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Global analysis of a time fractional 
order spatio‑temporal SIR model
Moulay Rchid Sidi Ammi1, Mostafa Tahiri1, Mouhcine Tilioua4, Anwar Zeb2, Ilyas Khan3* & 
Mulugeta Andualem5*

We deal in this paper with a diffusive SIR epidemic model described by reaction–diffusion equations 
involving a fractional derivative. The existence and uniqueness of the solution are shown, next to 
the boundedness of the solution. Further, it has been shown that the global behavior of the solution 
is governed by the value of R

0
 , which is known in epidemiology by the basic reproduction number. 

Indeed, using the Lyapunov direct method it has been proved that the disease will extinct for R
0
< 1 

for any value of the diffusion constants. For R
0
> 1 , the disease will persist and the unique positive 

equilibrium is globally stable. Some numerical illustrations have been used to confirm our theoretical 
results.

In many sciences, experiments can be done to collect information and test hypotheses. Doing experiments for 
testing the outbreak of infection in different populations is generally not possible, immoral, and costly1. In most 
cases, the data are often unprecise due to underreporting. This deficit in the data collections makes a reliable 
estimation of the parameters impossible, which is noted hugely in our recent fight against the pandemic of 
COVID-19 disease. Then, it is only possible to approximate certain parameters. Based on the fact that repeatable 
experiments are not available in epidemiology, mathematical modeling and numerical simulations can be used 
to perform the theoretical experiments needed for a variety of parameter values2. They also help to understand, 
analyzing and limiting the outbreak of infectious diseases3. So we should be able to give a response to important 
issues as:

•	 The possibility of having an epidemic.
•	 The knowledge of the duration of this epidemic is important, for determining the proper public health inter-

vention.
•	 The density of the individuals that have been touched by this disease.
•	 The type of control that allows authorities to make decisions about strategies as isolation, quarantine, vac-

cination, and treatment.

In this context, most SIR models have been traditionally investigated in an uniform distribution of populations 
which are generally formulated only by ordinary differential equations. This fact shows the possibility that the 
disease can outbreak over a spatial region. In reality the infected individuals have the greatest effect on spatially 
nearest susceptible persons. The outbreak of infectious diseases is influenced by the spatial movement of popula-
tions. The great development in transportation networks is among the main contributing factors in the growth of 
people’s movement around the world. For these reasons, many recent researches have been devoted to the study 
of reaction–diffusion models (particularly the existence, uniqueness, positivity and stability of the equilibria). 
They have as goal predicting the evolution of diseases in relation to time and space simultaneously4.

Recently, fractional derivatives have several applications in many fields such as mechanics5, control theory6, 
bioengineering7 and viscoelasticity8. We point out that derivative order (fractional) can be any positive real choice 
in order to best correspond to the available data9. Consequently, the systems of non-integer order differential 
equations or partial differential equations give a more realistic behavior10. Fractional-order-derivatives are used 
widely in epidemiology to describe disease evolution and, in most cases, are considered to be more precise than 
the classical derivative11. For example, the spread of the virus is generally discontinuous, so that they are not 
well described by systems of ordinary differential equations. Then fractional systems naturally deal with such 
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a property of discontinuity12. In addition, different models have used fractional derivatives to better predict 
the outbreak of diseases with sufficient data, among these models we find SIR epidemic model with fractional 
derivative with Mittag–Leffler kernel13, hybrid variable-order fractional coronavirus (2019-nCov)14, a hybrid 
stochastic fractional order Coronavirus (2019-nCov)15. In16 a survey for novel fractional biological models and 
the numerical methods used to study these models. In11 the authors used the real data from the Florida Depart-
ment of Health in the period from September 2011 to July 2014, they concluded that the absolute error between 
the solutions obtained statistically and that of the fractional model decreases more than those obtained by the 
model of integer derivative.

In the literature, several definitions of fractional derivatives have been used in different works17. Among the 
most popular non-integer derivatives is that of Riemann–Liouville. It is not often adequate for modeling physical 
systems because it does not keep the nullity of the derivative constant and the initial conditions of the Cauchy 
problem are given by fractional derivatives. Caputo presents another alternative preserving the derivative of the 
constant is null and the initial conditions remain expressed as in the classical case by derivatives of integer order18.

The novelties of this work can be summarized in the following two points: Firstly, we investigate the global 
behavior of more real extension’s of a basic SIR model with memory effects measured by Caputo’s fractional 
derivative in time of order 0 < α ≤ 1 , such that when α = 1 we obtain a classical model (without memory). 
More precisely, memory measured by the nonlocal operator of the fractional derivative highlights the other 
possibilities not included in the model formulation as fear from infection and the movement in the space, and 
closing stores, reducing the mobility of persons, and others, which makes fractional systems more realistic to 
describe the real life situations. Secondly, we have constructed Lyapunov functions to show the global stability 
of the equilibrium points in a more general framework where the proposed system takes into account the spatial 
behavior of populations and memory effect. Through this research, we show that our system is well posed in the 
sense that we prove the global existence, uniqueness and boundedness of the solution. By constructing suitable 
Lyapunov functions, the disease will be eradicated for R0 ≤ 1 , and persist for R0 > 1.

This research is structured as follows. In “Preliminaries” section, we remember some basic results for frac-
tional calculus. The proposed model formulation is given in “Model formulation” section. Next, we show in 
“Existence and uniqueness of solutions” section the existence and uniqueness of a bounded solution. “Existence of 
equilibria and local stability” section is devoted for calculating all possible equilibrium states. The global behavior 
of the solution is the subject of interest in “Global stability” section. Numerical simulations of the considered 
model in agreement with theoretical results are illustrated in “Graphical representation” section.

Preliminaries
We now recall definitions of the Mittag–Leffler function and Caputo fractional time derivative. First, the Mit-
tag–Leffler function, Eα(z) , is defined as the family of entire functions of z given as

whenever the series converges19, where Ŵ(·) is Gamma function .
Observe that the Mittag–Leffler function generalizes the exponential function: E1(z) = exp(z).

Definition 2.1  (17) We consider f ∈ L1(R+) . The Riemann–Liouville fractional-integral of order α > 0 of f is

where M(t, s) =
1

Ŵ(α)
(t − s)α−1 is a power law function.

Definition 2.2  (17) We consider α > 0 , and letting n ∈ N such that n− 1 < α ≤ n . The fractional derivative in 
sense of Caputo for α for a function f ∈ Cn([0,+∞),R) is

with D =
d

dt
 for n = 1 . In particular, for 0 < α < 1 , we get

For more details about the definition of fractional derivative in sense Caputo , we refer to17.

Model formulation
Let � a bounded set in R with smooth boundary ∂� , and [0, T] is a finite interval. The classic SIR epidemic 
model20 governed by reaction–diffusion equations takes the following form: for (t, x) ∈ QT = [0,T] ×�

Eα(z) =

∞
∑

k=0

zk

Ŵ(kα + 1)
, α > 0, z ∈ C,

Iα f (t) =

∫ t

0

M(t, s)f (s)ds,

C
0D

α
t f (t) = In−αDnf (t) =

1

Ŵ(n− α)

∫ t

0

f (n)(s)

(t − s)α+1−n
ds,

C
0D

α
t f (t) =

1

Ŵ(1− α)

∫ t

0

f ′(s)

(t − s)α
ds.
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The total population N is divided into three compartments of the pathological state where S(t, x), I(t, x) and 
R(t, x) are respectively the densities of the susceptible population, infected population, removed population at 
time t and the spatial location x.

The positive constants � , r and µ are respectively the entering flux into S-class, the recovery rate and the 
natural death rate. Persons in S-class acquire infection after a direct contact with person in I-class, with the rate 
βSI , where β is the transmission coefficient per unit of time. Positive constants �1, �2 and �3 denote the diffusion 
coefficients for the susceptible, infected and removed individuals, respectively. � represents the usual Laplacian 
operator.

In the actual world, and during an epidemic, there are numerous components that varies and can influence the 
outbreak of a disease and cannot be included in the model formulation, as the fear generated by the population 
from infection, weather (specific change in the weather help or reduce the spread of disease). This phenomena 
can be modeled by replacing the ordinary differential derivative by a fractional one, as it is used in understanding 
many real world phenomena, we cite for instance the research21. For the model (3.1), the state at any time t does 
not depend on the previous history. It is a markovian process (memory depends on time and corresponds to a 
Dirac function δ(t, s) ). However, the evolution and control of epidemic processes in human societies cannot be 
envisaged without any memory effect. When an idea is propagated within a human population, the experience 
or knowledge of individuals on this idea should influence their responses. To incorporate long-term memory 
effects in the classical SIR model (3.1), we convert it to an equivalent system of integral equations. We change 
the function δ(t, s) by the power law function M(t, s) which shows a slow decay so that the state of the system at 
early times also contributes to the evolution, afterward applying the fractional Caputo derivative22. One of our 
goals is to study the effect of vaccination on the basic reproduction number. We therefore introduced the term 
vaccination u into model (3.1). It is assumed that vaccination converts susceptible individuals into the removed 
class and confers immunity on them. Motivated by the above discussion, we introduce the time fractional deriva-
tive to the diffusive SIR model in the following manner:

We consider that the model (3.2) is self-contained and there is a dynamic across the boundary but there is 
no emigration. Then the no-flux homogeneous Neumann boundary conditions are

For epidemiological aspect, we consider that the following initial conditions of the three classes are positive

The constant u refers to the vaccination rate. It is presumed that the vaccination transforms the persons in 
S-class to the removed class after acquiring immunity. We denote by ν the outward unit normal vector on the 
boundary ∂� and by ∂

∂ν
= ν.∇ the normal derivative.

Existence and uniqueness of solutions
Letting X = C(�̄,R) and X3 be Banach spaces endowed by the uniform norms

and

with �H(x)�1 =
∑3

i=1 |Hi(x)| is the Manhattan norm23.
We set J = (J1, J2, J3) , J0 = (J01 , J

0
2 , J

0
3 ) , � = (�1, �2, �3) and we assume that A is the linear diffusion operator 

where

where

(3.1)

∂S(t, x)

∂t
− �1�S(t, x) = �− βS(t, x)I(t, x)− µS(t, x),

∂I(t, x)

∂t
− �2�I(t, x) = βS(t, x)I(t, x)− (µ+ r)I(t, x),

∂R(t, x)

∂t
− �3�R(t, x) = rI(t, x)− µR(t, x).

(3.2)

C
0D

α
t S(t, x) = �1�S(t, x)+�− βS(t, x)I(t, x)− µS(t, x)− uS(t, x),

C
0D

α
t I(t, x) = �2�I(t, x)+ βS(t, x)I(t, x)− (µ+ r)I(t, x), (t, x) ∈ QT ,

C
0D

α
t R(t, x) = �3�R(t, x)+ rI(t, x)− µR(t, x)+ uS(t, x).

(3.3)
∂S(t, x)

∂ν
=

∂I(t, x)

∂ν
=

∂R(t, x)

∂ν
= 0, (t, x) ∈ �T = [0,T] × ∂�.

(3.4)S(0, x) = S0, I(0, x) = I0 and R(0, x) = R0, x ∈ �.

�h�X = sup
x∈�

|h(x)|, ∀h ∈ X,

�H�X3 = sup
x∈�

�H(x)�1, ∀H ∈ X
3,

A : D(A) ⊂ X
3 → X

3

AJ = ��J = (�1�J1, �2�J2, �3�J3), ∀J ∈ D(A),
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Let the function f defined by f : [0,T] × X
3 �→ X

3 , where

with

The model can expressed as

where J = (S, I ,R) and J0 = (S0, I0,R0).

Proposition 4.1  Let 0 < α ≤ 1 , for any J0 ∈ D(A) , problem (4.1) has a unique non-negative solution 
J ∈ C([0,T];X3) given by

where

and �α(θ) is a probability density function defined on (0,∞).

Proof  Since A is a linear closed operator defined on a dense set D(A) in X3 into itself, then it generates a C0

-semigroup {Q(t), t ≥ 0} of contractions on X3 . It is known that function f is Lipshitz continuous in y uniformly 
with respect to t ∈ [0,T] if yi ≥ 0 for i = 1, 2 and 3. Using24, Theorem 3.1], we have the existence and uniqueness 
results. 	�  �

It remains to show that the solution is bounded. By summing the three equations of system (3.2), we get

Integrating in � the two sides of the above equality, we have

Applying Green’s formula and using the homogeneous Neumann boundary conditions (3.3) we get

Note that

Due to the property of the linearity of the Caputo’s operator and Fubini’s Theorem, one have

Solving this equality by using Laplace’s transform, we obtain

D(A) =

{

J ∈ X
3 : �J ∈ X

3,
∂J

∂ν
= 0R3 for x ∈ ∂�

}

.

f (t, J(t)) := f (J(t)) = (f1(J(t)), f2(J(t)), f3(J(t))),

{

f1(J(t)) = �− βJ1J2 − µJ1 − uJ1,
f2(J(t)) = βJ1J2 − (µ+ r)J2, t ∈ [0,T],
f3(J(t)) = rJ2 − µJ3 + uJ1.

(4.1)
{

C
0D

α
t J = AJ + f (J(t)),

J(0) = J0,

J(t) =

∫ ∞

0

�α(θ)Q(t
αθ)J0dθ + F(t),

(4.2)F(t) = α

∫ t

0

∫ ∞

0

θ(t − τ)α−1�α(θ)Q((t − τ)αθ)f (τ )dθdτ

C
0D

α
t S(t, x)+

C
0D

α
t I(t, x)+

C
0D

α
t R(t, x) = �1�S(t, x)+ �2�I(t, x)+ �3�R(t, x)

+�− µ(S(t, x)+ I(t, x)+ R(t, x)).

∫

�

(

C
0D

α
t S(t, x)+

C
0D

α
t I(t, x)+

C
0D

α
t R(t, x)

)

dx =

∫

�

(

�1�S(t, x)+ �2�I(t, x)

+�3�R(t, x)

)

dx +

∫

�

(

�− µ(S(t, x)+ I(t, x)+ R(t, x))

)

dx.

∫

�

(

C
0D

α
t S(t, x)+

C
0D

α
t I(t, x)+

C
0D

α
t R(t, x)

)

dx

=

∫

�

(

�− µ(S(t, x)+ I(t, x)+ R(t, x))

)

dx

= �|�| − µ

∫

�

(

S(t, x)+ I(t, x)+ R(t, x)

)

dx.

∫

�

(

S(t, x)+ I(t, x)+ R(t, x)

)

dx = N(t).

C
0D

α
t N(t) = �|�| − µN(t).
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Due to 0 ≤ Eα(−µtα) ≤ 1, we conclude that N(t) ≤ N(0)+ �
µ

 hence the solution is bounded.

Remark 4.2  Owing to25, Theorem 3.1], then (3.2)–(3.4) has a unique solution which is non-negative and bounded.

Noting that the two first equations does not depend on the class R(t, x) and then are uncoupled with the last 
equation of the system (3.2). Hence our attention will concentrated on the analysis of the following reduced 
system: for (t, x) ∈ [0,∞)×�.

Existence of equilibria and local stability
The principal goal of this section is to determine the equilibria for (4.3). A crucial idea in epidemiology is the 
existence of significant threshold values quantifying and measuring an outbreak spread in a population. The 
given value

is the basic reproduction number26. It is understood as the average number of newly cases of infection, generated 
by an person in I-class during infectious period, in a compartment entirely composed of susceptible individuals. 
From the definition of R0 , we conclude the following results.

Theorem 5.1 

	 (i)	 There is always a disease-free equilibrium denoted Ef = (Sf , 0) , with Sf =
�

µ+ u
.

	 (ii)	 If R0 > 1 , there exists a unique endemic equilibrium denoted E∗ = (S∗, I∗), where 

Proof 

	 (i)	 By a straightforward computation, we get Ef  is a steady state of (4.3) which always exists.
	 (ii)	 To get the other equilibrium, we need to solve (4.3) for (S, I) = (S∗, I∗) . We then obtain 

S∗ =
µ+r
β

and I∗ =
µ+u
β

(R0 − 1) . Hence, if R0 > 1 , there exist a unique positive solution which is E∗ . 	
� �

Next, we study the local stability of the disease-free equilibrium Ef  and the endemic equilibrium E∗ . The 
Jacobian matrix of system (4.3) at any equilibrium Ē = (S̄, Ī) is given by

We recall that a sufficient condition for the local stability of Ē is

where ξi are the eigenvalues of JĒ (see27). First, we establish the local stability of Ef .

Theorem 5.2  If R0 < 1 , then the disease-free equilibrium Ef  is locally asymptotically stable.

Proof  At Ef  , (5.1) becomes

Hence, the eigenvalues of JEf  are ξ1 = −µ− u , ξ2 = (µ+ r)(R0 − 1) . Clearly, ξ2 satisfies condition (5.2) if 
R0 < 1 , since ξ1 is negative, proving the desired result. 	�  �

N(t) = N(0)Eα(−µtα)+
�

µ
(1− Eα(−µtα)).

(4.3)
C
0D

α
t S(t, x) = �1�S(t, x)+�− βS(t, x)I(t, x)− µS(t, x)− uS(t, x),

C
0D

α
t I(t, x) = �2�I(t, x)+ βS(t, x)I(t, x)− (µ+ r)I(t, x).

R0 =
β�

(µ+ u)(µ+ r)

S∗ =
µ+ r

β
and I∗ =

µ+ u

β
(R0 − 1).

(5.1)JĒ =

(

−µ− u− β Ī − βS̄
β Ī βS̄ − (µ+ r)

)

.

(5.2)|arg(ξi)| >
απ

2
, i = 1, 2,

JEf =

(

−µ− u − βSf
0 βSf − (µ+ r)

)

.
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We now establish the local stability of E∗.

Theorem 5.3  If R0 > 1 , then the endemic equilibrium E∗ is locally asymptotically stable.

Proof  At equilibrium E∗ , the characteristic equation for the corresponding linearised system of model (4.3) is 
ξ 2 + a1ξ + a2 = 0 , where

and

If R0 > 1 then a1 > 0 and a2 > 0 . From28, we have the desired result. 	�  �

Global stability
Our goal now is to study the global behavior for Ef  and E∗ using Lyapunov’s functions. Firstly we give the defini-
tion of Lyapunov function. Consider the following fractional differential equation:

with the initial condition:

where Dα
t  is the fractional derivative in Caputo sense of order α ∈ (0, 1] , the state variable is a positive vector of 

m elements u1, . . . , um , and f : Rm −→ R
m is a function of class C1.

Definition 6.1  (29) Let u∗ be an equilibrium point of system (6.1) such that �(u∗) a neighborhood of u∗ . Let V 
be a differentiable function defined on �(u∗) and with real value. We say that V is a Lyapunov function in u∗ , if 
it satisfies the following two properties: V(u∗) = 0 and V(u) > 0 in �(u∗) for all u  = u∗.

Theorem 6.2  (LaSalle principle30). Let u∗ be an equilibrium point of the system (6.1) and let V be a positive function 
of class C1 defined in the neighborhood �(u∗) of u∗ . Then u∗ is asymptotically stable if: 

1.	 D
α
t V(u) ≤ 0    for all u ∈ �(u∗).

2.	 The set {u ∈ �(u∗); D
α
t V = 0} contains no other trajectory other than u∗.

Moreover, if V(u) → ∞ , when �u� → ∞ , then u∗ is globally asymptotically stable.

Secondly, to prove the global stability of DFE, we need to use the following auxiliary lemma for the purpose 
of the application of Lyapunov function in the case of the fractional order systems:

Lemma 6.3  (31). We put y(t) ∈ R
∗
+ be a continuous and derivable function. For all α ∈ (0, 1) and for t ≥ t0

where � is a positive function defined by �(y) = − ln(y)+ y − 1 , y > 0.

Theorem 6.4  Ef  is globally asymptotically stable for R0 ≤ 1.

Proof  Introducing the Lyapunov function:

Calculating the fractional derivative of V in Caputo’s sense, we have

a1 = (µ+ u)R0,

a2 = (µ+ r)(µ+ u)(R0 − 1).

(6.1)D
α
t u(t) = f (u(t)),

u(0) = u0,

C
t0
Dα
t

[

y∗�

(

y(t)

y∗

)]

≤

(

1−
y∗

y(t)

)

C
t0
Dα
t y(t), y

∗ ∈ R
∗
+,

V(t) =

∫

�

(

Sf�

(

S(t, x)

Sf

)

+ I(t, x)

)

dx.
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Since � = (µ+ u)Sf  , then

Applying Green’s formula, we get

For R0 ≤ 1 , we deduce that C0Dα
t V(t) ≤ 0 . In addition C0Dα

t V(t) = 0 is equivalent to S = Sf  and (R0 − 1)I = 0 . 
Then the following two cases arise:

•	 If R0 < 1 , then I = 0.
•	 If R0 = 1 , using the first eq. of (4.3) together with S = Sf  , we get 

 then βSf I(t, x) = 0 . Thus, we obtain I = 0.
Hence, the largest invariant set of 

{

(S, I) ∈ R
2
+ : C

0D
α
t V(t) = 0

}

 is the singleton {Ef } . Using LaSalle’s invari-
ance principle30, we conclude that Ef  is globally asymptotically stable. 	� �

Similarly, we shall show global stability of E∗ which is resumed in the following theorem

Theorem 6.5  E∗ is globally asymptotically stable whenever exists.

Proof  We consider the Lyapunov function:

We have

Note that µ+ r = βS∗ , � = (µ+ u)S∗ + (µ+ r)I∗ . Applying then Green’s formula, we obtain

C
0D

α
t V(t) ≤

∫

�

(

(

1−
Sf

S(t, x)

)

C
0D

α
t S(t, x)+

C
0D

α
t I(t, x)

)

dx

≤

∫

�

(

(

1−
Sf

S(t, x)

)(

�− βS(t, x)I(t, x)− (µ+ u)S(t, x)
)

+ βS(t, x)I(t, x)− (µ+ r)I(t, x)

)

dx

+

∫

�

(

�1�S(t, x)− �1
Sf

S(t, x)
�S(t, x)+ �2�I(t, x)

)

dx.

C
0D

α
t V(t) ≤

∫

�

(

(

1−
Sf

S(t, x)

) (

(µ+ u)Sf − (µ+ u)S(t, x)
)

+
β�

µ+ u
I(t, x)− (µ+ r)I(t, x)

)

dx

+

∫

�

(

�1�S(t, x)− �1
Sf

S(t, x)
�S(t, x)+ �2�I(t, x)

)

dx.

C
0D

α
t V(t) ≤ −(µ+ u)

∫

�

(S(t, x)− Sf )
2

S(t, x)
dx + (µ+ r)

∫

�

(R0 − 1)I(t, x)dx

− �1Sf

∫

�

|∇S(t, x)|2

S2(t, x)
dx.

�− (µ+ u)Sf − βSf I(t, x) = 0 ,

V(t) =

∫

�

(

S∗�

(

S(t, x)

S∗

)

+ I∗�

(

I(t, x)

I∗

))

dx.

C
0D

α
t V(t) ≤

(

1−
S∗

S(t, x)

)

C
0D

α
t S(t, x)+

(

1−
I∗

I(t, x)

)

C
0D

α
t I(t, x)

≤

∫

�

(

(

1−
S∗

S(t, x)

)(

�− βS(t, x)I(t, x)− (µ+ u)S(t, x)
)

+
(

1−
I∗

I(t, x)

)(

βS(t, x)I(t, x)− (µ+ r)I(t, x)
)

)

dx +

∫

�

(

�1�S(t, x)

− �1
S∗

S(t, x)
�S(t, x)+ �2�I(t, x)− �2

I∗

I(t, x)
�I(t, x)

)

dx.
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Since �(y) ≥ 0 , then DαV(t) ≤ 0 for R0 > 0 . Furthermore, the largest invariant set that verifies 
{(S, I) ∈ R

2
+ : DαV(t) = 0} is {E∗} . Using LaSalle’s we achieve the desired result. 	�  �

Graphical representation
In this section, we present some graphical illustrations confirming our theoretical findings. The system (3.2)–(3.4) 
is numerically integrated by using the forward finite difference approximations to discretize the time-fractional 
derivative32 and the centered finite difference schemes to approach the Laplacian’s operator in one-dimensional 
space, then we can take � = [0, L] . This method gives an accurate of order 2− α in time and order 2 in space32.

Let δ = T
N  and �x = L

n be the length of each time step and the space step respectively, for some large N and 
n, tl = lδ for l = 0, . . . ,N and xi = i�x for i = 0, . . . , n. We have

and

Then, we obtain the following scheme:

with

Note that unlike the usual derivative, the fractional derivatives are not local operators, i.e. for example to 
calculate Sli the number of susceptible at time l, we need all of its information up to the initial instant, and that 
comes from the summation term 

∑l
j=1

(

(j + 1)1−α − j1−α
)(

S
l+1−j
i − S

l−j
i

)

 which represents the memory effect. 
We also notice when α = 1 we obtain the discretization of classical model without memory.

C
0D

α
t V(t) ≤ −(µ+ u)

∫

�

(S(t, x)− S∗)2

S(t, x)
dx +

∫

�

(

2(µ+ r)I∗ − (µ+ r)I∗
S∗

S(t, x)

− (µ+ r)I∗
S(t, x)

S∗

)

dx − �1S
∗

∫

�

|∇S(t, x)|2

S2(t, x)
dx − �2I

∗

∫

�

|∇I(t, x)|2

I2(t, x)
dx

≤ −(µ+ u)

∫

�

(S(t, x)− S∗)2

S(t, x)
dx +

∫

�

(µ+ r)I∗
(

2−
S∗

S(t, x)

−
S(t, x)

S∗

)

dx − �1S
∗

∫

�

|∇S(t, x)|2

S2(t, x)
dx − �2I

∗

∫

�

|∇I(t, x)|2

I2(t, x)
dx

≤ −(µ+ u)

∫

�

(S(t, x)− S∗)2

S(t, x)
dx − (µ+ r)I∗

∫

�

�

(

S∗

S(t, x)

)

dx

− (µ+ r)I∗
∫

�

�

(

S(t, x)

S∗

)

dx − �1S
∗

∫

�

|∇S(t, x)|2

S2(t, x)
dx

− �2I
∗

∫

�

|∇I(t, x)|2

I2(t, x)
dx.

C
0D

α
t S(tl , xi) ≈

1

Ŵ(2− α)

l
∑

j=0

(j + 1)1−α − j1−α

δα

(

S(tl+1−j , xi)− S(tl−j , xi)

)

,

�S(tl , xi) ≈
S(tl , xi+1)− 2S(tl , xi)+ S(tl , xi−1)

�x
.

(7.1)

Sl+1
i = Sli −

l
∑

j=1

(

(j + 1)1−α − j1−α
)(

S
l+1−j
i − S

l−j
i

)

+
�1 × Ŵ(2− α)× δα

�X2

(

Sli+1 − 2Sli + Sli−1

)

+ Ŵ(2− α)× δα × f l1i ,

Il+1
i = Ili −

l
∑

j=1

(

(j + 1)1−α − j1−α
)(

I
l+1−j
i − I

l−j
i

)

+
�1 × Ŵ(2− α)× δα

�X2

(

Ili+1 − 2Ili + Ili−1

)

+ Ŵ(2− α)× δα × f l2i ,

Rl+1
i = Rl

i −

l
∑

j=1

(

(j + 1)1−α − j1−α
)(

R
l+1−j
i − R

l−j
i

)

+
�1 × Ŵ(2− α)× δα

�X2

(

Rl
i+1 − 2Rl

i + Rl
i−1

)

+ Ŵ(2− α)× δα × f l3i ,

(7.2)

f l1i = �− βSliI
l
i − µSli − uSli ,

f l2i = βSliI
l
i − (µ+ r)Ili ,

f l3i = rIli − µRl
i + uSli .
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Next, we study the case without vaccination. Let L = 10 and T = 50 . We simulate system (3.2)–(3.4) with the 
following set of parameters: µ = 0.8 , � = 0.9 , β = 0.1 , r = 0.02 , u = 0.0 , �1 = �2 = �3 = 0.2 , and the initial 
conditions S(0, x) = 1.0 , I(0, x) = 2.0 and R(0, x) = 3.0 . As a result we approximate the solutions of (3.2)–(3.4) 
for α = 1 , α = 0.8 and α = 0.6 that displayed respectively in Figs. 1, 2 and 3. We also calculate R0 = 0.1372 . 
Hence, system (3.2)–(3.4) has a unique equilibrium Ef = (1.12, 0, 0) . Using Theorem 6.4, Ef  is globally stable. 
In Fig. 4, we have fixed the space variable x to show the effect of the order α along the dynamics of the solution. 
We notice that all the solutions are globally asymptotically stable for different values of α not just for α = 1 . We 
also notice that the solution for α = 1 quickly converges to the equilibrium point Ef  . Since fractional derivatives 
describe reality well, we can say that the epidemic takes a longer duration to be stable. This is very important in 
terms of economics and the study of control strategies.

Now, we consider µ = 0.2 and letting the same previous set of parameter. Then, R0 = 2.0455 . From Theo-
rem 6.5, E∗ is globally asymptotically stable. Figures 5, 6 and 7 illustrate this result for different values of α , which 
means biologically that the infection persists but it is under control. For easy comparison see Fig. 8.

Finally, let’s study the effect of the vaccine on the basic reproduction rate R0 . We are only interested in the 
endemic case for α = 0.8 . We note that the basic reproduction rate decreases when the vaccine rate increases 
(for example u = 0.8 we have R0 = 0.4091 (see Fig. 9)). Consequently the number of infected individuals is 

Figure 1.   Dynamics of the system (3.2) for α = 1.

Figure 2.   Dynamics of the system (3.2) for α = 0.8.
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also decreasing. Besides, the number of removed individuals increases at the expense of susceptible people (see 
Fig. 10). It reflects the importance of the vaccine to eradicate the disease.

Conclusion
We dealt in this paper with the qualitative behavior of the solutions of a reaction–diffusion system under the 
influence of the fractional derivative α . Firstly, we investigated the global behavior of more real extension’s of 
a basic SIR model with memory effects measured by Caputo’s fractional derivative in time of order 0 < α ≤ 1 , 
such that when α = 1 we obtain the classical model (without memory). Secondly, we have constructed Lyapunov 

Figure 3.   Dynamics of the system (3.2) for α = 0.6.

Figure 4.   Dynamics of the system (3.2) for x fixed and for α = 0.6, 0.8, 1 in the case where R0 = 0.1372 < 1.

Figure 5.   Dynamics of the system (3.2) for α = 1.

Figure 6.   Dynamics of the system (3.2) for α = 0.8.
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Figure 7.   Dynamics of the system (3.2) for α = 0.6.

Figure 8.   Dynamics of the system (3.2) for x fixed and for α = 0.6, 0.8, 1 in the case where R0 = 2.0455 > 1.

Figure 9.   Variation of R0 according to the vaccine effect.

Figure 10.   Behavior of the solution for α = 0.8 under the effect of vaccine ( u = 0.8).
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functions to show the global stability of the equilibrium points in a more general framework where the proposed 
system takes into account the spatial behavior of populations and memory effect. Taking advantage of the Lyapu-
nov function method we have shown that R0 plays an important role in determining the global dynamics of the 
proposed model. We have established the global stability of the two equilibria: Ef  and E∗ for different values of 
α . From epidemiological point of view, this means that the infection will eradicated or persisted while respect-
ing certain restrictions on the parameters. According to our theoretical analysis, we obtained the stability of the 
equilibria not only for the integer derivative ( α = 1 ) but also for all 0 < α ≤ 1 , which confirms the generality of 
our system. In addition, fractional derivatives have provided other means of predicting the progression of the 
disease and, in some cases, affecting the time required to reach stable states. Our future work is to control the 
vaccination term u to get a better optimal strategy with other fractional derivatives having a non singular kernel.

Methods
As an application of the fractional derivatives a diffusive SIR epidemic model is described. The fixed point theory 
is adopted for the results related existence and uniqueness of the solution and Lyapunov function theory is 
utilized for the stability analysis of proposed model. Numerical results are done for the verification of obtained 
results and it is surety that it will help the researcher in future related fractional order models.

Data availability
The database used and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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