

y
(j)
i − ỹi
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in MVP  patients46. The resulting EDPVR together with geometric and architectural features were used in the 
ML model to predict myocardium material properties. For comparison purposes, the properties were predicted 
using the commonly used inverse FE method and the Levenberg-Marquardt algorithm for optimization (Fig. 5b). 
A negative PED was applied to approximate the unloaded geometry.

Feature importance. Finally, the permutation feature importance  technique47 was used to study the sen-
sitivity of our ML model predictions of myocardial properties to different features. This technique serves as a 
model inspection method that can be used for any fitted estimator of tabular data. This approach is useful, par-
ticularly, for non-linear or opaque estimators such as MFNN. The permutation feature importance is quantified 
by the decrease in a model score (MAE) when a single feature value is randomly shuffled. This procedure breaks 
the relationship between the feature input and the true output, thus the drop in the model score is indicative of 
how much the model depends on the feature. The permutation feature importance is calculated many times with 
different permutations of the feature.

We used scikit-learn 0.24.2 library for the permutation importance. The technique is described in detail in 
Breiman et al.47, and a brief outline is provided here. The inputs used to calculate the feature importance are 
the trained ML model m and the tabular dataset (training/validation) D. The technique computes the reference 
score s (MAE) of the model m on data D. Next, for each feature fj (column of D) and for each repetition k (in 
1,...,K), it randomly shuffles column j of dataset D to generate a corrupted version of the data named D̃k,j . Next, 
it computes the score sk,j of model m on the corrupted data D̃k,j . Finally, the importance ij for the feature fj is 
calculated as ij = s − 1

K

∑K
k=1 sk,j . It is worth noting that features with low importance outcome for a model 

with a poor predictive power could be very important for a model with a high predictive power and vice versa. 
Therefore, we compute importances for the final structure once the best prediction power is reached. The results 
were in the same range when performed on training or validation datasets. Lastly, we note that permutation 
importance reflects how important a given feature is for a particular predictive model and may significantly vary 
from one model to another.

Results
Myocardial parameter identifiability. The correlations between the constitutive parameters model in 
Eq. (1), in the context of parameter estimation from EDPVR only, was examined first to select constitutive 
parameters with minimal correlations for optimization and preemptively eliminate potential identifiability 
issues in the ML model. A rat-specific anatomy with animal-specific diffusion-tensor-imaging-based architec-
ture was used to conduct inverse FE optimization (Fig. 6a). An EDPVR curve was generated using the Klotz 
universal  curve40 and the animal specific P-V data point ( VED = 140.5 µl , PED = 20 mmHg ) was used. Several 
preliminary FE inverse studies were performed to identify constitutive parameters with strongest correlations. A 
representative study showed a strong correlation between a and af  (Fig. 6).

The target EDPVR was reached through multiple iterations using two different sets of initial guesses for 
{a, af } far apart in the parameter space (Fig. 6a). Despite distinctively different initial conditions, both optimiza-
tions successfully fit the target EDPVR with minimal errors (Fig. 6b). Expectedly, the optimizations predicted 
two completely different value sets for {a, af } pairs: (11.677, 0.673) kPa versus (3.101, 88.707) kPa (Fig. 6b). 
This observation implied that a and af  could have very similar effects on the EDPVR and can not be uniquely 
determined using an EDPVR curve if taken as variable. On the contrary, the optimization with {af , bf } being 
set to vary (and a and b being constant) consistently led to a unique estimation of {af , bf } through fitting to the 
EDPVR for a broad range of different initial conditions. af  and bf  found to have their dominant effects on the 
overall stiffness and toe-region of the EDPVR, respectively, hence, contributing differently to the EDPVR. Given 
this observations, af  and bf  were chosen as material properties features for the ML model. {a, b} were kept as 
described in the “Myocardial material properties” subsection for the remainder of our results.

EDPVR variation. A comprehensive database of the LV-EDPVR curves was generated (Fig. 7) by consider-
ing 2,500 combinations of geometry, fiber orientations, and material properties, selected by LHS as described in 

Figure 5.  Application of the ML model to human heart: (a) anatomy reconstruction at ED using CMR scans 
(b) a representative displacement field generated in the inverse FE problem.
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the “ML input features and sampling” subsection. The range of resizing for heart geometries were chosen such 
that the initial LV volume ( V0 ) varies from ∼ 35 µ l up to about five times larger (Fig. 7), a range similar to the 
that of EDPVR curves studied in Klotz et al.40. The range included a broad range of soft to stiff LV chambers, as 
well as LV chambers with a short toe region to chambers with fibrotic myocardium, extending the toe-region, to 
severely diluted chambers, all enabled through changing {af , bf } , fiber orientation, and the geometry.

MFNN network structure. We began with a single hidden layer with 64 units and iteratively changed the 
number of layers and units to find the optimal structure. Performance of different networks are summarized in 
Table 2 reporting MAE, NMAE, and R2 scores for each examined structure. We found that a network with two 
hidden layers, each containing 1024 units, provides the best prediction, and it was chosen as the final structure. 
The MAE loss function for training and validation monotonically decreased with training epochs confirming 
that data was not over-fitted (Fig. 8), despite the fluctuations which are inevitable consequences of stochastic 
approach of mini-batch gradient descent in Adam (batch size=32). The model with the lowest validation loss was 
picked for predictions in testing dataset.

ML model prediction and performance. Given the input features for the geometry, fiber orientations, 
and EDPVR, the trained ML model was able to predict the myocardial properties {af , bf } within one second on 
a PC with 2.8 GHz quad core CPU and 32 GB RAM. Prediction errors for testing dataset with final MFNN net-
work structure and 10000 epochs showed low and acceptable errors in prediction (Table 1) using examples in the 

Figure 6.  Constitutive parameter identifiability issue with using EDPVR as the target: (a) inverse FE model 
iterations to fit an example EDPVR starting from two different initial guesses for {a, af } (b) Resulting fits at 
the final iteration leading to different values for {a, af } with equally good fits. Parameters b = bf = 5 were kept 
constant during the optimization.

Figure 7.  Representative EDPVRs (100 out of 2500) in ML training dataset resulting from a wide variety of 
heart geometries, fiber orientations, and myocardial stiffness.

Table 1.  ML prediction errors for testing dataset with final MFNN network structure and 10000 epochs.

MAE NMAE, % R2 , %

af 1.326 (kPa) 1.336 99.471

bf 0.963 5.008 92.837
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testing dataset that were not present in the training dataset. The actual versus predicted material parameters for 
training/validation and testing dataset for af  (Fig. 9a) and bf  (Fig. 9b) indicated excellent agreements between 
ML predictions for both material parameters and their respective actual values. Predictions for af  were consist-
ently better than that of bf  ( R2

af
= 99.5% vs. R2

bf
= 92.8% ; calculated for testing dataset). This is likely due the 

Figure 8.  MAE loss function for training and validation datasets as a function of epochs.

Table 2.  Averaged MAE, NMAE, and R2 scores for two properties af  and bf  with respect to network structure 
in ten-fold cross-validation (2000 epochs). The 2 × 1024 structure had the best prediction and was used in the 
ML model.

Network structure MAE NMAE, % R2, %

Hidden layer × unit af  (kPa) bf af bf af bf

1× 64 6.991 3.125 7.035 16.101 88.387 49.855

1× 128 7.258 3.083 7.320 15.557 87.377 53.843

1× 256 5.852 3.142 6.069 15.953 88.761 52.704

1× 512 5.553 2.740 5.664 13.863 91.943 63.438

1× 1024 5.444 2.353 5.523 11.857 91.120 67.213

2× 64 5.193 2.627 5.219 13.335 93.749 68.647

2× 128 3.100 2.073 3.152 10.765 97.606 74.895

2× 256 2.499 1.708 2.550 8.645 98.426 84.317

2× 512 2.214 1.281 2.228 6.486 98.395 89.331

2× 1024 1.755 1.084 1.786 5.558 99.214 91.481

3× 64 4.505 2.225 4.613 11.164 94.505 75.674

3× 128 2.498 1.572 2.614 8.002 97.754 84.299

3× 256 1.958 1.238 1.981 6.350 98.888 89.948

3× 512 2.313 1.324 2.343 6.742 98.388 88.298

3× 1024 2.542 1.767 2.568 9.048 97.764 75.940

Figure 9.  Actual and predicted values of myocardial properties: (a) af  (b) bf  . Training/validation and testing 
datasets included n=2400 and n=100 sample points, respectively.
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fact that the constant bf  has a more dominant effect of the curvature of the input EDPVR for which the ML 
model need to learn the slope of EDPVR at several points whereas af  uniformly scales the EDPVR curve and can 
be predicted with a fewer points of the EDPVR.

The ML-predicated myocardial properties for the best and worst predictions in terms of the MAE error in 
the entire testing dataset (Table 3) were used in forward FE simulations passively pressurizing the LV up to 30 
mmHg (using respective geometries and fiber orientations). The resulting maximum stresses (along the fiber 
direction) in the LVFW as a function of fiber stain were compared against the corresponding quantities obtained 
using actual properties used as the input for testing (Fig. 10). The comparisons indicated that even the fiber stress 
(that is regarded as an important mechanical stimuli in regulating myocardial remodeling) associated with the 
worst predicted myocardial properties can still fit the actual stresses very well with R2 > 99.9% (Fig. 10). This 
observation partly stems from the fact that af  and bf  are somewhat correlated meaning that {af , bf } pairs with 
different individual values can still produce similar myocardial stress behavior, and that the ML model precisely 
reflects this feature of the material model. Therefore, the ML model performance can be still trusted for worst 
cases if the fiber stress is the indented target and not individual stiffness parameters.

ML prediction comparisons with equibiaxial test results. Experimental and ML-predicted prop-
erties af  and bf  were in very good agreement with the corresponding properties obtained from equibiaxial 
experiments (Table 4). The equibiaxial stress measure ( P11 + P22 ) obtained using ML predicted parameters and 
P = J σ F

−T formula, was in excellent agreement with the corresponding stress measure from equibiaxial exper-
iments (Fig. 11), indicating that ML parameters predicated from an organ-level measurement (EDPVR) can well 
describe tissue-level passive stress-stretch relation of myocardium.

Table 3.  Predicted and actual values of myocardial properties for the best and worst predictions of af  and bf  in 
the testing dataset (n = 100).

af bf

Worst af
Actual 86.221 6.660

Predicted 72.909 11.411

Best af
Actual 38.005 8.960

Predicted 37.995 8.870

Worst bf
Actual 85.771 2.990

Predicted 85.020 8.130

Best bf
Actual 92.815 17.450

Predicted 95.160 17.434

Figure 10.  Maximum fiber stress in the LV free wall obtained by forward FE simulations using the predicted 
properties versus actual properties for the worst predictions listed in Table 3.

Table 4.  ML model prediction of rat-specific myocardial properties compared to estimates from ex-vivo 
equibiaxial testing of the LVFW myocardium specimen for the same rat.

Rat case study af (kPa) bf

Equibiaxial test 0.806 0.470

ML model 0.583 0.521
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ML prediction for human example. The predicted values using ML were in good agreement with those 
from the inverse FE modeling (Table 5). The EDPVR generated via forward FE simulation using ML-predicted 
properties fit the input human EDPVR sufficiently well, although poorer than the fit by the inverse FE prediction 
(Fig. 12). The slight disagreement at larger pressures in the EDPVR is hypothesized to be due to using a (human) 
patient-specific heart geometry while all the training geometries were from rodents. This discrepancy can be 
certainly addressed by enriching our training database with anatomical data from large animal and humans.

Feature importance. The results of our permutation feature importance studies indicated that the volume 
of the LV had the highest importance score among all the geometric features followed by the endocardial area 
of the LV (Fig. 13a). Other geometric features, including surface areas of short-axis slices, exhibited minimal 
importance in the predictive power of the ML model (Fig. 13a). The fiber orientation features were found to be 
important as well, although expectedly with lower scores compared to those of LV volume and area (Fig. 13a). 
However, EDPVR features, particularly EDPVR points within the bottom and top 10% of the pressure range, 
had the largest importance score, even up to more than two times larger than LV volume. The relatively higher 
scores for the low and high pressure regimes in the EDPVR expectedly implies that these portions of the curve 
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Figure 11.  Stress-stretch response of rat LVFW myocardium under equibiaxial testing. The corresponding 
response predicted by the ML model is included for comparison.

Table 5.  ML model prediction of myocardial properties for the CMR-reconstructed human heart compared to 
the inverse FE model estimations.

Human case study af (kPa) bf

Inverse-FE 34.261 11.275

ML model 33.492 12.501

Figure 12.  Comparisons between ML model and inverse FE model fits to the target EDPVR. The EDPVR was 
generated using Klotz’s approach and patient-specific imaging data for a mitral-valve prolapse (MVP) patient. A 
population average end-diastolic pressure for MVP patients was used to generate the target EDPVR.
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are critical to reliably estimate the properties af  and bf  , representing the overall stiffness and the curvature of 
the EDPVR.

To further investigate the implications of the feature importance study for the relative importance of geomet-
ric features, we removed all the geometric features from the 2,500 example dataset except the LV volume and 
area. A final MFNN network structure with the same hyper-parameters was trained using the updated dataset. 
Removing the non-contributing or redundant geometric features (i.e., those with low importance score) and 
reducing them to LV volume and area significantly improved the predictive capability for bf  and slightly reduced 
the errors for af  as well (Tables 6 versus 1).

We performed a permutation feature importance study for the updated ML model as well (Fig. 14). Contrary 
to the results of the feature importance study for the previous ML model (Fig. 13) (that included all the geometric 
features), LV area found to have the highest important score for the updated model followed by LV volume and 
fiber orientation features, respectively. This is an important observation implying that the LV area is a very criti-
cal geometric feature in the absence of short-axis slice features whereas the LV volume was a more important 
geometric feature once the short-axis slices were present in the training dataset. EDPVR feature importance 
maintained a similar pattern in the updated model (Fig. 14b) with the highest importance score occurring at 
low and high pressure ranges. All considered, the LV volume, the LV area, the fiber angles at epi- and endocar-
dial surfaces, and the EDPVR points were found to be sufficient to predict af  and bf  as myocardial properties.

Figure 13.  Permutation feature importance results for (a) geometric and fiber orientation features and (b) 
EDPVR features. EDPVR features consisted of 100 LV volume data points corresponding to the LV pressure 
values ranging from 0 to 30 mmHg with a fixed increment.

Table 6.  Improvement of ML prediction errors after removing geometric features with low “importance” score 
and using the LV volume and endocardial surface area as the only geometric features.

MAE NMAE, % R2 , %

af 1.241 (kPa) 1.258 99.679

bf 0.711 3.598 96.240

Figure 14.  Permutation feature importance results, after removing geometric features with low “importance” 
score, for (a) remaining geometric and fiber orientation features and (b) EDPVR features. EDPVR features 
consisted of 100 LV volume data points corresponding to the LV pressure values ranging from 0 to 30 mmHg 
with a fixed increment.
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Discussion
In this paper, we developed a ML model for patient-specific in-vivo estimation of myocardial stiffness from 
EDPVR and demonstrated its high accuracy. To the best of our knowledge, this is the first study in which a ML 
model was used as a surrogate for the entire inverse FE process to identify myocardium material properties. The 
proposed trained ML model was evaluated on a testing dataset not used for training/validation. Minor discrep-
ancies (with NMAE about 1% to 3.5%) were achieved between the actual and ML-predicted myocardial proper-
ties. It was further verified that even for the worst prediction cases, the fiber stress obtained with ML-predicted 
parameters can fit the actual stresses with high accuracy ( R2 > 99.9% ). Furthermore, in addition to the feasibility 
of the ML model for clinical application, the model exhibited a strong predictive power in our evaluation against 
two subject-specific measurements not included in training/testing data. The myocardial properties predicted by 
the model for rat-specific data were in excellent agreement with those estimated from ex-vivo equibiaxial testing 
of the rat-specific LVFW specimen. The ML model trained using rat heart geometries was still able to predict the 
myocardial properties for a human heart reasonably close FE inverse mode estimation.

The identification of cardiac tissue-level properties from organ-level measurement are commonly addressed 
using inverse FE  methods5,8,9,11. However, the time-consuming procedures involved in these methods, ranging 
from geometry reconstruction and meshing to iterative FE simulations needed for optimization, significantly 
limits their efficiency and hampers their use in time-sensitive clinical applications. On the contrary, the pro-
posed ML model, trained on the FE simulation, offers the estimation of myocardial properties directly from 
geometric, architectural, and EDPVR features that could be feasibly calculated from CMR or CT acquisitions 
and hemodynamic assessment without the need to advanced computational infrastructure such as FE solvers. 
It is worth noting that forward FE simulations used to generate training/validation and testing datasets took 
several days using Abaqus solver on high-performance computing  clusters48,49 whereas the trained ML model 
makes predictions within one second.

The geometric features were designed to be compatible with standard cardiac imaging protocols acquiring 
heart geometry on short-axis planes that are perpendicular to the LV long axis. The features can be exactly 
calculated from reconstructed geometry, or approximated directly from CMR DICOM images using existing 
automatic segmentation tools. Some of the features, including LV volume, can be alternatively obtained using 
echocardiography-based or catheter-based hemodynamic assessment. The EDPVR can be estimated via the Klotz 
approach by a single-point measurement (typically, the LV pressure and volume at ED). These features can then 
be used as an array of inputs to the trained and ready-to-use ML model to predict the two output myocardial 
properties.

Once the ML model is trained, it can be used to make predictions instantaneously and repeatedly. This enables 
the in-vivo and real-time estimation of patient-specific myocardial properties and offers the inclusion of these 
properties as tissue-level biomarkers. Such biomarkers provide important information incremental to organ-level 
measurements (including routine CMR and hemodynamic assessments) and ultimately enhancing the prognosis 
in heart diseases involving myocardial remodeling. While EDPVR is a measurement of “chamber” stiffness that 
contains information about tissue-level behavior, it is confounded by anatomy and loading. Our ML inverse 
model is able to deconvolute the effects of anatomy and loading and estimates intrinsic myocardial properties.

One of the important aspects of our work was to account for the effect of anatomy on the myocardial stiffness 
prediction and include a wide variety of anatomical characteristic features in our datasets encapsulating both 
morphology and size of the heart chambers. Our feature importance analysis, indeed, confirmed the importance 
of geometric features, particularly, LV volume and LV endocardial area, in estimating myocardial properties. 
Moreover, a broad range of possibilities in transmural fiber orientation variation were included in the training. 
Again, permutation feature importance technique underscored the knowledge of fiber distribution for predicting 
myocardial properties although the fiber data was found to be less significant compared to geometric features. 
Overall, our procedure identified the geometric and architectural information that are sufficient to estimate 
subject-specific myocardial properties from chamber-level pressure-volume measurements.

Our ML model is not tied to a particular form of the constitutive model for myocardium. The ML learning 
can be trained on the full H-O model including additional terms characterizing the behavior of the tissue in sheet 
directions and the coupling with the fiber direction. However, this will lead to an over-parameterized inverse 
model problem if EDPVR is the only given information on the organ-level loading response. Indeed, EDPVR 
reflects the chamber behavior under monotonic pressurization (which is only a specific loading condition in 
the entire loading space), and therefore, the number of myocardial properties that could be estimated from 
EDPVR remain limited. This constituted our rationale to reduce the parameters to {af , bf } to minimize potential 
parameter identifiability issues stemming from different sets of parameters producing similar EDPVR curves. 
The identification of additional parameters will be possible by including myocardial response under other load-
ing conditions. Potential in-vivo data includes myocardial strain measurements using cine CMR or cardiac CT 
together with catheter-based intra-ventricular pressure measurements, and examples of ex-vivo inputs includes 
myocardial stress-strain data under various multi-axial loading conditions. However, given the goal of estimating 
myocardial properties with minimal in-vivo clinical data (e.g., PED and VED ), af  and bf  represent appropriate and 
sufficient parameters characterizing the myocardial in the fiber direction.

The feature importance results consistently indicated that the fiber orientation is an influential input in myo-
cardial properties estimation. This observation is consistent with previous parametric studies investigating the 
effects of fiber orientation on the EDPVR  behavior50. Also, this underscores the importance of current research 
efforts in the development of cardiac imaging protocols to feasibly estimate myofiber orientation, including dif-
fusion tensor imaging and optical coherence tomography. In this regard, our fiber features are only fiber angles at 
endo- and epicardial surfaces, designed for convenience in measurement as diffusion tensor imaging sequences 
are currently able to estimate these features in the left ventricle.
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Limitations of this study included the use of a relatively simple material model with two unknowns ( af  and bf  ) 
that were assumed to be the same everywhere in the biventricular heart. Our objective was to use ML to estimate 
the effective passive stiffness of the myocardium with EDPVR being the only kinematic input. Additional regional 
kinematic inputs, such as cardiac  strains51,52, can be used to estimate higher-fidelity  properties53,54 and consider 
estimating heterogeneous myocardial properties prevalent in myocardial infraction. The synthetically-generated 
part of our biventricular geometry dataset preserve the topology of the original 25 image-based hearts and 
proportionally scale the thickness in the right and left ventricle independently. Additional image-based geom-
etries can improve the heterogeneity of our anatomical dataset and increase the predictive capability of the ML 
model. Despite significant potential of properly-trained ML models for estimating myocardial properties, fully 
patient-specific approaches still remain valuable especially when accounting for all the individual anatomical, 
architectural, and loading data is essential to estimate the properties of interest.

In conclusion, this study has demonstrated that a ML model based on multilayer feed forward neural network 
can accurately predict myocardial properties using routinely available cardiac imaging and hemodynamic meas-
ures and replace computationally-expensive, clinically-unfeasible FE inverse problems. The geometric features 
(including LV endocardial area) can be approximated from segmented cardiac images without the need for full 
anatomical reconstruction. EDPVR and architectural features can be also directly measured from hemodynamic 
assessment and diffusion tenor imaging, respectively. Overall, this study has facilitated the clinical workflow 
to include the mechanical properties of the myocardium as an additional biomarker to traditional organ-level 
indices for improved diagnosis, prognosis, and therapeutics of cardiac disease involving myocardial remodeling.

Data availability
The data that support the findings of this study are available from the corresponding author, R.A., upon request.
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