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Disrupted structural network 
of inferomedial temporal 
regions in relapsing–remitting 
multiple sclerosis compared 
with neuromyelitis optica spectrum 
disorder
Eun Bin Cho1,2,9, Daegyeom Kim3,9, ByeongChang Jeong3,4, Jong Hwa Shin5,6, 
Yeon Hak Chung5,6, Sung Tae Kim7, Byoung Joon Kim5,6, Cheol E. Han3,4* & 
Ju‑Hong Min5,6,8*

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are two representative 
chronic inflammatory demyelinating disorders of the central nervous system. We aimed to determine 
and compare the alterations of white matter (WM) connectivity between MS, NMOSD, and healthy 
controls (HC). This study included 68 patients with relapsing–remitting MS, 50 with NMOSD, and 
26 HC. A network-based statistics method was used to assess disrupted patterns in WM networks. 
Topological characteristics of the three groups were compared and their associations with clinical 
parameters were examined. WM network analysis indicated that the MS and NMOSD groups had 
lower total strength, clustering coefficient, global efficiency, and local efficiency and had longer 
characteristic path length than HC, but there were no differences between the MS and NMOSD 
groups. At the nodal level, the MS group had more brain regions with altered network topologies than 
did the NMOSD group when compared with the HC group. Network alterations were correlated with 
Expanded Disability Status Scale score and disease duration in both MS and NMOSD groups. Two 
distinct subnetworks that characterized the disease groups were also identified. When compared with 
NMOSD, the most discriminative connectivity changes in MS were located between the thalamus, 
hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, and inferior and superior temporal 
gyri. In conclusion, MS patients had greater network dysfunction compared to NMOSD and altered 
short connections within the thalamus and inferomedial temporal regions were relatively spared in 
NMOSD compared with MS.

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are chronic inflammatory demy-
elinating diseases of the central nervous system (CNS) that affect primarily on the brain, spinal cord, and optic 
nerves. In both diseases, clinical inflammatory relapses are usually accompanied by white matter (WM) lesions, 
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which contribute to brain damage. However, the immunopathogenesis and location of brain tissue damage differ 
somewhat between MS and NMOSD. Pathological studies have indicated that in contrast to MS, brain lesions in 
NMOSD are characterized by astrocytopathy with a loss of aquaporin-4 (AQP4) and the absence of cortical gray 
matter (GM) demyelination, which suggests a different degree of tissue destruction1,2. While lesions can occur 
throughout the brain, MS has distinct magnetic resonance imaging (MRI) features that help distinguish it from 
other CNS demyelinating diseases, which include a lesion adjacent to the lateral ventricle body or in the inferior 
temporal lobe, Dawson’s fingers, or a subcortical U-fiber lesion3. In contrast, nonspecific small WM lesions are 
the most common feature in NMOSD, although MS-like lesions reportedly exist in 10–12.5% of cases4. However, 
occult tissue damage also appears in deep GM as well as normal-appearing WM and GM in MS and NMOSD, 
which is revealed through diffusion tensor imaging (DTI) and volume analyses1,5,6.

DTI allows the quantitative evaluation of WM microstructural integrity. Further, graph-theoretical approaches 
could be applied to the DTI-based connectivity matrix to explore the topological properties of the entire network. 
Changes in network metrics have been previously revealed in several psychological and neurological disorders 
such as MS and NMOSD7–10. Independent studies indicated decreases in global and local efficiencies in MS11 
and in the total strength in NMOSD in comparison with healthy controls (HC)10. Disrupted WM networks 
also contributed to impaired cognition in MS and NMOSD patients8,10. However, few studies have compared 
the structural network changes in MS and NMOSD11,12. Indirect comparison was obtained, and which showed 
a greater number of disrupted brain regions in MS compared to NMOSD12. While patients with MS had less 
WM connections compared to HC, those with NMOSD only showed loss of small-word properties compared to 
HC11,12. They suggested that further studies are needed in the same cohort of MS and NMOSD using the same 
MRI scanner and analytical methods to investigate brain network differences12.

Structural connectivity of the brain underlies functional connectivity13. In many brain disorders, the presence 
of predilection sites for brain damage is associated with characteristic changes in structural connectome and 
symptoms of brain dysfunction7,9,14. Therefore, the comparison of MS and NMOSD brains at the connectome 
level may help to understand pathophysiologic differences beyond visible lesion distribution. In this study, we 
investigated the organizational differences of the whole-brain networks between MS, NMOSD, and HC groups. 
We also identified connectome-level differences in the structural networks of the three groups using network-
based statistics (NBS), and their associations with clinical variables.

Results
Table 1 summarizes the demographics and clinical features of RRMS (N = 68), NMOSD (N = 50), and 26 HC. 
The NMOSD group was older than the MS and HC groups (p < 0.001 and p = 0.004, respectively), but there were 
no differences in sex. The disabilities of patients were also more severe in the NMOSD group than in the MS 
group (p < 0.001). Brain attacks were more prevalent in MS than in NMOSD (cerebral hemisphere: 100% vs 44%, 
p < 0.001; brainstem/cerebellum: 65% vs. 46%, p = 0.043). Neither patient group had gadolinium enhancement in 
their cerebral lesions. Each MS patient had brain lesions in more than one MS-typical locations, such as adjacent 
to lateral ventricles body, in the inferior temporal lobes or subcortical U-fibers. Among patients with NMOSD, 
56% (N = 28) of patients had more than one NMOSD-typical brain lesions. The imaging findings of NMOSD 
patients in our study were summarized in Supplementary Table S1. Supplementary Figure S1 shows the brain 
lesion probability maps for the MS and NMOSD groups. MS lesions were more often immediately adjacent to 

Table 1.   Demographics and clinical characteristics of study subjects. MS multiple sclerosis, NMOSD 
neuromyelitis optica spectrum disorder, HC healthy control, EDSS expanded disability status scale, IQR 
interquartile range, NA not applicable. a p value from chi-squared test. b p value from ANOVA, posthoc tests 
results: MS vs. NMOSD (p < 0.001), HC vs. NMOSD (p = 0.004), and MS vs. HC (p > 0.05). c Symptomatic 
involvement. d Taken at the time of brain MRI. e Interferon β-1b (n = 24), interferon β-1a (n = 11), teriflunomide 
(n = 8), azathioprine (n = 5), fingolimod (n = 3), glatiramer acetate (n = 3), dimethyl fumarate (n = 2), 
mitoxantrone (n = 1). f Azathioprine (n = 29), mycophenolate mofetil (n = 12), rituximab (n = 2), cyclosporine 
(n = 1), methotrexate (n = 1).

MS (n = 68) NMOSD (n = 50) HC (n = 26) p value

Sex, N of females (%) 51 (75.0) 42 (84.0) 21 (80.8) 0.481a

Age, years, mean ± SD 34.7 ± 8.7 44.4 ± 11.6 35.3 ± 11.3  < 0.001b

Disease duration, years, median (IQR) 3.9 (1.725–7.275) 2.75 (1.175–12.075) NA 0.467

AQP4-IgG positivity, N (%) 0 (0) 45 (90.0) NA  < 0.001

Attack numbers, median (IQR) 2 (1–4) 3 (2–5) NA 0.129

Anytime involvementc, N (%) NA

Cerebral hemisphere 68 (100) 22 (44.0)  < 0.001

Brainstem/cerebellum 44 (64.7) 23 (46.0) 0.043

Spinal cord 52 (76.5) 38 (76.0) 0.953

Optic nerve 27 (39.7) 28 (56.0) 0.080

EDSS, median (IQR) 1 (0–2.0) 2.5 (1.5–6.0) NA  < 0.001

Use of drugsd, N (%) 57 (83.8)e 45 (90.0)f NA 0.333
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the lateral ventricles, and more prevalent than NMOSD lesions, especially in the corpus callosum and the body, 
posterior horn, and inferior horn of the lateral ventricles.

Disrupted brain network topology in MS and NMOSD.  Overall, the MS and NMOSD groups had 
lower total strength, clustering coefficient, global efficiency, and local efficiency and had longer characteristic 
path length (CPL) than HC, but there were no differences between the MS and NMOSD groups (Table 2). Dis-
ease duration or Expanded Disability Status Scale (EDSS) score in the MS and NMOSD groups had positive 
correlation with CPL and negative correlation with the other global properties of network (Table 3). Since the 
longer CPL is coincident with the lower global efficiency, all showed the same trend. When compared with 
the HC group, brain regions with altered nodal characteristics were more widespread in the MS group than 
in the NMOSD group. The left medial orbital region of superior frontal gyrus had lower nodal degree and 
nodal strength and the left superior parietal gyrus, and precuneus had lower nodal strength in the MS and 
NMOSD groups compared with the HC group. The left fusiform gyrus and the right superior occipital gyrus 
in MS also had lower nodal strength compared with HC. Furthermore, significant differences were indicated 
among the nodal measures of several brain regions between the MS and NMOSD groups. The local efficiencies 
of the left hippocampus, left parahippocampal gyrus, left superior temporal gyrus, and right Heschl’s gyrus, and 
the regional efficiency of the left middle frontal gyrus were significantly lower in MS than in NMOSD. The brain 
regions with significant between-group differences within nodal measures are listed in Supplementary Table S2. 
The correlation results between nodal measures of the brain regions and clinical parameters were listed in Sup-
plementary Table S3.

Disrupted subnetworks in MS and NMOSD.  NBS identified two disrupted subnetworks (thresh-
old = 3.0) among the MS, NMOSD, and HC groups (Table 4, Fig. 1A, Supplementary Fig. S2). The first subnet-
work (subnetwork 1, p < 0.001) consisted of regions mostly located in the left temporo-parieto-occipital lobes, 
although the precuneus, cuneus, superior occipital gyrus, and calcarine cortex had bilateral involvement. Post-
hoc tests indicated that compared with HC, the MS group had significant decreases in most edges of subnetwork 
1 (28 out of 29 edges); however, in NMOSD only about half of the edges (13 out of 29 edges) were significantly 
decreased (Fig. 1B,C). Some edges were more disrupted in the MS group than in the NMOSD group, which were 
the connections between the left hippocampus and fusiform gyrus, between the fusiform gyrus and amygdala, 
between the superior temporal and inferior temporal gyri, and between the right precuneus and paracentral 
lobule (Fig. 1D). The second subnetwork (subnetwork 2, p = 0.028) was only disrupted in the MS group and 
was generally located in the inferomedial temporal region and consisted of five connections between the hip-

Table 2.   Comparison of global network topological measures between MS, NMOSD and HC groups. MS 
multiple sclerosis, NMOSD neuromyelitis optica spectrum disorder, HC healthy control; Data area expressed 
as mean ± standard deviation. a p values from the permutation-based ANCOVA controlling for age and sex 
between three groups (MS, NMOSD, HC). b A < B, decreased values in A relative to B. c FDR adjusted p values 
of post-hoc tests based on the permutation based ANCOVA controlling for age and sex.

Network 
measures MS NMOSD HC

Three group 
comparisona MS < HCb,c NMOSD < HCb,c MS < NMOSDb,c

Total strength 299.197 ± 33.021 298.906 ± 40.273 324.588 ± 26.187 0.005  < 0.001 0.012 0.931

Clustering 
coefficient 0.187 ± 0.016 0.191 ± 0.016 0.202 ± 0.013  < 0.001  < 0.001 0.041 0.132

Characteristic 
path length 4.750 ± 0.462 4.769 ± 0.695 4.383 ± 0.254 0.005  < 0.001 0.013 0.672

Local effi-
ciency 0.340 ± 0.028 0.343 ± 0.028 0.370 ± 0.020  < 0.001  < 0.001 0.002 0.506

Global effi-
ciency 0.237 ± 0.020 0.238 ± 0.023 0.256 ± 0.014  < 0.001  < 0.001 0.003 0.953

Table 3.   The associations between global network measures and clinical parameters (disease duration 
and EDSS) in the MS and NMOSD groups. MS multiple sclerosis, NMOSD neuromyelitis optica spectrum 
disorders, EDSS expanded disability status scale.

Network topological measures

MS NMOSD

Disease duration EDSS Disease duration EDSS

Beta p value Beta p value Beta p value Beta p value

Total strength  − 2.3647 0.0185  − 3.6249 0.1360  − 1.9158 0.0463  − 6.4236 0.0013

Clustering coefficient  − 0.0011 0.0143  − 0.0020 0.0736  − 0.0009 0.0102  − 0.0030  < 0.0001

Characteristic path length 0.0309 0.0243 0.0800 0.0144 0.0301 0.0719 0.1111 0.0013

Local efficiency  − 0.0020 0.0159  − 0.0044 0.0280  − 0.0016 0.0143  − 0.0051 0.0002

Global efficiency  − 0.0014 0.0192  − 0.0029 0.0463  − 0.0013 0.0234  − 0.0038 0.0010
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pocampus, parahippocampal gyrus, fusiform gyrus, and thalamus in the right hemisphere. Compared with the 
NMOSD group, most edges (four out of five edges) were significantly disrupted in the MS group. We also identi-
fied that several edges of the disrupted subnetworks were associated with disease duration or EDSS score in the 
MS and NMOSD groups (Supplementary Table S4).

Discussion
Disrupted global topological organization of WM networks was demonstrated in both MS and NMOSD, with 
no differences between these two conditions. However, at the nodal level, the MS group had more brain regions 
with altered metrics than did the NMOSD group when compared with the HC group. Furthermore, the left 
hippocampus, left parahippocampal gyrus, left superior temporal gyrus, and right Heschl’s gyrus of the MS 
group had greater decreases in local efficiencies compared with the NMOSD group. Two distinct subnetworks 
were identified to characterize the disease groups. Disconnected edges were more widespread in the MS group 
compared with the NMOSD group, and discriminative connectivity changes were mostly found in the thalamus 
and inferomedial temporal regions. Network alterations were associated with EDSS score and disease duration 
in both groups.

Table 4.   The post-hoc test result for the identified subnetworks through network-based statistics. MS 
multiple sclerosis, NMOSD neuromyelitis optica spectrum disorders, HC healthy controls, Temporal_Pole_Mid 
Temporal pole: middle temporal gyrus, Temporal_Inf Inferior temporal gyrus, Temporal_Mid Middle temporal 
gyrus, Temporal_Sup Superior temporal gyrus, Temporal_Pole_Sup Temporal pole: superior temporal gyrus, 
Parietal_Sup Superior parietal gyrus, Occipital_Sup Superior occipital gyrus, Occipital_Mid Middle occipital 
gyrus, R right; L left. a A < B, decreased edges in A relative to B. b FDR adjusted p values of post-hoc tests based 
on the permutation based ANCOVA controlling for age and sex.

Subnetwork Edges MS < HCa,b NMOSD < HCa,b MS < NMOSDa,b

1

Hippocampus_L-ParaHippocampal_L 0.0120 0.3675 0.1476

Hippocampus_L-Fusiform_L 0.0016 0.4264 0.0016

Hippocampus_L-Temporal_Pole_Mid_L 0.0003 0.0809 0.6019

Hippocampus_L-Temporal_Inf_L 0.0003 0.0027 0.1291

ParaHippocampal_L-Fusiform_L 0.0117 0.4330 0.0648

Amygdala_L-Fusiform_L 0.0006 0.3211 0.0023

Amygdala_L-Temporal_Inf_L 0.0006 0.1159 0.0960

Fusiform_L-Temporal_Inf_L 0.0009 0.0944 0.0944

Lingual_L-Temporal_Inf_L 0.0015 0.0156 0.5481

Angular_L-Temporal_Mid_L 0.0042 0.0156 0.8146

Thalamus_L-Temporal_Inf_L 0.0009 0.0943 0.1657

Temporal_Sup_L-Temporal_Inf_L 0.0108 0.5087 0.0330

Temporal_Mid_L-Temporal_Inf_L 0.0003 0.0036 0.3916

Angular_L-Temporal_Mid_L 0.0042 0.0156 0.8146

Temporal_Pole_Sup_L-Temporal_Mid_L 0.0132 0.0149 0.8908

Parietal_Sup_L-Precuneus_L 0.0027 0.0248 0.8553

Parietal_Sup_L-Precuneus_R 0.0060 0.1915 0.1915

Precuneus_L-Precuneus_R 0.0045 0.0075 0.6966

Precuneus_R-Paracentral_Lobule_R 0.0144 0.2193 0.0335

Cuneus_R-Precuneus_R 0.0060 0.1610 0.3292

Occipital_Sup_R-Precuneus_L 0.0015 0.0024 0.1714

Occipital_Sup_R-Precuneus_R 0.0629 0.4413 0.0629

Calcarine_L-Cuneus_L 0.0138 0.0360 0.6150

Calcarine_R-Occipital_Sup_L 0.0003 0.0362 0.5915

Cuneus_L-Occipital_Sup_L 0.0015 0.2552 0.1632

Cuneus_L-Occipital_Sup_R 0.0183 0.0928 0.1210

Occipital_Sup_L-Occipital_Mid_L 0.0030 0.1429 0.3463

Occipital_Mid_L-Fusiform_L 0.0057 0.0121 0.9828

Occipital_Mid_L-Temporal_Inf_L 0.0045 0.0060 0.7591

2

Hippocampus_R-ParaHippocampal_R 0.0189 0.9795 0.0189

Hippocampus_R-Fusiform_R 0.0033 0.9492 0.0006

Hippocampus_R-Thalamus_R 0.0021 0.0546 0.5244

ParaHippocampal_R-Fusiform_R 0.0120 0.7685 0.0120

ParaHippocampal_R-Thalamus_R 0.0243 0.9313 0.0440
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Figure 1.   The two disrupted subnetworks in the multiple sclerosis (MS) and neuromyelitis optica spectrum disorder 
(NMOSD) groups as identified through network-based statistics. Significantly different connections between (A) three 
groups (MS, NMOSD, healthy controls [HC]), (B) MS and HC, (C) NMOSD and HC, and (D) MS and NMOSD were 
displayed; each edge was disrupted in MS or NMOSD compared with HC and there were no edges with increased edge 
weights in NMOSD compared with MS. The left column displays the lateral view of the left hemisphere, the middle 
column displays the transverse views of both hemispheres, and the right column displays the lateral view of the right 
hemisphere. The blue and red circles are the brain regions of subnetworks 1 and 2, respectively. The orange lines are 
the edges that connect each region. HIP hippocampus, PHG parahippocampal gyrus, AMYG amygdala, CAL calcarine 
fissure, CUN cuneus, LING lingual gyrus, SOG superior occipital gyrus, MOG middle occipital gyrus, FFG fusiform 
gyrus, SPG superior parietal gyrus, ANG angular gyrus, PCUN precuneus, PCL paracentral lobule, THA thalamus, 
STG superior temporal gyrus, TPOsup temporal pole: superior temporal gyrus, MTG middle temporal gyrus, TPOmid 
temporal pole: middle temporal gyrus, ITG inferior temporal gyrus.
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Disorganized WM network in MS and NMOSD.  The whole-brain WM networks of MS and NMOSD 
were characterized by reduced total strength, global efficiency, and local efficiency compared with HC. These 
changes were also correlated with higher EDSS scores and longer disease durations in both disease groups, which 
is consistent with previous studies11,15. Similar patterns of change in structural connectivity have been reported 
in MS11,16,17 and NMOSD12,18. Our previous study reported that patients with NMOSD only had reduced total 
strength compared with HC, which was likely due to including fewer patients with cerebral lesions (14% vs 44% 
in this study)10.

More disrupted regions with altered network topology in MS than NMOSD.  Brain regions with 
altered nodal topologies were more widely distributed in MS than in NMOSD. Decreased nodal degree or nodal 
strength with connection losses was indicated for MS in the left fusiform gyrus and several other brain hub 
regions, such as the left medial orbital part of the superior frontal gyrus, precuneus, and superior parietal gyrus, 
and the right superior occipital gyrus19. Decreased nodal degree or strength was also indicated for NMOSD 
in the left medial orbital part of the superior frontal gyrus, precuneus, and the right superior occipital gyrus. 
Many of the connections to and from hub regions were long-range association fibers, which are more suscepti-
ble to WM damage and disconnection from brain disorders14. Medial orbital part of the superior frontal gyrus 
receives various sensory input and is associated with reward, mood and emotion; the lower connectivity with 
parahippocampal gyrus/medial temporal lobe might contribute to reduced happy memories and anhedonia20. 
Precuneus, superior parietal and superior occipital gyri are functional and structural hubs important in global 
communication and associated with memory, visuospatial function, or object recognition21. The fusiform gyrus 
is the largest component of the ventral temporal cortex and is also a conduit for long association fibers such as 
the inferior longitudinal fasciculus and inferior frontal occipital fasciculus22. Dysfunction and atrophy of the 
fusiform gyrus occurred in MS23,24. Another study using graph theoretical analysis and diffusion MRI found that 
MS was associated with a larger number of nodes with reduced nodal strength (26 out of 84 nodes) compared 
with HC, more than what the present study indicated (5 out of 90 nodes)17. This may be due to our patients hav-
ing shorter disease durations with less brain damage, or differences in analysis methods (e.g., construction of 
WM tractography and the number of comparison groups). Similar to the present study, previous studies have 
also found that MS was associated with a larger number of disrupted regions than NMOSD11,12 and similar brain 
regions with decreased efficiency were found in MS11 and NMOSD12 compared with HC. However, these studies 
did not directly compare structural networks between MS and NMOSD. Therefore, it was particularly interest-
ing that the differences between the MS and NMOSD patients of the present study were primarily in the local 
efficiencies of several temporal regions; the left hippocampus, left parahippocampal gyrus, left superior temporal 
gyrus, and right Heschl’s gyrus exhibited significantly smaller local efficiencies in MS than in NMOSD. These 
regions had a role in memory, visuospatial/auditory processing, language and social cognition25,26 and were sus-
ceptible to microstructural damage or atrophy in MS even compared with NMOSD27,28 Previously, MS patients 
exhibited severe cognitive impairment, especially verbal and visual memory, compared with NMOSD patients29, 
which might be associated with left superior temporal gyrus volume loss30.

Disrupted subnetworks within the thalamus and inferomedial temporal regions differentiat‑
ing MS from NMOSD.  Two subnetworks that characterized the structural connectivity abnormalities in 
the MS and NMOSD groups were also identified. Subnetwork 1 consisted of broad regions in the temporo-
parieto-occipital lobes (mostly on the left side) and encompassed a part of default-mode, visual/visuospatial, and 
memory systems. Disrupted edges included decreased strength nodes, which were the left fusiform gyrus, left 
precuneus, left superior parietal gyrus, and the right superior occipital gyrus. Several disrupted edges, includ-
ing the connection between the right and left precuneus, were significantly associated with EDSS score or dis-
ease duration in both disease groups. Subnetwork 2 consisted of five edges between the hippocampus, parahip-
pocampal gyrus, fusiform gyrus, or thalamus in the right hemisphere, which were the right-side counterparts of 
those in subnetwork 1. The weights of most edges (four out of five) were negatively associated with the duration 
of MS. A previous study of WM structural networks in MS found decreased efficiency in brain regions related 
with default-mode, visual, memory, and language function11. Within these subnetworks, all connections except 
for one were disrupted in the MS group. However, in the NMOSD group there was relatively less disruption of 
the short connection between the thalamus and inferomedial temporal regions, including edges between the 
thalamus, hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, and inferior and superior temporal 
gyri. These regions overlapped with brain regions that had decreased local efficiencies in MS than in NMOSD.

These findings suggest that the pathological alterations in the corresponding GM regions and their surround-
ings were greater in MS than NMOSD, which was supported by a previous report that the GM volume of the 
left parahippocampal, superior temporal gyri, and the right hippocampus was smaller in MS than in NMOSD, 
while GM atrophy was diffuse in MS compared to HC28. In RRMS patients, both cortical and deep GM atrophies 
were reportedly associated with the disrupted integrity of the connected WM tracts, with the associations being 
strongest in the temporal lobes such as the hippocampus, parahippocampal gyrus, fusiform gyrus, and lateral 
temporal regions31. The present study supports previous reports that demyelination and atrophy of the thalamus 
and hippocampus was evident in MS patients1, and lesions in the inferior temporal lobe that were common in 
MS were helpful to be distinguished from NMOSD3.

There were several limitations in this study. First, brain network alterations in NMOSD might vary between 
patients since brain involvement does not occur in all patients. Second, the duration of MS could affect the 
network comparison results since edge weights between the hippocampus, parahippocampal gyrus, fusiform 
gyrus, and thalamus—which differentiated MS from NMOSD—were negatively correlated with MS duration. 
Third, inclusion of patients within 3 months after myelitis relapse (11% and 28% of MS and NMOSD patients, 
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respectively) may affect the correlation between EDSS score and network measures. Fourth, the HC group was not 
exactly age-matched with the patient groups, especially the NMOSD group, which may confound the comparison 
results. Fifth, the tractography resulted in a longer z-direction, which may have affected its overall quality since 
the voxel dimensions of our DTI protocol were anisotropic (1.72 mm × 1.72 mm × 3 mm). Finally, deterministic 
tractography is subject to a major inherent limitation of the crossing-branching problem.

The present study compared connectome-level differences in structural networks between MS, NMOSD, and 
HC. WM network disruption was more widespread and severe in MS than in NMOSD. Significant disconnections 
within inferomedial temporal regions might be a differentiated feature in MS from NMOSD.

Methods
From the prospective cohort of CNS demyelinating disease at Samsung Medical Center in Seoul, South Korea, 
patients with relapsing–remitting MS (RRMS, N = 68) and NMOSD (N = 50), who visited the clinic between 
January 2014 and December 2018, were enrolled by retrospective chart review. Inclusion criteria were patients 
who (1) over the age of 18 years, (2) met the revised 2017 McDonald criteria for RRMS32 or revised 2015 
NMOSD diagnostic criteria33, and (3) had analyzable brain MRI performed at least 3 months after relapse in the 
brain. The NMOSD patients included 45 (90%) with AQP4-IgG, which was measured with a cell-based indirect 
immunofluorescence assay as previously described34. AQP-IgG-negative NMOSD patients were also seronega-
tive for myelin oligodendrocyte glycoprotein-IgG, which was determined by in-house live cell-based immuno-
fluorescence assay using an anti-human IgG1-Fc secondary antibody, as previously described35. At the time of 
selection, 8 (11%) MS patients and 14 (28%) NMOSD patients had experienced a spinal cord attack within the 
previous 3 months, while the rest were all in remission. We also included 26 HC who had no history of medical, 
neurological, or psychiatric disorders. Of those, 21 people were recruited from a previous study10 and the rest 
were prospectively enrolled. This study was approved by the Institutional Review Board of Samsung Medical 
Center (IRB No. 2020-04-119), and written informed consent was obtained from all participants. All procedures 
were performed in accordance with relevant guidelines and regulations.

Image acquisition.  All participants underwent a three-dimensional volumetric brain MRI scan. An 
Achieva 3.0-Tesla MRI scanner (Philips, Best, the Netherlands) was used to acquire 3D T1 Turbo Field Echo 
MRI data using a sagittal slice thickness of 1.0  mm, over contiguous slices with 50% overlap and no gap, a 
repetition time (TR) of 9.9 ms, an echo time (TE) of 4.6 ms, a flip angle of 8° and matrix size of 240 × 240 pix-
els reconstructed to 480 × 480 over a field of view of 240 mm. 3D fluid attenuated inversion recovery (FLAIR) 
MRI data were acquired in the axial plane with the following parameters: axial slice thickness of 1 mm, no gap; 
TR 11,000 ms; TE 125 ms; flip angle 90°; and matrix size of 512 × 512 pixels. In the whole-brain DTI, sets of 
axial diffusion-weighted single-shot echo-planar images were collected with the following parameters: 128 × 128 
acquisition matrix; 1.72 × 1.72 × mm3 voxels; 70 axial slices; 220 × 220 mm2 field of view; TR 7696 ms, TE 60 ms; 
flip angle 90°; slice gap 0 mm; b-factor of 600 s/mm2. With the baseline image without diffusion weighting (the 
reference volume), DTI were acquired from 45 different directions. All axial sections were acquired parallel to 
the anterior commissure–posterior commissure line and perpendicular to the mid-sagittal plane.

Image preprocessing and network construction.  We defined brain regions as network nodes using 
the automated anatomical labeling atlas36, which consists of 78 cortical and 12 subcortical regions, excluding 
cerebellum regions. We registered them onto the DTI space of each subject using Statistical Parametric Map-
ping software (version 12, SPM12)37. The overall procedure is briefly introduced as follows. We first obtained 
deformation fields between the DTI space and the tissue probability map (TPM) space through segmentation 
procedure. In the segmentation procedure, we used average sized TPM template and mutual information-based 
affine registration. Using the obtained deformation fields, we normalized the DTI of each subject onto the TPM 
space. After we co-registered the AAL atlas to the TPM space, the AAL atlas, transformed in the TPM space, 
was projected onto the standard space by applying the inverse of the deformation fields obtained in the segmen-
tation procedure; we matched its voxel size with the original DTI by reslicing it. In the normalization and co-
registration procedure of the AAL atlas, we used the nearest neighborhood interpolation method that led clearer 
boundaries of regions. As a result, we obtained the registered AAL atlas in each subject’s DTI.

We defined network edges by obtaining the averages of fractional anisotropy (FA) values of all voxels on the 
streamlines connecting any two brain regions. We first performed eddy-current correction of FSL’s Diffusion 
Toolkit (version 3.0) to adjust unwanted movements by registering all volumes with gradient directions to the 
reference volume. The gradient directions were appropriately rotated during this alignment procedure38. We 
performed tractography using the Fiber Assignment by Continuous Tracking algorithm with 45 degrees as the 
angular threshold determined using Diffusion Toolkit with TrackVis39,40 on the movement adjusted DTI38. We 
then collected all the voxels on the streamline connection paths and obtained the averages of their FA values. 
WM voxels where FA values of the seed voxels exceeded 0.2 were included and streamlines shorter than 20 mm 
were excluded. As a result, we developed a 90-by-90 connectivity matrix consisting of 90 brain regions whose 
edge weights were the mean FA values between all pairs of brain regions.

Network topology.  We quantified global and nodal properties of network using the Brain Connectivity 
Toolbox (http://​sites.​google.​com/​site/​bctnet)41. We measured degree, strength, clustering coefficient, character-
istic path length (CPL), local efficiency, global efficiency, and regional efficiency.

http://sites.google.com/site/bctnet
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Degree.  Degree is the number of neighboring nodes linked to a node. When an edge between the ith and jth 
node exists, aij = 1 ; otherwise, aij = 0. The degree of the ith node, Ki , is computed by summing all values of aij 
between the ith node and others, where N is the number of the nodes in network.

Strength.  Strength at the nodal level, nodal strength, is computed by summing all edge weights linked to a 
node. The nodal strength of the ith node, Si , is defined by the summation of wij , where wij is the edge weight 
between the ith and jth node. Strength at the global level, total strength, is computed by summing all edge 
weights in whole network.

Clustering coefficient.  Clustering coefficient measures how well nodes are clustered in a network using the 
number of triangles between those nodes42. In a weighted network, the total intensity of triangles is used instead 
of the number of triangles. The total intensity of triangles of the ith node, ti , is computed by the summation 
of the cubic root of products of all edge weights for all connected triangles, where j and k are the indices of its 
neighboring nodes43.

where wij ,wjk , and wki indicated edge weights between two neighboring nodes linked to the ith node. The cluster-
ing coefficient at the nodal level, nodal clustering coefficient is defined by dividing the total intensity of the ith 
node by the number of possible triangles linked to ith node, that is, Ki(Ki − 1)/2.

The clustering coefficient at the global level is defined by averaging of the nodal clustering coefficients over 
all nodes.

Characteristic path length (CPL).  CPL is defined as the average of shortest path lengths for all pair of nodes in 
a network42. We transformed path length between two nodes as reciprocal of the edge weight connecting them, 
because the edge weight in our network represents the strength of connection between two nodes. Then, we used 
the Dijkstra algorithm to find shortest path length between any pair of nodes. If the edge between two nodes is 
disconnected, because the reciprocal of edge weight is infinite, we ignored them in averaging.

where dij is the shortest path length between the ith and jth nodes, and D is the number of finite dij.

Local and global efficiency.  Local efficiency is defined as the average efficiency of local subgraphs where the 
local subgraph is the set of neighboring nodes linked to a certain node excluding the centered node44. It captures 
the efficient communication between neighbors of a certain node. We defined local efficiency of nodal level by 
averaging them44. The local efficiency at the global level is defined as the average of the nodal local efficiency of 
all the nodes44.

Global efficiency is defined by the average of the reciprocal of shortest path lengths between all pairs of 
nodes44.

Regional efficiency.  Regional efficiency defined as the average of reciprocal of the shortest path length between 
a certain node and all the other nodes in a network. It shows how well a node communicates with all the others.

In weighted network, path length between two nodes represents a reciprocal of edge weight between them.
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where the shortest path length between the ith and jth node, dij , is computed using Dijkstra algorithm.

Edge screening.  Since the connectivity matrices obtained through tractography may include false-positive 
and false-negative connections, their effects were controlled using a method proposed by de Reus and van den 
Heuvel45. We first computed prevalence rate of each connection. The prevalence rate is a ratio of the number of 
subjects for which a certain connection exists within the HC group. As an example, if all the subjects in the HC 
group have a certain connection, the prevalence rate of the connection is one. We identified whether a certain 
connection actually exists using a group threshold which is set with a value between 0 and 1. As an example, if 
the prevalence rate of a certain connection is bigger than a chosen group threshold, the connection is considered 
as an existing connection. Otherwise, it is considered as a non-existing connection. After deciding which con-
nection is an existing connection, we defined the false positive and false negative as follows: if a non-existing 
edge exists in a subject, it is a false positive; if an existing edge does not exist in a subject, it is a false negative. 
As a chosen group threshold increases, since the number of existing connections increases, the number of false 
positives decreases, and that of the false negatives increases. We counted the number of false positives and false 
negatives for various group thresholds and chose a balancing point which minimizes both the number of the 
false positives and false negatives as the optimal group threshold value, which was 0.66 in our data set. Connec-
tions that were weaker than the optimal group threshold were not considered connections.

Network based statistics.  To identify a subnetwork that consisted of significant differences in WM 
connections between the MS, NMOSD, and HC groups, NBS46 was performed with analysis of covariance 
(ANCOVA) while controlling for the effects of age and sex. Within NBS, cluster-based thresholding of statisti-
cal maps was performed to control the familywise error rate during mass univariate testing of every network 
connection. We thresholded the test statistics from ANCOVA, and the connected edges formed subnetworks 
(clusters). NBS also used permutation testing to estimate the significance levels of group differences according to 
the number of larger subnetworks when compared with randomly formed subnetworks. NBS therefore extracted 
subnetworks with significantly different connections between the three groups. Thresholds were selected when 
stable clusters form over multiple runs. The threshold was 3.0 and 10,000 permutations were performed.

Lesion probability map.  Lesions from the FLAIR images were automatically segmented using the lesion 
prediction algorithm47 implemented using the Lesion Segmentation Toolbox (LST) (version 3.0.0, www.​stati​sti-
cal-​model​ing.​de/​lst.​html) for SPM12 (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/). This estimated the lesion probability 
of each voxel using a logistic regression model that was trained using the data of 53 MS patients with severe 
lesion patterns. We applied this model to each voxel within the FLAIR images to segment the lesions and esti-
mate the lesion probability. Voxels with lesion probabilities below 50% were discarded and binarized to develop 
a lesion map image for every subject. We then registered the lesion map images to the Montreal Neurological 
Institute standard-space template. The averages of each patient group were calculated to help develop the group 
lesion probability map.

Statistical analyses.  Network measures were compared using permutation-based ANCOVA48,49 which 
controlled for the effects of age and sex. Because 90 nodes received group comparisons for nodal measures, 
multiple comparison corrections were performed using the false discovery rate (FDR)50,51.

Since ANCOVA does not determine differences between specific groups, post-hoc tests were performed 
using three pairwise permutation-based ANCOVA, and then FDR was used to perform multiple comparison 
corrections on these three pairwise comparisons. Identical post-hoc tests were also performed on the subnetwork 
edges obtained from NBS. N was set as 10,000 for permutation-based ANCOVA and number of permutations.

We also investigated the association between topological network characteristics and clinical variables using 
the generalized linear model. We controlled for the effects of age and sex:

where each beta value is the regression coefficient of each term. Significance levels of the regression coefficient 
of network measures ( β1) were determined through ANCOVA.

Statistical analyses were performed with SPSS Version 20.0 (IBM Corp, Armonk, NY, USA), Matlab (ver-
sion 2019a, MathWorks, Natick, MA, USA) and in-house software programs.
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