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A new intelligent bearing fault 
diagnosis model based on triplet 
network and SVM
Kaisi Yang1, Lianyu Zhao1 & Chenglin Wang2*

Separating sensitive characteristic signals from original vibration data is an important challenge for 
rolling bearing fault diagnosis. Because it is difficult to obtain large number of damaged bearings, 
Rolling bearing fault datasets are often small sample datasets. For the classification of small sample 
rolling bearing fault datasets, we propose a coupling vibration data classification method based on 
triplet embedding. The method is divided into two steps: feature extraction and fault identification. 
First, build a triple embedding based on the CNN model to reduce the original vibration signal, and 
then train the SVM model for classification. Compared with traditional features and autoencoder, 
triplet network can learn the differences between samples. Make classification training easier and 
more accurate. We have evaluated the performance of this method through two bearing experiment 
examples. The experimental results show that this method is superior to stacked autoencoder, stacked 
denoising autoencoder and CNN.

Research status of bearing fault diagnosis. Bearing is a typical component of rotating machinery. The 
quality of bearing directly determines the performance of rotating machinery. Accurate and timely fault detec-
tion is the key technology to ensure the reliability and safety of bearings. Due to the wide application of bearing 
in various industries, the maintenance cost of bearing fault is high, the consequences of bearing fault are serious. 
So the fault diagnosis of bearing and condition monitoring are very active research fields, which is very helpful 
for the early warning and fault location of rotating machinery. At present, on-line diagnosis and prediction of 
machine condition are used for fault early warning and maintenance.

With the progress of sensor technology and signal processing technology, we can obtain higher precision 
vibration signal, acoustic signal, current signal, voltage signal, temperature signal and so on. In recent years, the 
research of bearing fault diagnosis is gradually increasing, and the research based on Shaw learning is in-depth1–8. 
In order to solve over decomposition and the problem of information loss, Li et al.9 have proposed Independence-
oriented VMD to identify wheelset bearing faults orderly. For early fault prediction of bearings, Li et al.10 have 
proposed adaptive multi-scale morphological analysis and bandwidth empirical mode decomposition. Zhang 
et al.11 have proposed A bearing fault diagnosis method using variational mode decomposition. Through the 
analysis of the failure mechanism, they established the fault signal calculation model of the defects in different 
positions of the rolling bearing. In order to realize the adaptive separation of Fourier spectrum, Zheng et al.12 
have proposed the adaptive parameterless EWT method. Wu et al.13 have used the fully integrated empirical 
mode decomposition of adaptive noise and the Hilbert-Huang transform method to extract multiple degraded 
features in the degraded feature extraction stage. They selected monotonous, robust, and fault-related degrada-
tion characteristics, and merged them with the Mahalanobis distance health index as the main component. Yan 
et al.14 have proposed a fault classification algorithm based on SVM optimized by multiple features. The fault 
feature information is extracted from time domain by VMD, FFT and statistical analysis, frequency domain and 
time-frequency domain respectively.

There are also a lot of researches on bearing fault diagnosis models based on deep  learning15–23. Xia et al.24 
have proposed a multi-sensor-based CNN model, and classification accuracy of the model on the Case Western 
Reserve University bearing dataset reached 99.41%. Liu et al.25 have proposed a dislocated time series CNN 
model, which uses the dislocated time series of the original signal to train CNN. Jiang et al.26 have proposed a 
multi-scale CNN, and the classification accuracy on the Case Western Reserve bearing dataset reached 98.53%. 
Zhang et al.27 have proposed a long short memory recurrent neural network model to evaluate the bearing 
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performance degradation. Zhao et al.28 have developed a variant of the deep residual network model, which 
uses dynamic weighted wavelet coefficients to optimize the deep residual network to improve the diagnostic 
performance. The input of the network is a series of wavelet packet coefficient sets in different frequency bands. 
Wang et al.29 have proposed a method to transform the vibration information of multiple sensors into image 
information. This method can integrate the information and obtain more abundant features than single sensor 
vibration signal. Yan et al. has done a lot of research in this field, The models they studied including a novel archi-
tecture named multiscale cascading deep belief network(MCDBN) for identify the fault location of the rotating 
machinery; a novel approach called multi-domain indicator-based optimized stacked denoising autoencoder for 
automatic fault identification of rolling bearing and a novel hybrid deep learning model for multistep forecasting 
of diurnal wind  speed30–32.

There are also a lot of researches on transfer learning and small sample model  prediction33–37.

Problems of existing models. 

1. Traditional feature extraction methods, such as empirical mode decomposition, wavelet transform, fast 
Fourier transform, etc. need a lot of expert experience. Because of the sensor noise, interference, shafting 
misalignment, etc. the initial fault is easy to be covered by clutter, difficult to show in the time-frequency 
spectrum. This makes it difficult to find the initial bearing fault;

2. The end-to-end network has strong nonlinear fitting capabilities, but requires a large amount of sample data. 
Different from the image classification task, the test conditions of the industrial bearing dataset are harsh. 
It requires high-precision vibration sensors, servo motors, a set of high-precision shafting, and a stable data 
acquisition and control system. And it is difficult to obtain a large number of samples of damaged bearings. 
The public datasets are generally small sample datasets. However, the advantages of end-to-end networks 
on small sample datasets are not obvious, and it is difficult to learn the distribution of samples;

3. Widely used autoencoder networks(AE) such as stacked autoencoders(SAE), stacked denoising 
autoencoders(SDAE), etc. can map data to lower dimensions. Then use traditional classification algorithms, 
such as SVM, random forest, etc. to classify, and you can get better results on small sample datasets. But the 
prime objective of the autoencoder is to encode data into low-dimensional expression, and then restore the 
low-dimensional expression to the original signal as much as possible. Only pay attention to whether the 
restored signal is slightly different from the original signal, and some important information used for clas-
sification may be discarded as noise, which makes the classification results of algorithms such as SVM and 
random forest inaccurate;

Fault diagnosis using the triplet network and SVM
This paper mainly studies the problem of bearing fault diagnosis. These damaged parts include the inner ring 
of the bearing, the balls, and the outer ring of the bearing. Use the vibration sensor to collect the vibration of 
the shaft system and analyze the vibration signal changes caused by the damage of different parts of the bearing. 
Because the bearing will produce a certain amount of vibration during high-speed rotation due to shaft deflection, 
machining error, etc., it is difficult to identify early fault signals. Moreover, because the bearing failure dataset is 
generally a small sample dataset, it is difficult to obtain lots of bearing data of different parts of the failure. This 
further challenges the possibility of using a single feature in bearing fault classification.

Basic SAE and SDAE. AE is a kind of artificial neural network. AE updates network weights through unsu-
pervised learning to learn the mapping of input data to feature space. AE consists of an encoder and a decoder. 
The encoder f maps the input data to a low dimensional space through function h = f (x) . To obtain a low dimen-
sional representation h of the original data. The decoder g maps h back to the input space through the function 
x̂ = g(h) to obtain the reconstructed data x̂ of x. Generally, the loss function of a network can be defined as:

The loss function calculates the Euclidean distance between x and x̂ to reduce the reconstruction error and obtain 
the reconstructed data closer to the original data. The output h of the encoder can be used as a low dimensional 
representation of the input data. The encoder and decoder of SAE are composed of multiple AE nested to form a 
structure with multiple hidden layers. Compared with AE, SAE can better learn the deep features of the original 
data.The structure of SAE is shown in Fig. 1.

The basic idea of DAE is to reconstruct the original input from a damaged input to obtain a robust representa-
tion of the original input. This can prevent AE from learning only the mapping between input and construction 
output, and capture more informative hidden patterns. In general, the input x is added to the noise σ to get the 
damage signal x̃ form x, and then x̃ is input to the DAE to get the reconstructed data of x̂ , Formula 2 calculates 
the loss function:

The network structure of DAE is shown in the Fig. 2.
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SDAE stacks the DAEs into a deep network to obtain deep features of input data. The SDAE model destroys 
the original data x into x̃ by adding Gaussian noise σ , and then trains the SDAE model to get a better recon-
structed signal.

1DCNN based on triplet loss. We believe that in a small sample of bearing fault dataset, in order to extract 
the deep information in the waveform, the CNN model needs to have sufficient depth. The performance of end-
to-end learning in small sample datasets is not stable enough, and it is difficult to learn a better distribution 
law. In order to better classify bearing faults, this paper proposes a SVM fault classification method using trplet 
network as data preprocessing. The triplet network converts the problem of the mapping relationship between 
learning data to classification into a problem of different relationships between learning data. This method has a 
good performance in small sample data. The established one-dimensional CNN model has 8 hidden layers, and 
the model structure is shown in Fig. 3.

Establish a triplet network based on the 1DCNN model. In order to train triplet network, the data is classi-
fied according to labels:

Figure 1.  Hierarchical framework of SAE.

Figure 2.  Hierarchical framework of DAE.
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• a: anchor, any sample in the training set
• p: positive, a sample of the same category as a
• n: negative, a sample different from a

The triplet network output layer generally has fewer dimensions, which is equivalent to the high-order feature 
representation of the original signal. Input the same batch of data into the model, and calculate the triplet loss 
based on the sample label. the goal of triplet loss is to reduce The distance between a and p, and increases the 
distance between a and n in the embedding space. We need to introduce margin to make the distance between 
samples of different categories larger than margin, which can make the network encode samples of different 
categories farther. the loss of a triplet (a, p, n) is:

In the formula, 
∥

∥a− p
∥

∥ is the Euclidean distance between a sample and p sample, and �a− n� is the Euclidean 
distance between a sample and n sample. The goal of the algorithm is to reduce the value of 

∥

∥a− p
∥

∥ as much as 
possible to make the distance between a and p closer, and increase the value of �a− n� as much as possible to 
make the distance between a and n longer. Make the value of �a− n� −

∥

∥a− p
∥

∥ small enough to achieve the 
goal of the algorithm. By calculating max

(∥

∥a− p
∥

∥− �a− n� +m arg in, 0
)

 , we can control the aggregation 
degree of positive samples and the dispersion degree of negative samples in the feature space, so that the distance 
between positive samples and negative samples is greater than the margin value as much as possible. There are 
three situations when calculating triplet loss: 

1. easy triplets: loss = 0 , 
∥

∥a− p
∥

∥+margin < �a− n� . This situation does not need to be optimized. The dis-
tance between a and p is very close, and the distance between a and n is far and greater than the sum of the 
distance between a and p and the margin, as shown in the Fig. 4.

2. hard triplets: �a− n� <
∥

∥a− p
∥

∥ , The distance between a and p is long, and this situation will produce a 
greater loss. As shown in Fig. 5.

3. semi-hard triplets: 
∥

∥a− p
∥

∥ < �a− n� <
∥

∥a− p
∥

∥+margin , The distance between a and p is short, and the 
distance between a and n is long, but the distance between a and n is less than the distance between a and p 
plus margin. This situation will produce less loss. As shown in Fig. 6.

(3)loss = max
(∥
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)

Figure 3.  Hierarchical framework of 1DCNN.

Figure 4.  Easy triplets.
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Input all the training set data into the network to calculate the corresponding 64-dimensional embed-
ding. Take one of the samples a. There are a total of m samples with the same label as sample a, forming 
set P = {p1, p2, p3 · · · pm} , There are a total of n samples with labels different from sample a, forming set 
N = {n1, n2, n3 · · · nn} . Calculate the distance Dp between a and all positive samples:

Calculate the distance between a and all negative samples to form set Dn:

Take one element in set Dp and set Dn respectively, and combine them with a to form a triplet. All possible 
combinations form set T:

There are m× n combinations of elements in Dp and Dn , the total number of samples is m+ n+ 1 , and the value 
of a has m+ n+ 1 possibilities, so the size of the set T is m× n× (m+ n+ 1) . Select semi-hard triplets in set 
T, get set Ts = {d1, d2, d3 · · · da} , and calculate triplet loss:

Figure 7 shows the training process of triplet network and SVM. Figure 8 is block diagram of the proposed 
method. Firstly, input the labeled vibration data into the model. Then, initialize the triplet network model 
parameters, and input the collected bearing data set into triplrt network for training. The loss function of the 
model is defined as triplet loss, and the output of the model is a 64 dimensional vector. The trained model maps 
the samples to the high-dimensional feature space, and the distance between similar samples is small, and the 
distance between different samples is large. Finally, using high-dimensional features for SVM classification, we 
can judge whether the bearing fault and the fault location.

Different from AE, Triplet loss calculates the difference between the same sample and different samples, and 
backpropagates to update weights of the network so that the distance between the same samples is closer and 
the distance between different samples is longer.

Validation of proposed method
Data Castle bearings dataset. Dataset introduction. This paper uses the bearing data set provided by 
Data Castle to verify the  method38. Data Castle collected the vibration information of normal and faulty bear-
ings. There are three types of bearing faults, including inner race, outer race and ball. The bearings include three 
different diameters, so there are nine different bearing fault labels. The dataset we used is shown in Table 1.
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Figure 5.  Hard triplets.

Figure 6.  Semi-hard triplets.
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In order to verify the robustness of the algorithm, we add white noise with mean value of 0 and standard devi-
ation of 0.2 to the original data, and use the data after adding noise for model training to test whether the model 
can accurately judge the samples with insignificant features. The data after adding noise is shown in the Fig. 9.

After adding noise, the characteristics of data have become less obvious, and the similarity of similar char-
acteristics decreases after adding random noise, which requires the model to have good robustness to deal with 
these changes.

Experiment. Experimental steps: 

1. Process the vibration data of the bearing and add appropriate labels to the vibration data.
2. Add white noise to the vibration data to make the data characteristics less obvious.

Figure 7.  Training flow of triplet network and SVM.

Figure 8.  Block diagram of the proposed model.
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3. Divided the collected raw vibration data into training dataset and test dataset, and trained the network.
4. Inputed all training samples into the model, calculated the high-order features of all training samples, and 

used the high-order features to train the SVM classifier.
5. Test samples are input into the model to train high-order features, and inputed the high-order features into 

the trained SVM classifier for classification to verify the effectiveness of the proposed method.

In order to verified feasibility and superiority of the method, standard SAE, SDAE, and CNN were used for 
comparison. All the following experiments were performed in python code.

• The key parameters of SAE: Encoder contains a 6-layer neural network, including three convolutional lay-
ers and three down-sampling layers. To map the original vibration data into a 64-dimensional space vector, 

Table 1.  Data Castle bearings dataset.

Diameter Fault location Samples Label

Normal 177 0

Diameter1 Outer race 141 1

Inner race 140 2

Ball 52 3

Diameter2 Outer race 51 4

Inner race 50 5

Ball 47 6

Diameter3 Outer race 46 7

Inner race 45 8

Ball 43 9

Figure 9.  Fault bearing vibration data waveform.
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decoder contains 3 deconvolution layers to restore the 64-dimensional space vector to vibration data. We 
use Gaussian kernel function, the penalty coefficient is 1, and the Gamma value is 1/64. The 64-dimensional 
space vector output by the Encoder is input to the SVM classifier for classification.

• The key parameter of SDAE: Gaussian noise is added to the original data. The mean value of the added 
Gaussian noise is 0, and the standard deviation is 0.05. Other parameters of SDAE are the same as SAE.

• The key parameters of the CNN model: The end-to-end CNN model has 6 hidden layers, the first layer is 
One-dimensional convolutional layer which has 32 convolution kernels, the second layer is down-sampling 
layer, the third layer is One-dimensional convolutional layer which has 64 convolution kernels. The fourth 
layer is down-sampling layer. The fifth layer is One-dimensional convolutional layer which has 128 convolu-
tion kernels. The sixth layer is global average pooling layer. The seventh layer is fully connected layer with 
64 neurons. The output layer activation function is softmax. Optimizer is RMSprop. Learning efficiency is 
set to 0.0003, and the loss function uses sparse categorical crossentropy.

• The first layer of the Triplet network is convolutional layer with 32 convolution kernels. The second layer is 
downsampling layer. The third layer is convolutional layer with 64 convolution kernels. The fourth layer is 
downsampling layer. The fifth layer is convolutional layer with 128 convolution kernels. The sixth layer is 
global average pooling layer. The seventh layer is fully connected layer with 64 neurons. The eighth layer is 
L2 regular layer. Margin value is 1. Optimizer is RMSprop. The learning rate is 0.0003. The trained triplet 
network is equipped with feature mapping capabilities. SVM classifier are used for classification in the feature 
space. The kernel function of SVM is set to linear kernel, the penalty coefficient is 10.

Table 2 lists the average test accuracy of each model. Through analysis of the training results, it is found that the 
classification accuracy of triplet network+SVM reaches 96.31%, and the classification accuracy is much higher 
than SAE+SVM and DAE+SVM. Due to the lack of inter-sample reference, the traditional encoder network only 
pays attention to the difference between the decoded signal and the original signal, and may discard some subtle 
features. These features may have high weights when doing classification. The end-to-end CNN network is not 
as good as triplet network+SVM due to the small sample size.

As shown in Fig. 10, it can be seen from the confusion matrix that the signals misclassified by SAE+SVM and 
DAE+SVM are similar to their correct classification, which means that the signal compressed by the autoen-
coder loses some information for classification. This causes the accuracy of the SVM classifier to decrease. the 
classification error of end-to-end CNN model reaches 89.01%. However, due to the insufficient sample size, it is 
difficult to further improve the predictive ability of the model. Training triplet network on a small sample dataset, 
the network learned how to distinguish samples with different labels. This makes the distance between samples 
of the same type smaller in the feature space, and samples of different types become larger in the feature space.

In order to compare the feature extraction capabilities of the methods, PCA dimensionality reduction was 
performed on the output of the three models. Select the first two principal components to visualize the features.

It can be seen from Fig. 11 that the different types of data that have been reduced by the Triplet network are 
far apart in the feature space, and the network has learned the differences between the data. However, the high-
dimensional features learned by SAE and DAE cannot find the difference between different types of data well.

The Calinski-Harabaz Index(CH) is used to evaluate classification of feature spaces. The tightness within 
the class is measured by calculating the sum of the squares of the distance between each point in the class and 
the class center. The degree of separation of the dataset is measured by calculating the sum of squared distances 
from various center points. The function is:

n represents the number of samples in dataset, K represents the number of categories. The values of WGSS and 
BGSS are obtained by formula 9 and 10:

(8)CH(k) =
BGSS

K − 1

/

WGSS

n− K

(9)WGSS =
1

2

[

(n1 − 1)d
2
1 + · · · + (nk − 1)d

2
k

]

(10)BGSS =
1

2

[

(K − 1)d
2
+ (n− K)AK

]

Table 2.  Test accuracy of each model.

Method Dimension of input data Diagnosis result

SAE+SVM 6000 86.50%

SDAE+SVM 6000 84.66%

CNN 6000 89.01%

Triplet network+SVM 6000 96.31%
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d
2
j  represents the average distance between samples of type j, j = 1, 2, · · · , k . d2 is the average distance between 

all samples.

(11)AK =
1

n− K

K
∑

i

(ni − 1)(d
2
− d

2
i )

Figure 10.  Multi-class confusion matrix of the proposed method: (a) SAE+SVM; (b) SDAE+SVM; (c) CNN; 
(d) Triplet network+SVM.

Figure 11.  PCA dimension reduction feature visualization: (a) SAE; (b) SDAE; (c) Triplet network.
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The larger the CH index value, the smaller the intra cluster distance, the larger the intra cluster distance, 
the higher the degree of intra-class aggregation, the higher the degree of distinction between classes, and the 
easier it is to classify. The smaller the CH index value, the larger the distance within the class, and the smaller 
the distance between the classes, which makes it difficult to classify. The CH index values of SAE, SDAE, and 
triplet network are shown in Table 3.

XJTU‑SY bearing dataset. Introduce. The bearing testbed consists of supporting shaft, motor governor, 
AC induction motor, hydraulic loading system and two supporting bearings. The testbed is designed for accel-
erated degradation test of bearings under different working condition. The radial force is exerted on the shell 
of the tested bearing by the hydraulic loading system, and the speed controller of AC induction motor sets and 
maintains the speed of the whole shaft  system39. As shown in Fig. 12.

The acceleration sensor used in the experiment is PCB 352c33. The sensor is installed on the magnetic base, 
which is fixed on the vertical and horizontal direction of the test bearing. The dynamic signal collector uses DT 
9837. the sampling frequency of the original data is 25.6 khz, the sampling interval of the original data is 1 min, 
and the sampling time of the original data is 1.28 s. Table 4 shows the detailed information of each tested bearing, 
including its corresponding operating conditions, bearing lifetime and failure location.

Figure 13 shows the failure bearings. It can be observed that the bearing failure is mainly caused by outer 
race wear, inner race wear, outer race fracture and cage fracture. More than two types of composite damage may 
occur to the bearing. Compound damage has multiple waveform characteristics of damage locations, which 
increases the difficulty of classification. The method adopted in this paper is to assign separate labels for com-
pound damage.

Experiment. XJTU-SY Bearing Dataset contains the full lifecycle vibration signals of 15 bearings. In order to 
divide the dataset, we take the data with amplitude less than 3g as the vibration data of normal bearing and the 
data greater than 5g as the vibration data of faulty bearing. Since the collected signals are vibration signals in 
both the vertical and horizontal directions, the two channels of the vertical vibration signal and the horizontal 
vibration signal are used as the input of the model.

In order to verify the robustness of the four models, we add white noise with mean value of 0 and standard 
deviation of 2 to the original data, as shown in the Fig. 14, in which the blue curve is horizontal vibration data 
and the Yellow curve is vertical vibration data.

Table 3.  CH index of each algorithm.

Method CH Index

SAE 36.42

SDAE 73.74

Triplet network 1015.91

Figure 12.  Testbed of rolling element bearings.
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Train SAE, SDAE, CNN and triplet network models, and input test dataset into the model. The results are 
shown in Table 5.

It can be seen that the results of triplet network+SVM on XJTU-SY Bearing Dataset are better than CNN, 
DAE+SVM and SAE+SVM. The classification accuracy of the triplet network+SVM reached 97.09%. The self-
encoder is better than the end-to-end CNN.

Conclusion
We propose a bearing faults classification method based on triplet network and SVM. In this paper, the proposed 
method consists of two main steps. First, we propose a one-dimensional convolution model based on Triplet 
loss. The input of the model is original vibration data of bearings and the output is 64-dimensional high-order 
features. The loss function calculates the L2 norm distance between samples in the high-order feature space. this 
makes the distance between the same category closer, the distance between different category farther. Second, 
use SVM to classify in the high-order feature space. Two examples were given to illustrate the superiority of this 
method in dealing with small sample classification problems. The triplet network based on the CNN model can 
well extract the high-order features of the one-dimensional vibration signal, and these features can well express 
the difference between the signals. Compared with CNN, DAE+SVM, SAE+SVM, the algorithm performs better 
on small sample classification problems, and can accurately determine the fault category of bearing.

Table 4.  XJTU-SY bearing dataset.

Operating condition Dataset Lifetime Fault location Label

Condition 1(35Hz/12kN)

Bearing1 2h3min Outer race 1000

Bearing2 2h41min Outer race 1000

Bearing3 2h38min Outer race 1000

Bearing4 2h2min Cage 0100

Bearing5 52min outer race and Inner race 1010

Condition 2(37.5Hz/11kN)

Bearing6 8h11min Inner race 0010

Bearing7 2h41min Outer race 1000

Bearing8 8h53min Cage 0001

Bearing9 42min Outer race 1000

Bearing10 5h39min Outer race 1000

Condition 3(40Hz/10kN)

Bearing11 42h18min Outer race 1000

Bearing12 41h36min Outer race, ball, cage and Inner race 1111

Bearing13 6h11min Inner race 0010

Bearing14 25h15min Inner race 0010

Bearing15 1h54min Outer race 1000

Figure 13.  Failure bearings: (a) inner race wear; (b) cage fracture; (c) outer race wear; (d) outer race fracture.
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Although the existing algorithms have conducted in-depth research on the fault classification of rotating 
machinery, there is still a lack of systematic research on the early warning of fault. Next, we will study the early 
fault diagnosis and fault location identification of bearing, so as to predict the possible faults of bearing earlier. 
Early warning can avoid equipment damage caused by bearing failure.

For data citations of datasets uploaded to e.g. figshare, please use the howpublished option in the bib entry 
to specify the platform and the link, as in the Hao:gidmaps:2014 example in the sample bibliography file.
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