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Meta‑analytical transdiagnostic 
neural correlates in common 
pediatric psychiatric disorders
Jules R. Dugré1,2*, Simon B. Eickhoff3,4 & Stéphane Potvin1,2*

In the last decades, neuroimaging studies have attempted to unveil the neurobiological markers 
underlying pediatric psychiatric disorders. Yet, the vast majority of neuroimaging studies still focus on 
a single nosological category, which limit our understanding of the shared/specific neural correlates 
between these disorders. Therefore, we aimed to investigate the transdiagnostic neural correlates 
through a novel and data‑driven meta‑analytical method. A data‑driven meta‑analysis was carried 
out which grouped similar experiments’ topographic map together, irrespectively of nosological 
categories and task‑characteristics. Then, activation likelihood estimation meta‑analysis was 
performed on each group of experiments to extract spatially convergent brain regions. One hundred 
forty‑seven experiments were retrieved (3124 cases compared to 3100 controls): 79 attention‑
deficit/hyperactivity disorder, 32 conduct/oppositional defiant disorder, 14 anxiety disorders, 22 
major depressive disorders. Four significant groups of experiments were observed. Functional 
characterization suggested that these groups of aberrant brain regions may be implicated internally/
externally directed processes, attentional control of affect, somato‑motor and visual processes. 
Furthermore, despite that some differences in rates of studies involving major depressive disorders 
were noticed, nosological categories were evenly distributed between these four sets of regions. 
Our results may reflect transdiagnostic neural correlates of pediatric psychiatric disorders, but also 
underscore the importance of studying pediatric psychiatric disorders simultaneously rather than 
independently to examine differences between disorders.

Common child psychiatric disorders generally include Attention-deficit/hyperactivity disorder (ADHD), Con-
duct/Oppositional Defiant Disorder (CD/ODD), anxiety disorders (ANX) and depressive disorders (DEP), which 
affect approximately 3.4%, 5.7%, 6.5% and 2.6% of children and adolescents in the world,  respectively1. Indeed, 
these are the most prevalent disorders in childhood, with age of onset being earlier than other disorders such 
obsessive compulsive disorder, substance use disorder and  schizophrenia2. Importantly, evidence suggests that 
comorbidity between these four pediatric psychiatric disorders is the norm rather than the exception. In fact, 
about half of children with ADHD, CD/ODD, ANX or DEP will receive an additional psychiatric disorder 
(comorbid condition) in the following  years3–10. Although these four diagnostic entities show large comorbidities 
in children and adolescent, theoretical pathophysiological models taking into account this high level of comor-
bidity remain largely  limited11.

Recently, there has been a growing body of literature suggesting that several  genetic12–16 and environmental 
risk  factors16–18 may be non-specific given that they increase the risk for a plurality of psychiatric disorders. 
Likewise, meta-analyses of structural and functional magnetic resonance imaging studies have shown that adult 
with psychiatric disorders may share several neurobiological  deficits19–23. For instance, during cognitive control 
tasks, transdiagnostic neural signatures in adults with psychiatric disorders (e.g., schizophrenia, bipolar, unipolar 
depression, anxiety and substance use) may involve the fronto-insular cortex (FIC), the dorsolateral prefrontal 
cortex and the dorsal anterior cingulate cortex (dACC) to anterior midcingulate/pre-supplementary motor area 
(aMCC/pre-SMA) and inferior parietal  lobule22. Similarly, during emotion processing, transdiagnostic features 
may include deficits in the FIC, amygdala, thalamus and dorso- and ventro-medial  PFC23. Although some dif-
ferences have been noticed between patients with and without psychotic  disorders22,23, the search for shared/
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specific neurobiological markers is of great interest for our understanding of the psychophysiological mechanisms 
underlying psychiatric disorders.

In functional neuroimaging literature in childhood/adolescents, studies that aimed to uncover the specific/
transdiagnostic neurobiological markers have been scarce. Indeed, a large majority of task-based fMRI studies has 
focused on a single psychiatric disorder, therefore limiting our ability to identify common/specific neurobiologi-
cal markers. Additionally, recent transdiagnostic fMRI meta-analyses have excluded disorders which predomi-
nantly emerge in childhood/adolescence such as ADHD and CD/ODD22,23. Nevertheless, past meta-analyses and 
reviews on  ADHD24–29, CD/ODD30–34.  ANX35–40 and  DEP41–48 seem to indicate qualitatively similar deficits in 
the anterior insula, medial and lateral prefrontal cortex, the amygdala and anterior to midcingulate cortex. Yet, 
there is a clear need for meta-analytical evidence of transdiagnostic neural correlates in children and adolescents. 
Although these results may provide substantial insight for our understanding of transdiagnostic brain alterations, 
classical meta-analytical approaches are prone to important biases. Indeed, authors’ categorization of groups of 
interest, categorization of fMRI tasks and the choice of task contrast may significantly alter results. In comparison 
to the classical meta-analytic approach which seeks to identify dysfunctional brain regions in predefined groups 
of interest, reverse inference meta-analytical method rather aims to discover main dysfunctional brain regions in 
which some particular groups may be over/underrepresented. The latter approach may address the limitations of 
the classic approach by searching for common/specific neural correlates irrespective of the task-characteristics 
or nosological categories. To our knowledge, only one study has investigated transdiagnostic features across 
adult samples through a region-of-interest (ROI) reverse-inference meta-analytical  method49. Given that a single 
region may be implicated in a wide range of cognitive processes and that co-activation patterns are important in 
inferring mental processes, the use of a data-driven method (rather than a ROI approach) is crucial to examine 
transdiagnostic features. Here, we carried out a meta-analysis that primarily aimed to identify groups of aber-
rant brain regions across pediatric psychiatric disorders using a data-driven meta-analytical method. Results 
from past meta-analyses on adult  samples22,23 and disorder-specific meta-analyses and  reviews24–42 suggest that 
transdiagnostic features may be expected in FIC (anterior insula/vlPFC), medial and lateral prefrontal and the 
dorsal anterior and anterior midcingulate cortices. However, considering that deficits in the amygdala is sys-
tematically observed in past meta-analyses on adult  ANX36,37 and  DEP41–48, but less extensively in CD/ODD30–34 
and not found in  ADHD24–29, we hypothesized that the former region would be more closely linked to ANX and 
DEP than the latter disorders.

Methods
Identification of included studies. Our search focused specifically on four diagnostic categories (i.e., 
ADHD, CD/ODD, ANX, DEP) since they are the most common psychiatric disorders in childhood and they 
show substantial comorbidity with each  other2–10. Given that meta-analyses and literature reviews on these dis-
orders have been published recently, we extracted data from their reference lists of  ANX37,38,40,  DEP41,42,50, CD/
ODD32,  ADHD29. Inclusion criteria were: (1) original manuscript from a peer-reviewed journal, (2) task-based 
functional MRI studies, (3) use of a whole-brain methodology (i.e., studies using ROIs were excluded) irrespec-
tively of the task constructs, (4) < 18 years old participants meeting criteria for at least one of the following pedi-
atric psychiatric disorder: (a) ADHD; (b) Disruptive disorder (CD/ODD); (c) ANX (i.e., Posttraumatic Stress 
Disorder, Generalized Anxiety Disorder, Social Anxiety Disorder) and/or (d) Unipolar Major Depressive Dis-
order. These inclusion criteria were followed to preserve an acceptable level of homogeneity within nosological 
categories. Effect of the disorder were extracted from fMRI studies, irrespectively of the direction (hypo/hyper 
activation) of the contrast, to create an aberrant activation map. Two experiments from the same study were 
considered as distinct if they included two different samples or two different fMRI tasks. Each experiment and 
sample’s characteristics were manually annoted and categorized. Coordinates of experiments that were reported 
originally in Talairach stereotaxic space were converted into MNI (Montreal Neurologic Institute) space.

Neurobiologically‑driven meta‑analytical procedure. Modeled activation & cross‑correlation matrix 
(step 1 & 2). Modeled activation (MA) map was created for each experiment (2  mm3 resolution) (Fig. 1, Step 
1). Each resulting MA map was converted into a 1D feature vector of voxel values (i.e. 2  mm3 grey matter mask in 
MNI space) and concatenated together to form an experiment (e) by voxel matrix (v) (147 experiments × 226,654 
voxels). Pairwise Spearman’s rank correlation was performed between the 1D feature vector of each experiments 
to obtain spatial similarity between maps (e by e symmetric correlation matrix) (Fig. 1, Step 2).

Correlation‑matrix‑based hierarchical clustering (step 3). In order to extract data-driven groups of experiments 
that showed similar brain topographic map, we performed a Correlation-Matrix-Based Hierarchical Clustering 
(CMHC) analysis, as previously used on meta-analytic  data51,52. The CMHC was carried out using correlation 
distance (1–r) (Fig. 1. Step 2) and average linkage method. We examined the most optimal number of clusters 
using the silhouette and calinski-harabasz indices, variation of information & adjusted rand index for a range of 
2 to 15  clusters53 (See Supplementary Material). After having found the final number of meta-analytical grouping 
(MAGs), solutions with less than 10 experiments were considered as outliers and excluded from further analy-
ses, given that analyses involving < 10 experiments drastically increases the risk that a single experiment drives 
the  results54. All these analyses were performed using Scikit-learn (version 0.21.3) in Python (version 3.7.4)55.

Meta‑analytical groupings (Step 4). Experiments (e) within each MAG were then meta-analytically processed 
(Step 4), using the activation likelihood estimate (ALE) algorithm (GingerALE version 3.0.2)56,57. Voxel-wise 
ALE scores were computed as the union of MA maps, which provide a quantitative assessment of spatial con-
vergence across experiments. These voxel-wise maps were cut off by a cluster-forming threshold. In fact, the size 
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of the supra-threshold clusters was compared against a null distribution of cluster sizes derived from artificially 
created datasets in which foci were shuffled across experiments, but the other properties of original experiments 
(e.g., number of foci, uncertainty) were  kept56. In the current study, we used the following statistical threshold: a 
voxel-level cluster forming threshold of p < 0.001 and a cluster-level family-wise correction (pFWE < 0.05), with 
5000  permutations54.

To examine under- and overrepresentations of nosological categories, task and sample characteristics within 
each MAG, we carried out one-tailed binomial tests comparing their prevalence with their base rate (across 
all experiments). Main effects of diagnosis, task and sample characteristics between MAGs were investigated 
through chi-squares (X2) and Kruskal–Wallis (H) tests. Literature bias was also assessed to compare differences 
between nosological categories in terms of task and sample characteristics (See Supplementary Material). Finally, 
for each MAG, we extracted functional characterization using the Behavioral Analysis plugin of the Multi-Image 
Analysis  GUI58. A z-score higher or equal to 3 is considered significant (i.e., p < 0.05 Bonferroni corrected for 
multiple comparisons).

Results
Identified studies and characteristics. A total of 124 original studies met the inclusion criteria for the 
meta-analysis, of which 11 involved more than one sample and 8 comprised two or more distinct fMRI task con-
trasts. This resulted in 147 experiments (1030 foci) involving 3199 cases that were compared to 3024 healthy con-
trols. Mean age of cases was 13.8 years old (SD = 2.25) and the average rate of boys across samples was 71.67%. 
(see Supplementary Material). Disorder-specific studies showed significant literature bias regarding the choice 
of neurocognitive task domains, average of sex ratio, and the average of prescribed medication per samples (See 
Supplementary Table).

Neurobiologically‑driven meta‑analysis. Clustering solution. Clustering solutions were investigated 
for a range of K = 2–15 MAGs with resampling method (90% subsamples and 5000 iterations). Average of the 
5000 iterations metric values for each K were plotted. Despite the fact that Calinski-Harabasz exhibited a mono-
tonic behavior (constantly increasing), results from the silhouette index (K = 8), aRI (K = 3 & K = 8) and variation 

Figure 1.  Workflow of the current study. Step 1: Creation of a MA map for each experiment, weighted by 
sample size. Step 2: Pairwise Spearman Rho correlation was performed between every MA map. Step 3: 
Clustering analysis was performed on the correlation matrix to extract groups of experiments sharing similar 
MA map. Step 4: ALE meta-analysis was conducted on experiments within each group. Phenotype assessment 
was then carried out to investigate under/over-representativeness of disorders, sample and task characteristics 
across identified groups.
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of information (from K = 2–3, from K = 6–7 & K = 7–8) indicated that the solution with 8 MAGs was the most 
optimal (See Supplementary Fig. 1).

Of the 8 MAGs, 4 comprised less than 10 experiments (n = 8, 3, 2 & 1, respectively). These were excluded 
from further analyses. The remaining 4 MAGs represented 90.58% of total sample of experiments (133 experi-
ments out of 147): MAG1 (577 subjects, 21 experiments and 120 foci), MAG2 (1848 subjects, 87 experiments, 
708 foci), MAG3 (197 subjects, 13 experiments, 52 foci), MAG4 (278 subjects, 12 experiments, 113 foci) (Fig. 2).

ALE meta‑analysis. As shown in Table 1 and Fig. 3, experiments of the MAG-1 had convergent peaks in the 
right rostrodorsal dorsomedial PFC (dmPFC) and the left caudal dmPFC  (see59), the left cerebellum (Lobule 
VI), the right dorsolateral prefrontal cortex (dlPFC, , Brodmann area (BA) 9/46d60) and the middle temporal 
gyrus (MTG). MAG2 included the right anterior MCC  (BA3261,62), the left amygdala and the left aMCC (BA24 
a’-b’61,62). Regarding the MAG3, spatial convergence was found in the right posterior precentral (BA4p) to post-
central gyri (BA2-3), the right supramarginal gyrus and the left postcentral gyrus (BA2) (IntraParietal  area263). 
Finally, spatial map of MAG-4 included occipital/cerebellar regions such as bilateral ventral extrastriate  cortex64, 
bilateral fusiform gyrus, bilateral Lobule VI, left calcarine gyrus and right posterior middle/inferior temporal 
gyrus.

Figure 2.  Hierarchical clustering of aberrant activation maps. This dendrogram represents the final hierarchical 
clustering model which grouped experiment showing similar aberrant activation maps. The 4 significant 
meta-analytical groupings (MAGs) represented 90.58% of total sample of experiments: MAG1 (green) = 21 
experiments and 577 subjects; MAG2 (black) = 87 experiments (1848 subjects); MAG3 = 13 experiments (197 
subjects) & MAG4 (cyan) = 12 experiments (278 subjects).
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Functional characterization of MAGs. Functional characterization of MAGs (i.e., MAG-wide & cluster-spe-
cific) was performed to examine their relationships with behavioral domains and paradigms of the BrainMap 
database (see Fig. 3, Supplementary Material):

MAG1: Experiments mainly included response inhibition (7) and reward decision-making tasks (5, e.g., 
Monetary incentive delay task). Functional characterization using the BrainMap database yielded no signifi-
cant behavioral/paradigm classes. However, bilateral dmPFC and anterior MTG/STG were positively associated 
(Z > 3.0) with social cognition/theory of mind, and negatively related (Z < − 3.0) with action execution. Interest-
ingly the left Lobule VI show positive association with action execution and negative relationship with social 
cognition, whereas dlPFC was related to action inhibition. In sum, this MAG may be characterized by deficits 
of brain regions subserving social cognition during cognitive & reward decision-making tasks.

MAG2: Experiments within this MAG primarily included task contrasts comprising an emotional component 
(k = 42) of which 24 used negative emotional stimuli (e.g., facial expression). MAG2 was characterized by a wide 
range of behavioral subdomains from the BrainMap Database including attention, face monitoring & discrimina-
tion and explicit episodic memory. Furthermore, the right aMCC/pre-SMA (Attention) shared similar cognitive 
domains with left amygdala (Face Monitoring/Discrimination) such as explicit memory, semantic monitoring 
and positive emotions/reward. Also, the right aMCC/pre-SMA and the left dACC were both associated with 
the somesthesis pain (monitoring and discrimination) domain. Given these findings, the co-occurrence of the 
dACC, aMCC/pre-SMA and the amygdala may be involved in stimulus-driven attentional control.

MAG3: Experiments within this MAG included a variety of cognitive and sensorimotor tasks (e.g., finger 
sequencing, anti-saccade, mental rotation, nback). Using the BrainMap Database, we observed that MAG3 was 
significantly associated with action execution and finger tapping. Region-specific analyses revealed that the three 
regions, the right posterior precentral/postcentral, the right SMG and left postcentral, shared action execution, 
finger tapping and somesthesis behavioral domains. In sum, brain regions of this MAG may encompass senso-
rimotor/action execution processes.

MAG4: Experiments from the MAG4 mainly included various cognitive tasks (10). Functional characteriza-
tion using the BrainMap database revealed significant associations with vision, passive viewing and speech execu-
tion. Region-specific analyses revealed that all but the calcarine were significantly related to vision. Furthermore, 
the right pMTG/ITG, the left pITG/FF and the right lobule VI shared face monitoring/discrimination, passive 
viewing, vision shape and covert naming domains. In short, MAG4 may reflect co-occurrent deficits in brain 
regions involved in visual processing during cognitive tasks.

Phenotype assessment 1: nosological categories. MAG1 was less likely to include DEP samples  (X2 = 4.16, 
p = 0.041), compared to all the other MAGs (Table 2). Indeed, proportions of DEP samples in MAG1 was sig-
nificantly lower than its base rate (0% versus 15.00%, one-tailed p = 0.028). Taking into account the between-
disorder literature bias revealed that the lower rates of DEP samples in MAG1 were replicated when restricting 
experiments to those using an emotional task contrast and mixed sex samples (Supplementary Material).

Table 1.  ALE meta-analysis results of each significant groups of experiments. MAG meta-analytical grouping, 
PFC prefrontal cortex, dmPFC dorsomedial PFC, dlPFC dorsolateral PFC, MTG middle temporal gyrus, STG 
superior temporal gyrus, aMCC anterior midcingulate cortex, pre‑SMA pre-supplementary motor area, dACC  
dorsal anterior cingulate cortex, IPL Inferior Parietal Lobule, SPL superior parietal lobule, pMTG posterior 
MTG, pITG posterior ITG.

MAGs Clusters Size  (mm3)

MNI coordinates

ALE Cluster breakdownX Y Z

MAG1

1 2456 14 46 28 0.0175 R dmPFC (rostrodorsal)

2 1152 − 16 56 22 0.0154 L dmPFC (caudal)

3 1096 − 24 − 60 − 28 0.0177 L Cerebellum (Lobule VI)

4 1048 30 40 46 0.0164 R dlPFC

5 848 58 − 8 − 18 0.0216 R MTG/STG

MAG2

1 1352 8 18 40 0.0243 R aMCC (Area 32’)/pre-SMA

2 1296 − 20 − 10 − 16 0.0272 L Amygdala

3 1040 − 2 12 22 0.0321 L dACC (Area 24a’-b’)

MAG3

1 976 34 − 26 52 0.0125 R Pre-/Postcentral gyri (Area 2–3 & 4p)

2 800 46 − 34 44 0.0133 R Supramarginal gyrus (Area 2, PFt)

3 720 − 42 − 32 42 0.0112 L Postcentral gyrus (Area 2, PFt)

MAG4

1 2336 20 − 78 − 12 0.0172 R Lingual (h0c3v)

2 1224 − 18 − 66 − 24 0.0159 L Cerebellum (Lobule V1)

3 968 44 − 58 − 4 0.0168 R pMTG

4 912 − 44 − 48 − 14 0.0151 L pITG

5 736 − 8 − 62 6 0.0186 L Calcarine Cortex

6 728 40 − 52 − 26 0.0155 R Cerebellum (Lobule VI)
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Additionally, MAG2 had more DEP samples than other MAGs  (X2 = 8.43, p = 0.004). However, compared to 
its base rate, proportion of DEP samples was not significantly overrepresented in MAG2 (20.7% versus 15.0%, 
one-tailed p = 0.123). After taking into account the between-disorder literature bias, we observed that the higher 
rates of DEP samples in MAG2 was replicated when restricting experiments to those using a cognitive task 
contrast or an emotional task contrast but also in experiments with only medication naïve sample and mixed 
sex samples (Supplementary Material). Graphical representation of probabilities of aberrant MAG per disorder 
class can be found in Supplementary Fig. 2.

Phenotype assessment 2: task & sample characteristics. We observed that the rate of experiments within the 
MAG1 that included a positive emotional stimulus was higher than other MAGs  (X2 = 8.62, p = 0.003) (Table 2), 
and significantly overrepresented compared to its base rate (28.6% versus 11.6%, one-tailed p = 0.028).

Additionally, experiments in MAG2 were less likely to include positive emotional task contrast  (X2 = 3.97, 
p = 0.046) and marginally associated with greater experiments with negative emotion task contrast  (X2 = 3.31, 
p = 0.069), compared to other MAGs (Table 2). However, proportions of these task domains were not statistically 
different than their base rates.

MAG3 had significantly lower rate of general emotional stimuli compared to other MAGs  (X2 = 4.20, 
p = 0.040), which was marginally lower compared to its base rate (37.5% versus 48.3%, one-tailed p = 0.059). 
Other characteristics did not reach statistical significance, compared to their base rates.

Although MAG1 had a significantly higher rate of medication-naïve subjects, compared to its base rate 
(one-tailed p = 0.018), MAGs did not differ in rates of experiments with medication-naïve samples  (X2 = 2.25, 
p = 0.522) and average rate of prescribed medication (Kruskal-Wall H = 2.74, p = 0.433). No differences were 
observed concerning the rate of mixed sex samples  (X2 = 1.90, p = 0.594) and the average rate of boys in samples 
(Kruskal-Wall H = 2.40, p = 0.493).

Figure 3.  ALE meta-analysis on each significant meta-analytical grouping (MAGs). Images are shown for left 
hemisphere (lateral), superior view and right hemisphere (lateral) respectively. ALE images were thresholded 
at p < 0.001 at the voxel-level and pFWE > 0.05. Word clouds were generated using BrainMap database terms 
(Behavioral Subdomains & Paradigm). Font size represents Z-score associated with the whole MAG (all words 
are significant p = 0.05 with Bonferroni correction).
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Discussion
The current meta-analysis was carried out to examine the shared and/or specific neural correlates of pediatric 
psychiatric disorders (ADHD, CD/ODD, ANX & DEP). To do so, we used a novel data-driven meta-analytical 
method that aimed to extract groups of experiments which show similar brain topographic maps. We identified 
4 significant MAGs, which comprised co-occurrent deficits in brain regions that may share features with (1) 
internally/externally directed processes; (2) attentional control of emotions, (3) action execution and (4) visual 
processes. More importantly, compared to their base rate, we found underrepresentation of DEP samples in 
MAG1 and overrepresentation in MAG2. However, no other significant differences were found in nosological 
categories between MAGs nor by considering their base rates, suggesting potential transdiagnostic correlates.

MAG1 included bilateral dmPFC, dlPFC, MTG/STG and Lobule VI. More precisely, we observed that 
dmPFC-MTG/STG were involved in social cognitions, whereas dlPFC and Lobule VI were characterized as 
action inhibition and execution, respectively. We also found main task-effect of the utilization of a positive emo-
tional stimulus. Interestingly, findings suggest that during cognitively demanding tasks, brain regions involved 
in internally directed processes (e.g., dmPFC & anterior MTG/STG) flexibly shifts their activity to enable goal-
directed processes (e.g., dlPFC & Lobule VI)65–67. Given these data, deficits in brain regions involved in MAG1 
may reflect a failure to disengage internal processes at the cost of goal-directed  processes68. Interestingly, our 
results suggest that these co-occurrent deficits (i.e., dmPFC, dlPFC, Lobule VI and MTG/STG) are less likely to 
be reported in that DEP samples. However, some studies have shown deficits in fronto-parietal and DMN regions 
in internalizing  disorders69,70. Given that these findings were observed in adult samples and that anticorrelation 
between these processes varies from childhood from  adulthood71, it is possible that these deficits may be observed 
in adulthood but not childhood DEP. Also, the DEP samples did not frequently report using positive emotional 
stimuli (k = 3 out of 22), which was found to be the main task-characteristic of MAG1. This may suggest that the 
lack of relationship between MAG1 and DEP may be explained by task differences. Considering the small sample 
size involved, we cannot completely rule out the possibility of MAG1 deficits in children with DEP.

The largest MAG (MAG2, k = 87) was constituted of the aMCC/pre-SMA, amygdala and dACC. This MAG 
was mainly characterized by attention, face monitoring and explicit episodic memory, using the BrainMap data-
base. We found higher rates of DEP samples, compared to other MAGs, which concur with past meta-analytical 
evidence consistently showing aberrant activation in these particular regions during negative emotional tasks in 
adults with major  depression43–48. However, no effect was observed in ANX samples, potentially due to the limited 
sample size. Nonetheless, deficits in these regions were also observed across adult ANX & DEP samples, during 
negative emotion  processing21,23,72. Additionally, we observed a marginally significant association between this 
MAG and negative emotional stimuli, indicating a possible task-effect. Although rates of ADHD (≈50%), CD/
ODD (≈20%) did not differ between other MAGs, evidence suggests that these disorders may also show deficits in 
MAG2 regions, particularly during emotion processing  tasks32,73 which correlates with general psychopathology 
 score69,74,75. In sum, this MAG may reflect general deficits in emotional lability, inherent to DEP, yet frequently 
observed in children/adolescent with  ADHD76 and/or  CD77.

We also found deficits in brain regions (e.g., pre- and postcentral gyrus) subserving action execution/finger 
tapping tasks (MAG3). This MAG was less likely to comprise emotional tasks, which is consistent with the fact 

Table 2.  Characteristics of Experiments across meta-analytical groupings. *Represents significant difference 
compared to its base rate (one-tailed p < 0.05). † Represents significant differences between MAGs (p < 0.05).

Characteristics

Total 
(n = 147)

MAG1 
(k = 21)

MAG2 
(k = 87)

MAG3 
(k = 13)

MAG4 
(k = 12)

n % n % n % n % n %

Nosological categories

ADHD 79 53.7% 14 66.7% 43 49.4% 8 61.5% 8 66.7%

CD 32 21.8% 4 19.0% 17 19.5% 4 30.8% 3 25.0%

ANX 14 9.5% 3 14.3% 9 10.3% 0 0.0% 1 8.3%

DEP 22 15.0% 0*† 0.0% 18† 20.7% 1 7.7% 0 0.0%

Task-contrast domain

Cognitive 88 59.9% 10 47.6% 53 60.9% 9 69.2% 10 83.3%

 Response Inhibition 44 29.9% 7 33.3% 29 33.3% 3 23.1% 4 33.3%

 Attention 23 15.6% 1 4.8% 13 14.9% 3 23.1% 3 25.0%

Emotion 71 48.3% 12 57.1% 42 48.3% 3* 23.1% 5 41.7%

 Positive 17 11.6% 6*† 28.6% 7* 8.0% 0 0.0% 1 8.3%

 Negative 37 25.2% 4 19.0% 24 27.6% 1 7.7% 2 16.7%

 Both 16 10.9% 2 9.5% 10 11.5% 2 15.4% 2 16.7%

Sample characteristics

Medication-Naïve 61 41.5% 14† 66.7% 40 46.0% 6 46.2% 5 41.7%

Average Med per sample – 26.7% – 35.2% – 26.3% – 19.4% – 20.9%

Mixed Sex Sample 95 64.6% 12 57.1% 60 69.0% 7 53.8% 8 66.7%

Average Boys per Sample – 71.7% – 77.6% – 71.4% – 76.1% – 61.1%
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that emotional tasks usually require less motor execution. Interestingly, deficits in similar regions (i.e., somato-
motor network) were also observed in a recent study showing significant transdiagnostic association with gen-
eral maladaptive  functionality78. Although deficits in these regions are currently not well understood, sensory 
deficits such as tactile perception and body awareness are often reported in children with pediatric psychiatric 
 disorders79–83. It is thus possible that abnormalities in MAG3 may reflect deficits in tactile perception, crucial 
for accurate performance of purposeful  movements84 such as in cognitive tasks.

Finally, we found evidence of early processing deficits across disorders (MAG4). Recent studies have shown 
replicable structural alterations in brain regions spanning this MAG. In fact, the authors demonstrated, through 
two different samples comprising  124685 and  87586 subjects, that the general psychopathology factor score was 
associated with deficits in occipital and cerebellum regions. These regions are implicated in variety of visual 
functions such as detecting relevant changes in the environment (e.g., visual oddball)87,88. Thus, MAG4 may 
mirror several dysfunctional processes in early visual processing, including gazing at task-irrelevant stimuli. For 
example, during face-emotion tasks, the number and duration of fixation to the eye regions have been reported 
to be significantly lower in ADHD with and without  CD89, in childhood psychopathic  traits90, in ODD/CD91–93, 
anxiety  disorders94–97) and  depression98,99. Likewise, deficits in the ability to filter out irrelevant stimuli are also 
observed in continuous performance  test100 and visual search  tasks99 in these populations.

Examining transdiagnostic features using the classical meta-analytic approach yielded aberrant activation 
in the aMCC/pre-SMA (see Supplementary Material). Furthermore, we found that externalizing disorders (i.e., 
ADHD, CD/ODD) were associated with deficits in the pre-SMA, whereas internalizing disorders (i.e., ANX, 
DEP) yielded aberrant activity in the dorsal/perigenual ACC. Interestingly, deficits in these regions were also 
found to be transdiagnostic neurobiological features in adult samples (dACC &  aMCC22). It nonetheless remains 
unknown whether these transdiagnostic features may be due to a common vulnerability (e.g., shared risk factors) 
or the presence of cross-cutting criteria (e.g., impulsivity, neuroticism), which should be tackled in the future. 
Also, we observed no significant peak convergence across each of the disorder-specific meta-analysis. This lack of 
convergence concurs with results from recent meta-analyses which revealed similar results in CD/ODD, ADHD 
and DEP, using a somewhat conservative threshold (p < 0.001, cFWE < 0.05)29,32,101. Despite that this lack of con-
vergence might have been attributable to between-study differences (e.g., stimulus, sex effect, statistical threshold, 
sample size), one possibility that deserves careful attention is the within-disorder heterogeneity. Indeed, it is 
generally well accepted that DSM-derived categories comprise subfactors that are characterized by different psy-
chological  processes102–107. Thus, this heterogeneity in criteria substantially increases the risk of finding distinct 
set of symptoms while still meeting the diagnostic threshold (from 42 [GAD] to 116,200 [ADHD] theoretical set 
of  criteria9,108. Therefore, we could not rule out the possibility that increasing the sample size in meta-analyses, 
which also increase the between-sample heterogeneity, may reduce the ability to detect robust findings.

Limitations
First, included studies were extracted from previous and recent published meta-analyses and literature reviews. 
Despite that several references were used for each disorder, a systematic search following the PRISMA protocol 
may have allowed us to identify other studies. Also, we performed cluster analysis across pediatric psychiatric 
disorders and fMRI paradigms. Since there were limited data available to perform domain-specific analyses, it 
is possible that our results may have been altered by literature bias (see Supplementary Material) concerning 
the use of particular neurocognitive task domains per diagnosis category. However, subanalyses were carried 
out to examine these confounding effects. Second, the limited sample size in the meta-analysis, such as in the 
ANX sample (k = 14) may have explained the null findings in classical disorder-specific meta-analysis and the 
lack of over/underrepresentation across MAGs and neurocognitive domains. Hence, increasing the number of 
studies may permit us to detect such differences and unveil more precise aberrant co-activation maps, crucial 
for understanding transdiagnostic correlates across pediatric psychiatric disorders. Furthermore, we did not 
provide additional subanalyses on hypo- versushyper-activations across disorders, as the goal of this study was 
to identify aberrant co-activation maps across disorders and due to the limited number of studies in the case of 
anxiety disorders. As doing so would have been more optimal, future studies are encouraged to use these maps 
to examine whether disorders may differ in terms of hypo/hyper-activations. In this meta-analysis, we focused 
on four main nosological categories to identify shared neural correlates that may reflect their high comorbidities 
in childhood/adolescence. Future meta-analysis may consider including other disorders such as autism, bipolar 
depression and phobias to examine differences in neural markers. Finally, we used hierarchical clustering with 
spearman correlation as distance measure and average linkage algorithm. Although these parameters are fre-
quently utilized in studies using similar meta-analytical approaches, it is possible that the most optimal set of 
parameters would have been specific to our study.

Conclusions
We observed transdiagnostic neural correlates across common pediatric psychiatric disorders. The identified 
groups of co-occurrent deficits shared features with internally/externally directed processes, emotional lability, 
somato-motor & visual processes. We found that DEP samples were less likely to display aberrant co-activation 
map involving internally/externally directed processes, but more likely to exhibit deficits in brain regions impli-
cated in attentional control of emotions. Also, these MAGs did not specifically fit particular neurocognitive 
domains, but rather involved multiple subprocesses (e.g., Self-reflective & Execution/Inhibition; Threat system 
& Attentional Control). Our results underscore the need for including several psychiatric samples in fMRI stud-
ies rather than a single nosological category. As our results indicate shared deficits that could underlie the high 
rates of comorbidity among children with psychiatric disorders, meta-analyzing between-disorder contrasts, 
at a study-level, is of great importance to unveil disorder-specific neurobiological markers. Future studies are 
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encouraged to examine how dysfunctions in MAGs may predict worsened outcomes in adulthood, as well as 
tackling the heterogeneity within psychiatric disorders.

Data availability
The dataset analyzed in the current study is available from the corresponding author upon reasonable request.
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