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Orthogonality catastrophe 
and quantum speed limit for spin 
chain at finite temperature
Zheng‑Rong Zhu1,2, Qing Wang1,2, Jian Zou1, Bin Shao1,2* & Lian‑Ao Wu3,4

We present an interesting relationship between the orthogonality catastrophe (OC) and the quantum 
speed limit (QSL) for a spin chain with uniform nearest neighbour couplings perturbed by an impurity 
spin. We thoroughly study the catastrophic QSL that specifies a bound on the evolution time between 
the initial and final states and in this respect, link it to the emerging OC effect. It is found that the 
speed of state evolution subtle but fundamental, and the bound characterized by QSL shows the 
same behaviours as the OC effect in the thermodynamic limit. It allows us to reveal some universal 
properties, in particular finite temperature effects. Significantly, the threshold of temperature and 
system size is clearly demonstrated for the QSL under finite temperature.

Contemporary research on the orthogonality catastrophe (OC)1 dates back to the original definition proposed 
by Anderson and this concept has boosted extensively interests over the recent years. This is attributed to the 
experimental development in ultracold atoms where desired many-body  states2,3 and amiable manipulated 
Hamiltonians are created. These are crucial for motivation on studying quantum dynamics and control. Fur-
thermore, the technique advance of both Ramsey  interference4 and radio-frequency spectroscopy paves the way 
for exploring OC in the many-body fermionic systems quenched by impurities from the time and frequency 
domain respectively.

The essence of OC lies in the overlap between the initial unperturbed state and the final state perturbed 
by the local impurity, which vanishes with the system size N. Such an effect in many-body systems has been 
broadly probed in different scenarios, by evaluating the dynamics of correlation  functions5, exploring statistics 
of  work6 introduced into the system in quantum spin  models7, analyzing the energy distributions in x-ray edge 
 problems8, relating it to decoherence of impurity and non-Markovian  dynamics9 and understanding quantum 
adiabaticity  breakdown10.

Interestingly, the overlap plays an important role in the promising concept of the quantum speed limit (QSL) 
which originates from the Heisenberg uncertainty  principle11 whose central task is to find a bound on the 
minimum evolution time between two quantum distinguishable states. Also, as a consequence of its simplicity 
in describing the quantum many-body systems, the QSL has been applied to many aspects in quantum tech-
niques, such as quantum  computation12, quantum state  transfer13, as well as optimal  control14 of quantum open 
systems. Therefore, it would be of great interest to explore the relation between the QSL and the OC. Recently, a 
connection between the dynamics of OC and QSL has been established in Ref.15, where the QSL is shown to be 
capable of bounding the time to reach OC as long as the variance of the quenched Hamiltonian under the initial 
ground state scales with the system size, for instance in trapped fermi gas and interacting LMG model. However, 
the correlation between the OC and the QSL is hardly considered in the prototypical scheme of the nearest-
interacting spin chain, a typical testing bed for various physical phenomena, such as quantum phase transition 
at critical points, coherence loss in quantum systems and so on. In this paper, we study this typical spin system 
with a single qubit impurity switched on initially. We showcase the OC effect and link it to the maximum rate 
of quantum many-body evolution signalled by the QSL time. Then, specifying a universal relation in particular 
an extension to finite temperature effect, where we demonstrate the threshold of temperature and system size N.

The rest paper is organized as follows. Firstly, we present the relation between the OC and the QSL and gen-
eralize the pure state results to the finite temperature case by virtue of a bound on Bures angle based on density 
operators. Secondly, we briefly review the spin chain model of interest and obtain the exact expressions of the 
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fidelity for both cases of initial ground and thermal states. Thirdly, we show numerical comparison and analysis 
between the OC and the QSL. Here we emphasize the finite temperature effect. At last, conclusions are drawn.

Orthogonality catastrophe and quantum speed limit
The OC, in Anderson’s original  work15, was involved with stationary states, while the quenched many-body state, 
in reality is time-dependent. In this aspect, the dynamical orthogonality after the perturbation switched on has 
to be considered and characterized by a dynamical overlap, read as

with Hf  and Hi representing the final quenched and initial Hamiltonian, respectively. Assume � as the eigenstate 
of Hi , eigenvalue being Ei , χ(t) is thus reduced to χ(t) = ��|eiHf t |��e−iEit . Since its association with the fidelity 
F(t) = |χ(t)|2 which occupies the centre of the QSL and furthermore, is also the so-called Loschmidt  echo16,17 
in the fidelity program, we will adopt the notation of fidelity instead in rest of the paper.

The QSL captures the minimum time that quantum system requires for evolving between two states. We 
interpolate the Bures  angle18 in order to establish a connection with OC, since they both are related to the 
overlap function (1).

where |ψt� = e−iHf t |�� and |ψ0� = |�� . Combining with a lower bound in Eq. (2) based on quantum fisher 
information for an estimation of  time18, one has

where the quantum fisher information I can be exactly computed in pure states and unitary evolution as 
I = 4

(〈

H2
f

〉

−
〈

Hf

〉2
)

= 4�H2
f  , with average over the initial state, the fidelity is hence fully restrained by 

the time average of the variance of Hf  which gives rise to a connection between QSL and OC. In addition, a 
bound on the fidelity was derived with respect to time-dependent quenched  Hamiltonian19. Since Hf  in our 
system is time independent, we then easily come to the significant formulation linking QSL and fidelity,

Here, �Hf  viewed as the maximal evolution rate of system vQSL is a function of the system size N, when �Hf  
increases monotonically with N, then the minimum time for the system state to evolve into an orthogonal final 
state consequently vanishes. On the contrary, if �Hf  decays with the size N, τQSL increases with N accordingly, 
and the time to hit the orthogonality becomes infinite. On the other aspect, this confirms the decisive relation 
between QSL and OC. Additionally, Eq. (1) is closely related to the work done in quenching the  system20,21, such 
that the QSL time also implies thermodynamic significance in physics.

We now extend the above ideas to the case with an initial thermal state, which allows one to analyse the 
thermal effects. However, there unfortunately exists a plight where inequality (3) cannot be analytically given, 
since the quantum fisher information in the initial mixed-state is hard to explicitly calculate and a purification 
procedure for large number of particles is required. The way to circumvent this problem (e.g., see Ref.22) is to 
employ a bound for thermal states in terms of Bures angle based on the density operator, which can be cast as

where the Bures angle for the mixed state is defined as L (ρ1, ρ2) ≡ arccos tr
√√

ρ1ρ2
√
ρ1 , ρ1, ρ2 correspond 

to the initial and final evolved density operators. F(t) = tr
√√

ρ1ρ2
√
ρ1 is considered as the mixed-state fidelity 

of the spin chain system. To make Eq. (5) explicit for the further calculation, it can be converted, after a straight-
forward transformation and in a similar form as Eq. (4) to

where the temperature dependent denominator in Eq. (6) can be seen as the evolving speed vTQSL , and the exact 
formulation in our model will be given in a later section. With all the above results, it is of great convenience 
for us to tackle problems of a specific model like spin chain system and demonstrate the relation between OC 
and QSL for different choices of initial states. We emphasize here that the temperature effects show considerable 
characteristics.

The specific spin chain model and quench dynamics
We now focus on a distinct system described by an one-dimensional nearest neighbour interacting spin chain, 
which is suddenly quenched by single  spin23,24 taken as an impurity. In the standard model, the total postquench 
Hamiltonian of the system is given by Hf = Hi +HI , where Hi refers to the initial Hamiltonian before switch-
ing on the perturbation, while HI is the interaction between the surrounding spin chain and impurity which is 
turned on at t = 0, with

(1)χ(t) = ��|eiHf t e−iHit |��

(2)L (t) ≡ arccos |χ(t)| = arccos |�ψt |ψ0�|,

(3)L (τ ) ≤
1

2

∫ τ

0
dt
√

I ,

(4)τ ≥ τQSL =
arccos |χ(τ)|

�Hf
.

(5)L (ρ1, ρ2) ≤ arcsin
(

√

βt 4

√

−2�[Hi ,Hf ]2�β
)

,

(6)τ ≥ τQSL =
sin2(arccos tr

√√
ρ1ρ2

√
ρ1)

β

√

−2�[Hi ,Hf ]2�β
,
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where the parameters � and γ denote intensities of the external magnetic field and the anisotropy values to dis-
tinguish various types of spin models, respectively. Here, γ = 0 corresponds to an XX model, 0 ≤ γ ≤ 1 charac-
terizes the degree of anisotropy, and the critical magnetic field �c = 1 is unchanged regardless of the value of γ . 
The operators σ z and σ n

l  , n =
{

x, y, z
}

 are Pauli matrices of the single spin and its environment. δ is a coupling 
constant (typically weak) and the exchange energy J is set to be one for simplicity. Suppose that the impurity 
spin is in a superposition state |ϕ� = cg

∣

∣g
〉

+ ce|e� , 
∣

∣g
〉

= (0 , 1)T and |e� = (1 , 0)T , where coefficients cg and ce 
are normalized. In terms of the impurity spin state, the postquench Hamiltonian is rewritten as

wherein

Here Hα
f  can be diagonalized in a standard procedure by using Jordan–Wigner transformation which maps 

the 12 spins into spinless fermions, Fourier transformation converting the Hamiltonians into k-space form, and 
Bogoliubov transformation under the imposed period boundary condition to the simplified  forms25

where α = g , e . The quasiparticle energy spectra �α
k in Eq. (10) are given by

with �g = �+ 1, �e = �− 1 , and bk,α = cos
θαk
2 dk − i sin

θαk
2 d†−k being the Bogoliubov transformations with the 

angles θαk = arccos[J(cos 2πk
N − �α)/�

α
k ] . Assume that the initial state of the surrounding spins is in ground state 

|G�� of Hi , the relation between the ground state |G�α of Hα
f  and |G�� are directly associated by the Bogoliubov 

transformation,

where �α
k = (θαk − θ�k )/2 , and θ�k = arccos[J(cos 2πk

N − �)/��

k] . With all above ingredients, we aim at deriving 
an explicit expression for the fidelity. And we also initialize the impurity spin in ground state 

∣

∣g
〉

 for simplicity. 
Without loss of generality, we finally obtain the fidelity,

where ��

k = J
√

γ 2 sin2 2πk
N + (cos 2πk

N − �)2  refers to the excitation spectra of the undisturbed system 
Hamiltonian.

Next we turn our attention to calculate the exact form of the fidelity under an initial thermal equilibrium 
states, for the finite temperature effect is of fundamental significance in realistic physics systems. Density matrices 
of initial thermal state can be analytically derived as

(7)

Hi = −J

N
∑
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2
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l σ
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2
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here β = 1/kBT and Z is the partition function, where kB is the Boltzmann’s constant set as one for convenience, 
T is the temperature specified as kBT/J in the later discussions and J denotes the exchange energy used as the 
energy unit. Note that the partition function Z is determined by unperturbed Hamiltonian Hi,

It is natural for us to extend the notation of the survival probability to a thermal state by using the mixed-state 
 fidelity26 and we can directly calculate the mixed-state fidelity as,

It is clear that in the zero-temperature limit, β → ∞ , one easily recovers the result obtained in the ground state 
case. By changing β , we can explore the fidelity of the initial thermal state and what role it plays in the connec-
tion between OC and QSL.

Comparison and analysis of orthogonality catastrophe and quantum speed limit
Now we show the numerical results and analyze the relation of OC and QSL. To proceed, let us start with examin-
ing the initial ground state case. Based on the analytical discussions, an important quantity to link both of them 
is the energy variance of perturbed Hamiltonian and in our model, with the system being the initialized ground 
state of unperturbed Hamiltonian. �Hf  after exactly calculations is therefore formulated as

�Hf  coincides with the analytical results derived in Ref.27, and for large spin system Eq. (17) scales linearly with 
N. The variance shows two different regimes characterized by the external magnetic field � , i.e., independent 
of � for � ≤ 1 and scaling as 1/�2 for � > 1 . Figure 1 shows time t functional of the fidelity and the QSL for the 
parameters exhibited in the caption. We observe immediately a drop in the fidelity, furthermore the larger N 
grows, the steeper curves F get. As such, these behaviours indicate an orthogonality to the initialized spin chain 
ground state after the system experiences an evolution process with the disturbance suddenly switched on. In 
particular, the orthogonality time gets smaller and is approaching zero with N increased. Such a phenomena can 
be verified by Fig. 1b. Correspondingly, the QSL time in Fig. 1b eventually reaches a maximal stationary value 
after an interval of evolution time. Meanwhile, the QSL time, in its maximum value induced by the orthogonal-
ity of two evolved states, decreases with the increased N. The specific feature reveals a similar OC effect that the 
QSL time holds and will be explicitly observed in the later analysis.

The dependence on external magnetic field is also of interest. Figure 2 displays the variations of F and τQSL for 
the external magnetic intensity at fixed moments in time. For Fig. 2a, the decay of the fidelity is enhanced with N 
which clearly shows the OC effect at the vicinity of critical point. Moreover, the wider range of valley makes the 
criticality at � = 1 blurry. On the other hand, it deserves note that apart from the critical point, the two regions 

(15)Z = Tr
[

exp (−βHi)
]

.

(16)

F(t) =
∏

k

(
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k)]
−1

×
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1
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2
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g
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2

))2
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√
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Figure 1.  Time in units of 1/J, evolution of (a) the fidelity F and (b) the QSL time τQSL , with system size 
N = 400 (green dotted line), 1000 (red dashed line), and 5000 (black solid line). The external magnetic intensity, 
anisotropy value, and coupling constant set as � = 1 , γ = 1 , and δ = 0.05 , respectively.
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� < 1 and � > 1 exhibit a subtle phenomenon where the weaker the external field is, the more sensitive to N F is. 
As a result, the QSL time in Fig. 2b shows a cusp, but gets weaken due to a broader valley. For the two external 
magnetic field regimes, the decay of τQSL is not susceptible to N, since the spin chain internal nearest interaction 
or external strong magnetic strength are  dominate28, and the evolving speed �Hf  showing distinct behaviours 
in the two regimes also contributes to this phenomenon. To conclude, the emerging OC and its relation to QSL 
time are more apparently seen at the vicinity of critical magnetic field in comparison with far from it.

Next we focus on the behaviours of both F and τQSL at the critical � = 1 with N grows, analyzed in Fig. 3a 
and b respectively. We find F decays to zero as N grows which is a witness of the OC, and we also see a similar 
behaviour τQSL holds. It allows us to reveal a universal relation and consider the Fig. 1, we conclude that an 
vanishing τQSL is in correspondence to an vanishing time to reach OC, i.e., the OC is a consequence of the QSL 
as demonstrated in Ref.15. Additionally, it would nevertheless note that the evolved states reach orthogonality at 
small N, the QSL time will ultimately approach to zero in the thermodynamic limits. To explain this phenom-
enon, we may pay attentions to the critical magnetic field where the decay of the fidelity is extremely sensitive 
to N. Meanwhile, it is also interesting to notice that the energy variance of the perturbation Hamiltonian or the 
evolving speed increasing slowly with N.

Finite temperature effect. The temperature effect would be of interest for a realistic system always being 
non-zero temperature. Similarly, the quantity �[Hi ,Hf ]2�β has to be exactly calculated to evaluate the QSL time 
under finite temperature, as shown in Eq. (6) and reads as,

Figure 2.  (a) The fidelity F and (b) the QSL time τQSL as functions of the external field � . Each different color 
line corresponds to the same colored line routine as in Fig. 1, i.e. N = 400, 1000, 5000 for green dotted, red 
dashed and black solid lines respectively. Here we set a fixed actual evolution time t = 5, weak perturbation 
δ = 0.05 , and anisotropy value γ = 1.

Figure 3.  Selected fixed time instants at t = 5 during the dynamical evolution of the quenched spin chain at 
anisotropy value γ = 1 and critical external field � = 1 for illustrating (a) the fidelity F and (b) the QSL time 
τQSL as functions of N.
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where the average is taken over initial thermal state. We define a quantity relating to evolving speed 

vTQSL = β

√

−2�[Hi ,Hf ]2�β  under finite temperatures following the routine in the case for the initial ground 

state. Note that the defined evolving speed scales extensively with N, but depends on temperature, differing from 
the ground state speed. Figure 4a explores the time dependence of the fidelity F for the size N in the range of 400 
and 20,000. The figure shows two remarkable features: First, F do not decay to zero until N reaches a compara-
tively large value and similar to ground state, the fidelity F decays faster with N grows. Second, F decays to a 
minimum stationary value immediately. In contrast with the zero-temperature ground state case, the temperature 
factor leads to a drop in the decay amplitude of the fidelity, implying that the system requires more spins for the 
fidelity to be completely vanished. Furthermore, we also examine the QSL time depicted in Fig. 4b, where con-
siderable characteristics are shown. For long driving time, the plateau in τQSL corresponds to the bottom platform 
in F approximately. The maximum stationary τQSL first increases before N reaches a certain value, after the 
threshold, τQSL → 0 as N → ∞ . While as to comparatively short evolving time, e.g. t ≤ 1 , τQSL is somehow 
complicated and seems to increase with N.

Here, we emphasize the temperature effects on OC and QSL. Figure 5 shows how the fidelity and the QSL time 
change with temperature for parameters shown in the caption. The decay of F in Fig. 5a becomes less evident 
with temperature, and it shows no decay for even higher temperature due to the thermal excitation in spin chain, 
leading to the system state approaching maximally mixed and trivial dynamics. In what follows, τQSL differs 
from the behaviour of F in that, first, as shown in Fig. 5a when the temperature is below T = 1 or so, it shows a 
plateau where the fidelity completely vanishes or the evolved states reach orthogonality, which corresponds to 
the increased QSL time. An increase in τQSL implies a slowdown in the orthogonal speed. Second, the QSL time 
τQSL shows a oscillation phenomenon with T grows contrary to the conventional monotonic fidelity. These are 
somehow counter-intuitive against the previous knowledge that system quantumness encoded in the overlap 
should be washed out due to the thermal excitation as temperature rises. To understand the interesting phenom-
enon, now we study the evolving speed vTQSL that is inversely proportional to temperature, i.e., the rate of system 
evolution is suppressed by T. On the other hand, the decay of fidelity in suppression under higher temperature 
also contributes to the aforementioned phenomenon. In brief, the temperature effects cause suppression of both 
evolving speed and the decay of fidelity and an explicit threshold of temperature is seen in the QSL time.

In Fig. 6, we plot the τQSL and F vs N to specify a substantial relation between the QSL time and the OC for 
finite temperatures. As shown in Fig. 6a, F at a given moment decays to zero when N reaches certain value as 
a OC witness. While the lower temperature T system is at, the smaller N the fidelity F vanishes at. Note that 
Fig. 6b also shows several interesting features: τQSL spikes at a certain critical N which is greatly influenced by 
temperature, yielding a scaling extensively with T behaviour. Interestingly, this phenomenon also explains why 
the QSL time in Fig. 5b experiences the up-down process. In addition, with N are outside critical and N → ∞ , 
τQSL monotonically decreases to zero. As a result, an analysis of the vanishing QSL time can be similarly given. We 
are therefore capable of attributing it to the evolving speed vTQSL scaling with the system size, which is as crucial 

(18)�[Hi ,Hf ]2�β =
∏

k=1

(1+ cosh(2β��

k))
−164γ 2g2 sin2

2πk

N
cosh(2β��

k),

Figure 4.  Finite temperature T = 0.5. (a) the fidelity F and (b) the QSL time τQSL as functions of time t at 
different N (see legend), where in both panels the coupling strength, anisotropy value and external magnetic 
field are constant δ = 0.05 , γ = 1 , and criticality �c = 1 , respectively. It can be obviously seen that either panels 
show a sharp decay or increase to a stable minimum or maximum value.
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as the energy variance in the ground state case. At the same time, in conjuction with Fig. 4 we then conclude a 
similar correspondence relation between the QSL and the OC as zero-temperature ground state.

Conclusions
We have applied the concept of the OC to the system composed of the nearest-interaction spins in order to inves-
tigate the relationship between the OC and QSL. The dynamical occurrence of the fidelity as well as the maximal 
rate of quantum evolution have been obtained by using the exactly solvable XY spin chain interacting with a single 
qubit impurity. We exhibit how the exponentially sensitive OCs are affected by the large N, and interestingly a 
similar exponential decay for QSL is also shown. Here we emphasize that the QSL specifies a universal bound of 
the fidelity between the initial state and the time evolved state. The numerical result reveals a striking similarity 
of the OC effect based on the fact that the perturbation forces the spin system to be an orthogonal state in the 
large N limit. In this respect, we quantitatively link the OC to the mechanism of quantum speedup characterized 
by the QSL time. For an initial ground state, we demonstrate that the OC effect manifests itself following by the 
energy variance scaling extensively with N and the vanishing QSL time due to a substantial relation between 
the emerging OC and the QSL time. We also investigate the finite temperature effect, where the fidelity and rate 
of quantum evolution are both suppressed by temperature, meaning that the minimum time to reach targeted 
state characterized by an up-down behaviour. Then the thresolds of temperature and N are obviously seen in the 
QSL time at finite temperatures. We have also proposed that the temperature-dependent vTQSL is as vital as the 
energy variance in initial ground case to the decisive relation between the OC phenomenon and the QSL time.

Figure 5.  (a) The fidelity F and (b) the QSL time τQSL as functions of temperature at a fixed instant t = 5 for a 
environment size of N = 2× 10

4 , with other parameters in both (a) and (b) are chosen as � = 1 , γ = 1 , and 
δ = 0.05 . Note that there are clearly anomalous phenomena that τQSL shows a cusp-like shape.

Figure 6.  The environmental size N dependence of (a) the fidelity F and (b) the QSL time τQSL at critical point 
� = 1 and with the same total evolution time, anisotropy parameter and coupling constant as Fig. 5 for different 
temperature, i.e., T = 0.1, 0.5, 1 correspond to black solid, red dashed and green dotted lines respectively.
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