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In vivo imaging with two‑photon 
microscopy to assess 
the tumor‑selective binding 
of an anti‑CD137 switch antibody
Chisato Kaneko1, Haruka Tsutsui2, Kazuhisa Ozeki1*, Masaki Honda1*, Kenta Haraya2, 
Yoshinori Narita3, Mika Kamata‑Sakurai4, Junichi Kikuta5,6, Mitsuyasu Tabo2 & 
Masaru Ishii5,6,7

STA551, a novel anti‑CD137 switch antibody, binds to CD137 in an extracellular ATP concentration‑
dependent manner. Although STA551 is assumed to show higher target binding in tumor tissues 
than in normal tissues, quantitative detection of the target binding of the switch antibody in vivo 
is technically challenging. In this study, we investigated the target binding of STA551 in vivo using 
intravital imaging with two‑photon microscopy. Tumor‑bearing human CD137 knock‑in mice were 
intravenously administered fluorescently labeled antibodies. Flow cytometry analysis of antibody‑
binding cells and intravital imaging using two‑photon microscopy were conducted. Higher CD137 
expression in tumor than in spleen tissues was detected by flow cytometry analysis, and T cells and 
NK cells were the major CD137‑expressing cells. In the intravital imaging experiment, conventional 
and switch anti‑CD137 antibodies showed binding in tumors. However, in the spleen, the fluorescence 
of the switch antibody was much weaker than that of the conventional anti‑CD137 antibody and 
comparable with that of the isotype control. In conclusion, we were able to assess switch antibody 
biodistribution in vivo through intravital imaging with two‑photon microscopy. These results suggest 
that the tumor‑selective binding of STA551 leads to a wide therapeutic window and potent antitumor 
efficacy without systemic immune activation.

CD137 is a costimulatory receptor, and stimulation of CD137 promotes T-cell survival, proliferation and effector 
 function1,2. Several anti-CD137 agonist antibodies are being developed for the treatment of  cancer3. In clinical 
trials, two monoclonal antibodies, urelumab (BMS-663513) and utomilumab (PF-05082566), have been admin-
istered to patients with  tumors3. However, urelumab has been found to cause severe hepatotoxicity in phase I 
and II  studies4. Utomilumab shows lower toxicity than urelumab but has less antitumor  efficacy5,6. To overcome 
the issues facing conventional anti-CD137 antibodies, we generated an anti-CD137 agonist switch antibody, 
 STA5517. STA551 only binds to CD137 in the presence of ATP; the binding is not detectable in the absence of 
ATP. A previous study reported that an anti-CD137 switch antibody showed antitumor efficacy in various tumor 
models without systemic immune activation. A conventional anti-CD137 antibody induced splenomegaly, lym-
phadenopathy, and activation of T cells in normal tissues. On the other hand, the anti-CD137 switch antibody 
did not induce these responses in normal tissues. The data suggest that STA551 is a novel antibody that shows 
CD137-agonistic activity selectively in tumors.

Antitumor efficacy data in various mouse models and ex vivo analysis data have suggested that STA551 binds 
selectively to CD137 in tumors, but quantitative detection of conventional and switch antibody biodistribution in 
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tumor and normal tissues under physiological conditions has been a  challenge7. ATP exists inside and outside the 
cell, and the intracellular ATP concentration is much higher than the extracellular ATP (exATP)  concentration8. 
Additionally, exATP levels are different between tissues. ExATP in tumor interstitial fluid is reported to be 
approximately 100 μM, whereas plasma and normal tissues contain low exATP levels (10–100 nM)8–10. When 
animals are autopsied and tissues are sampled in ex vivo experiments, the ATP concentrations change based 
on the physiological conditions. ExATP and/or intracellular ATP might be degraded spontaneously or enzy-
matically, or intracellular ATP might be released from the cells during the process of ex vivo analysis. Thus, it 
is difficult to quantitatively detect STA551 binding to the target under physiological conditions using ex vivo 
analysis. Clarifying the minimal binding of STA551 in normal tissues in vivo would provide clear evidence of 
the reduced level of systemic immune activation mediated by STA551. Therefore, we aimed to find a working 
method for elucidating STA551 biodistribution in vivo.

Confocal fluorescence microscopy has been widely used to observe cell  physiology11. This tool enables obser-
vation of high-resolution fluorescence images of cells and tissues. Since confocal microscopy uses single-photon 
absorption processes to produce images, it can only visualize tissues at depths of up to 100 μm12. In the last 
two decades, two-photon microscopy has been developed, which is an advanced form of microscopy that uses 
two-photon absorption processes to visualize  images13,14. Since two-photon microscopy uses long-wavelength 
lasers that have low energy, it causes low phototoxicity and can be used for long-term imaging in a living ani-
mal. In addition, long-wavelength light can penetrate deeper into tissues than short-wavelength light, which 
enables observation not only of the surface but also of deep tissues. Another advantage of this imaging technol-
ogy is its high resolution. Compared to Positron emission tomography (PET) and/or single-photon emission 
computed tomography (SPECT) technology, two-photon imaging technology gives higher-resolution images. 
High-resolution images enable observation of detailed aspects of cell physiology, such as cell morphology, cell 
movement, and cell–cell  interactions15,16. Since two-photon microscopy is much better for intravital imaging 
than single-photon microscopy, two-photon technology has recently been utilized to detect cell physiology in 
several tissues, including bone, brain and tumor  tissues17–20.

Intravital imaging using two-photon microscopy may be the most appropriate way to detect switch antibody 
binding to target cells for three reasons. First, two-photon microscopy can visualize various tissues, including 
tumor, spleen and lymph node tissues, to a considerable depth. The difference in distribution between tumor and 
normal tissues should be detected. Second, it enables images to be obtained in a living animal with physiological 
ATP concentrations in each tissue. Compared to ex vivo analysis, intravital imaging enables antibody binding to 
be evaluated without injuring the cells or significantly interfering with the ATP concentration. Thus, the binding 
of a switch antibody should be able to be detected under physiological conditions by intravital imaging. Third, 
high-resolution images enable observation of antibody binding to target cells.

In this study, we aimed to clarify the target binding of STA551 in tumor and normal tissues in vivo. First, we 
investigated CD137 expression in tumor-bearing human CD137 knock-in mice (hCD137-KI mice) and identi-
fied cell populations expressing CD137. Second, we administered a conventional CD137-agonistic antibody to 
tumor-bearing hCD137-KI mice and detected antibody-binding cells by flow cytometry. Finally, we administered 
the switch or conventional CD137-agonistic antibody to mice and confirmed the different distributions of these 
antibodies in the tumor and spleen using two-photon microscopy.

Results
To clarify the target binding of STA551 in tumor and normal tissues in vivo, we used a three-step process (Fig. 1). 
STA551 binds to CD137 in humans and cynomolgus monkeys but does not bind to murine  CD1377. Therefore, 
we used hCD137-KI  mice7 to investigate STA551 binding to the target.

To investigate CD137 expression in hCD137-KI mice, we created an LLC1/OVA/hGPC3 model and detected 
CD137 expression by flow cytometry (Fig. 2). We first analyzed CD137 expression on  CD45+ cells in the tumor 
and spleen.  CD45+ cells in tumor tissue showed higher CD137 expression than those in spleen tissue (Fig. 2A). 
CD137 expression was observed in 2–8% of  CD45+ cells in tumor tissue and in fewer than 2% of  CD45+ cells 
in spleen tissue. Among  CD45+ cells,  CD8+ T cells and NK cells had high CD137 expression (Fig. 2B). CD137 
expression on  CD4+ T cells and  CD11b+ cells was also detected (Fig. 2B). These data suggested that the anti-
CD137 antibody distributed more to tumor tissue than to spleen tissue and bound to  CD45+ cells, especially 
 CD8+ cells and NK cells.

In previous research, to evaluate the in vivo antitumor efficacy of STA551, tumor-bearing mice were treated 
with Sta-MB and Ure-MB. Sta-MB has the same variable region as STA551 and has MB as the constant region, 
which is an engineered constant region of mouse IgG1 to increase binding activity to mouse Fc gamma receptor 
II (FcγRII). Ure-MB has a urelumab-like Fab and MB as the constant region. Ure-MB was used as a conventional 
CD137 agonist antibody, in contrast to Sta-MB, an anti-CD137 switch  antibody7. To investigate anti-CD137 
antibody binding in tissues, we administered Alexa Fluor 488-labeled Ure-MB and an isotype control antibody 
(anti-KLH-MB) to tumor-bearing hCD137-KI mice. These antibodies were administered at a dose of 1 mg/kg 
twice. Sta-MB was not used because it can potentially dissociate from the target during the process of ex vivo 
analysis. Ure-MB was detected not only in the tumors but also in the spleen tissues (Fig. 3A,B). Ure-MB bound 
to 5–30% of  CD45+ cells in tumors and 10–25% of  CD45+ cells in the spleen. In addition, Ure-MB bound to  CD4+ 
T cells,  CD8+ T cells and  CD11b+ cells (Fig. 3D). NK cells in tumors were not detected in this experiment. In 
tumors, the isotype control antibody bound to  CD45+ cells, especially  CD11b+ cells (Fig. 3B,C). CD137 expres-
sion was not evaluated because Ure-MB binds to the same site of CD137 as the detection antibody. Given that 
the Ure-MB binding population was consistent with the CD137-expressing population shown in Fig. 2B, Ure-
MB should bind to CD137-expressing immune cells. Taken together, these results indicate that Ure-MB binds 
to targets in both tumor and normal tissues.
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To verify the target binding of STA551 in vivo, we investigated the distribution of Sta-MB in tumor and 
spleen tissues. Alexa Fluor 488-labeled Ure-MB, Sta-MB, and isotype control antibodies were administered 
to tumor-bearing hCD137-KI mice and detected by two-photon microscopy. In tumors, fluorescence from all 
antibodies was detected (Fig. 4A,C, Suppl Fig. 2). However, Sta-MB showed weaker fluorescence in the spleen 
than Ure-MB (Fig. 4B,C), and the Sta-MB fluorescence was comparable to that of the isotype control antibody. 
These data suggested that Sta-MB distributes and binds differently in the tumor and spleen in vivo and shows 
little binding to CD137 in the spleen.

Discussion
In this study, we revealed that an anti-CD137 switch antibody binds to target cells differently in tumor and spleen 
tissues in vivo by using two-photon microscopy. We first examined the CD137 expression levels in tumor and 
spleen tissues in tumor-bearing hCD137-KI mice. A conventional anti-CD137 antibody was then administered 
to tumor-bearing hCD137-KI mice to determine the distribution of the antibody to tumor and spleen tissues. 
Finally, two-photon microscopy was used to detect the distribution of the anti-CD137 switch antibody to tumor 
and spleen tissues in vivo.

To confirm the different binding abilities of STA551 between tissues in vivo, we needed to detect the distribu-
tion of antibodies in a noninvasive way to minimize ATP concentration changes in tissues. Therefore, we used 
two-photon microscopy to detect the antibodies intravitally. In experiments using two-photon microscopy, it 
can be time-consuming to prepare animals, optimize imaging, and monitor the animals. On the other hand, 
in ex vivo analysis using flow cytometry, several experimental conditions, such as the dosing regimen, can be 

Figure 1.  Research strategy for detection of antibody binding in tissues by two-photon microscopy. In Step 1, 
human CD137 expression was examined in tumor-bearing hCD137-KI mice. In Step 2, a fluorescently labeled 
anti-CD137 antibody was administered to hCD137-KI mice. Finally, antibody-binding cells in the tumor and 
spleen were detected by two-photon microscopy in Step 3.

Figure 2.  Human CD137 expression in LLC1/OVA/hGPC3-bearing hCD137-KI mice. Tumors and spleens 
were sampled at 24 h after administration of PBS (closed symbols) or an isotype control antibody (open 
symbols). (A) Human CD137 expression on  CD45+ cells in tumor and spleen tissues. The individual values 
and mean for each tissue are shown. **P < 0.01 by t test. (B) Human CD137 expression on each type of cell. The 
percentage of human CD137-positive cells for each cell type was calculated by flow cytometry. The individual 
values and mean for each cell type are shown.
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verified with improved throughput. In addition, ex vivo studies can detect the expression of target molecules and 
the binding of antibodies and identify the types of cells. Establishing optimal imaging conditions for intravital 
imaging by using ex vivo flow cytometric analysis would be useful for studying antibody distribution in vivo.

In this study, in vivo imaging revealed that Sta-MB distributed and bound to the cells in tumor tissue 
much more than in spleen tissue. It has been suggested that the toxicity induced by anti-CD137 antibodies is 
CD137 dependent and that T-cell and macrophage infiltration and cell-secreted cytokines are involved in the 
 pathogenesis21–23. Ure-MB was highly distributed to not only tumor tissue but also spleen tissue, and it seemed 
to lead to systemic toxicity by inducing CD137 signaling in normal tissues. Our findings suggest that the tumor-
selective target-binding ability of STA551 avoids the systemic reaction caused by conventional anti-CD137 
antibodies.

Figure 3.  Anti-human CD137 antibody-binding cells in LLC1/OVA/hGPC3-bearing hCD137-KI mice. 
An Alexa Fluor 488-labeled isotype control antibody or Ure-MB was administered twice at a dose of 1 mg/
kg. The tissues were sampled the day after the second administration. (A) Representative data plot of Alexa 
Fluor 488-labeled antibody-binding  CD45+ cells in tissues. The population in the square represents Alexa 
Fluor 488-positive cells. (B) Percentage of Alexa Fluor 488-labeled antibody-binding  CD45+ cells. Alexa Fluor 
488-positive cells were detected in each tissue. The data were collected from three mice in each group. *p < 0.05 
by t test. (C,D): (C) Alexa Fluor 488-labeled isotype control antibody binding and (D) Alexa Fluor 488-labeled 
Ure-MB binding for each type of cell in the tumor and spleen. The percentage of Alexa Fluor 488-positive cells 
for each cell type was calculated by flow cytometry. #NK cells in tumors were not detected in this experiment.

Figure 4.  Detection of switch and nonswitch antibody-binding cells by two-photon microscopy. An Alexa 
Fluor 488-labeled isotype control antibody, Ure-MB or Sta-MB was administered twice at a dose of 1 mg/kg. 
Intravital imaging by two-photon microscopy was conducted the day after the second administration. (A,B) 
Representative images of Alexa Fluor 488-labeled antibody distribution in (A) tumor and (B) spleen tissues. To 
visualize blood vessels, Qtracker 655 vascular labels were intravenously administered just before observation by 
two-photon microscopy. Green, Alexa Fluor 488-labeled antibody; magenta, blood vessels; blue, collagen fibers. 
(C) Quantitative analysis of Alexa Fluor 488-labeled antibody fluorescence. The antibody-binding regions in the 
tumor and spleen were detected from images of three or four mice. **p < 0.01, ***p < 0.001 by Tukey’s multiple 
comparisons test.
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Ure-MB, a conventional anti-CD137 antibody, bound to cells in tumor and spleen tissues. Ure-MB mainly 
bound to T cells and NK cells, consistent with cell populations in which CD137 expression was observed (Fig. 2B) 
or previously  reported24. This suggested that Ure-MB bound to the cells in a CD137-dependent manner. There 
were two possible reasons why the binding of Ure-MB was greater than the expression of CD137. The first reason 
is that the administration of antibody increased the expression of CD137 molecules. CD137 agonist signals are 
known to activate T cells and other immune cells, leading to increased expression of  CD13725. Ure-MB admin-
istered to mice might bind to CD137, introduce CD137 agonist signals in the tumor and spleen and induce 
increased expression of CD137 in tissues. The second reason is that the Fc region mediates binding of Ure-MB. 
Ure-MB, the isotype control antibody and Sta-MB have engineered Fc regions that bind to murine FcγRs, par-
ticularly FcγRII7, and FcγRII is predominantly expressed in myeloid lineage  cells26. The isotype control antibody 
bound to  CD45+ cells, especially  CD11b+ cells, suggesting that the antibody bound to the cells via the Fc region. 
However, the binding of Ure-MB to  CD11b+ cells was comparable with that of the isotype control antibody in 
either tumor or spleen tissue, suggesting that Fab-mediated binding was more prevalent than Fc-mediated bind-
ing. In addition, since the main Ure-MB-binding cells were confirmed to be CD137-expressing cells, such as T 
cells and NK cells, binding of Ure-MB to cells was thought to be primarily mediated by Fab.

There are some limitations to detecting antibodies in vivo by intravital imaging with two-photon micros-
copy. Two-photon microscopy can detect fluorescently labeled antibodies whether the antibodies are bound or 
unbound to the cells. In this study, the binding of the isotype control antibody observed in tumors seemed similar 
to that of Ure-MB, and Sta-MB showed poor binding. As shown in Table 1 and Suppl Fig. 1, the concentration 
of the isotype control antibody in tumors was higher than that of the other two antibodies, and Sta-MB had the 
lowest concentration among the three antibodies. Therefore, it is possible that more fluorescence derived from 
unbound isotype control antibodies, such as antibodies present in the interstitial fluid, and less fluorescence 
derived from unbound Sta-MB were detected in the intravital imaging experiment. Regarding the isotype control 
antibody, Fc-mediated binding was also detected because binding to  CD11b+ cells was observed in flow cytometry 
analysis. In addition, only a limited area of tissues can be observed by two-photon microscopy because of the 
limited penetration of the laser into tissues and because of the manipulation of tissues. Since tissues, especially 
tumors, are not homogeneous, the extracellular ATP concentration is assumed to be heterogeneous within the 
tumor tissue. Hence, it is possible that Sta-MB, which binds to the target in the presence of a high extracellular 
ATP concentration, was observed at reduced levels in tumors for this reason. Another possible reason for the 
poor binding of Sta-MB in tumors is internalization of the antibody into the cell. Although a previous study 
has reported that antibody internalization does not differ considerably between Sta-MB and Ure-MB7, the exact 
internalization property in vivo is not known. Thus, it is possible that Sta-MB was quickly internalized into cells 
and degraded in this study. The fluorescence of Sta-MB detected in tumors was low in this study, while Sta-MB 
showed a stronger antitumor effect than Ure-MB in a previous efficacy study that used a similar dosing regi-
men to that in this  research7. Therefore, Sta-MB is considered to bind CD137 and exhibit antitumor efficacy via 
CD137-agonistic activity in tumors.

STA551 is designed to strongly bind to CD137 in the presence of 100 μM ATP but not in the absence of  ATP7. 
Murine ATP levels have been reported to be approximately 100 μM in tumor tissues and 10–100 nM in normal 
 tissues8,9,27. However, it is difficult to measure exact ATP concentrations under physiological conditions because 
ATP concentrations change depending on the sampling and measurement conditions due to degradation of ATP 
and release of intracellular ATP. This study revealed that Sta-MB showed binding in tumors and little binding in 
the spleen. These data suggest that under physiological conditions, tumors have ATP levels of 100 μM or higher, 
and normal tissues have lower ATP levels. The present imaging results may be useful for estimating ATP levels 
in tissues under physiological conditions. In addition, human ATP levels have been reported to be 10–100 nM 
in normal  tissues27 and more than 10 μM in tumors; thus, there is an approximately 1000-fold difference in ATP 
concentration between tumor and normal tissues, similar to the situation in  mice28. Considering the similarity 
in ATP distributions in human and mouse tissues, it is anticipated that STA551 will also exhibit tumor-selective 
binding in humans. Thus, STA551 is expected to exert antitumor efficacy with tumor-selective CD137 signals 
while reducing systemic reactions, even in human patients.

In conclusion, we showed that STA551 distributes to tumors but distributes little to the spleen. This STA551 
distribution clarifies why STA551 works in tumors but not in normal tissues. Although intravital imaging with 
two-photon microscopy has some limitations in detecting antibodies, this technology is useful for noninvasive or 
intravital observation, such as detection of switch antibodies. Ex vivo techniques such as flow cytometry can be 
used in combination with two-photon microscopy to set experimental conditions and further interpret intravital 

Table 1.  Antibody concentrations in plasma and tissues. An Alexa Fluor 488-labeled isotype control 
antibody, Ure-MB or Sta-MB was administered twice at a dose of 1 mg/kg. Tissues were collected the day 
after the second administration. The antibody concentrations in plasma and tissue lysates were measured by 
electrochemiluminescence (ECL) assay.

Antibody

Concentration (µg/mL plasma or µg/g tissue) T/P

Plasma Spleen Tumor Spleen Tumor

Ure-MB 4.7 1.2 1.1 0.26 0.25

Sta-MB 5.5 0.5 0.6 0.09 0.11

Isotype control 8.0 1.5 5.0 0.19 0.62
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imaging results. Because of its lower distribution in normal tissues than in tumor tissues, STA551 could be a 
promising therapeutic antibody for patients with cancers that are currently difficult to treat.

Methods
Cell line. LLC1/OVA/hGPC3 cells were established by transfecting human GPC3 and chicken ovalbumin 
(OVA)-expressing plasmids into LLC1 cells, which were purchased from the ATCC 7,29.

Animals. The animal studies were carried out in compliance with the ARRIVE guidelines (https:// arriv eguid 
elines. org/). All animal studies were conducted in accordance with the animal treatment policy of the Institu-
tional Animal Care and Use Committee (IACUC) at Chugai Pharmaceutical Co., Ltd., and the Animal Experi-
ments Committee of Osaka University. The animal experiments were performed in accordance with the Guide-
lines for the Care and Use of Laboratory Animals at Chugai Pharmaceutical Co., Ltd., which is accredited by the 
Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) International. All animal 
studies were approved by the Institutional Animal Care and Use Committee (IACUC) at Chugai Pharmaceutical 
Co., Ltd., and the Animal Experiments Committee of Osaka University. To create a subcutaneous tumor model 
for the in vivo antibody distribution study, 1.0 ×  106 LLC1/OVA/hGPC3  cells7 were subcutaneously inoculated 
into 8-week-old hCD137-KI male  mice7. The hCD137-KI mice were generated by replacing mouse CD137 with 
human CD137. They did not express the mouse CD137 gene or protein but rather expressed the human CD137 
gene and  protein7.

Antibody labeling. An Alexa Fluor 488 Antibody Labeling Kit (Thermo Fisher Scientific) was used to label 
Ure-MB, Sta-MB, and the isotype control antibody (anti-KLH-MB). The binding of labeled Ure-MB and Sta-MB 
to human CD137 in the presence and absence of ATP was determined by Biacore assay.

In vivo study in hCD137‑KI mice. The in vivo study was performed according to previously reported 
 procedures30 with some modifications. The experimental conditions, including the dosing regimen, were set 
up to align with the conditions under which Sta-MB showed antitumor efficacy in a previous  study7. Approxi-
mately 3 weeks after LLC1/OVA/hGPC3 tumor inoculation, 1 mg/kg Alexa Flour 488-labeled isotype control 
antibody or PBS was intravenously administered once, and CD137 expression was investigated. For the antibody 
distribution study, 1 mg/kg Alexa Flour 488-labeled antibodies were intravenously administered on Days 0 and 
3. Mice were anesthetized with isoflurane at 24 h after the administration. The mice were then observed by 
intravital two-photon microscopy or their plasma and tissues were collected for single-cell analysis and deter-
mination of the antibody concentrations in tissues. To determine the concentrations in tissues, each tissue sam-
ple was homogenized with a TissueLyser II (Qiagen) in lysis buffer (Cell Signaling Technology #9803) supple-
mented with cOmplete™ Protease Inhibitor Cocktail (Roche #04693116001). The homogenate was centrifuged 
at 14,000 rpm for 15 min at 4 °C, and the supernatant was collected for analysis. The antibody concentrations 
in plasma and tissue lysate were measured by electrochemiluminescence (ECL) assay using MULTI-ARRAY 
Standard 384-well plates (Meso Scale Diagnostics) coated with recombinant human CD137 (Sino Biological) or 
keyhole limpet hemocyanin (KLH) from Megathura crenulata (Sigma) and a biotinylated anti-mouse IgG anti-
body (Southern Biotech). The ECL signals were detected with a MESO SECTOR S 600 (Meso Scale Diagnostics) 
after adding SULFO-TAG-labeled Streptavidin (Meso Scale Diagnostics).

Flow cytometry. To analyze target expression and antibody distribution by flow cytometry, single-cell sus-
pensions of each excised organ were prepared according to the manufacturer’s protocol using a tumor dissocia-
tion kit (Miltenyi Biotec) or dissociated using glass slides. After lysing the red blood cells with Pharm Lyse (BD 
Biosciences), the cell suspensions were reconstituted with PBS containing 0.5% BSA and 2 mM EDTA to stain 
the cell surface and subcellular epitopes. The cell suspensions were stained with anti-CD45 Per-CP-Cy5.5 (30-
F11), anti-CD3e BUV496 (145-2C11), anti-CD4 BV786 (RM4–5), anti-CD8a PE-Cy7 (53–6.7), anti-CD19APC 
(1D3), anti-CD11b APC-Cy7 (M1/70), anti-CD49b BV421 (DX5), and anti-human CD137 PE (4B4-1) pur-
chased from BD Biosciences. The cell suspensions were also stained with Zombie Aqua (BioLegend). Following 
fixation, data were acquired on a FACS LSRFortessa™ X-20 (BD Biosciences). Data analysis was performed using 
FlowJo software (version 10.2).

Intravital two‑photon microscopy imaging. As a pretreatment before intravital two-photon micros-
copy imaging, mice were shaved, and the hair was removed with depilatory cream to prevent it from entering 
the visual field. The spleen and tumor were then surgically exposed and covered with cover glass using n-butyl 
cyanoacrylate glue (Vetbond Tissue Adhesive, 3M). Qtracker 655 Vascular Labels (Thermo Fisher Scientific) 
were intravenously administered into the mice just before imaging of the spleen and tumor to visualize the 
blood vessels in these tissues. An inverted multiphoton microscope (A1R-MP, Nikon) equipped with multi-
immersion objectives (20×, Plan Fluor, numerical aperture [NA], 0.75, Nikon) was used to observe the tumor 
and spleen. The microscope was driven by a Chameleon Vision II Ti:Sapphire laser (Coherent) tuned to 930 nm. 
The fluorescence was detected by an external non-descanned detector with four channels (Nikon), three dichroic 
mirrors (495, 560, and 593 nm) and four bandpass filters: 492 nm for the second harmonic generation (SHG) 
signal, 525/50 nm for Alexa Fluor 488, 575/25 nm for tdTomato, and 629/56 nm for Qtracker 655. Four to 11 
images of approximately 300 μm × 300 μm with a vertical step size of approximately 3 μm to a depth of approxi-
mately 100 μm were collected for each tissue and then analyzed by NIS-Elements integrated software (Nikon) 
to create the maximum intensity projection (MIP) images with median filters for noise reduction. The areas of 

https://arriveguidelines.org/
https://arriveguidelines.org/
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the antibody-binding regions in the tumor and spleen were detected by ImageJ software. The antibody-binding 
regions were extracted from the MIP images. The area fractions were calculated as the fluorescence area/total 
area in all images.

Statistical analysis. Statistical analyses were performed with GraphPad Prism 7.0 (GraphPad Software). 
The CD137 expression level and antibody distribution were compared by using Student’s t test. Antibody fluo-
rescence in the two groups was compared using Tukey’s multiple comparisons test. Significant values are marked 
as *p < 0.05, **p < 0.01, ***p < 0.001, and n.s.

Received: 30 November 2021; Accepted: 9 March 2022
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