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Differential early diagnosis 
of benign versus malignant lung 
cancer using systematic pathway 
flux analysis of peripheral blood 
leukocytes
Jian Li1,13, Xiaoyu Li2,13, Ming Li3,13, Hong Qiu2, Christian Saad4, Bo Zhao5, Fan Li5, 
Xiaowei Wu5, Dong Kuang6,7, Fengjuan Tang6,7, Yaobing Chen6,7, Hongge Shu8, Jing Zhang8, 
Qiuxia Wang8, He Huang9, Shankang Qi9, Changkun Ye10, Amy Bryant11, Xianglin Yuan2, 
Christian Kurts1, Guangyuan Hu2*, Weiting Cheng12* & Qi Mei2*

Early diagnosis of lung cancer is critically important to reduce disease severity and improve overall 
survival. Newer, minimally invasive biopsy procedures often fail to provide adequate specimens 
for accurate tumor subtyping or staging which is necessary to inform appropriate use of molecular 
targeted therapies and immune checkpoint inhibitors. Thus newer approaches to diagnosis and 
staging in early lung cancer are needed. This exploratory pilot study obtained peripheral blood 
samples from 139 individuals with clinically evident pulmonary nodules (benign and malignant), as 
well as ten healthy persons. They were divided into three cohorts: original cohort (n = 99), control 
cohort (n = 10), and validation cohort (n = 40). Average RNAseq sequencing of leukocytes in these 
samples were conducted. Subsequently, data was integrated into artificial intelligence (AI)-based 
computational approach with system-wide gene expression technology to develop a rapid, effective, 
non-invasive immune index for early diagnosis of lung cancer. An immune-related index system, 
IM-Index, was defined and validated for the diagnostic application. IM-Index was applied to assess 
the malignancies of pulmonary nodules of 109 participants (original + control cohorts) with high 
accuracy (AUC: 0.822 [95% CI: 0.75–0.91, p < 0.001]), and to differentiate between phases of cancer 
immunoediting concept (odds ratio: 1.17 [95% CI: 1.1–1.25, p < 0.001]). The predictive ability of 
IM-Index was validated in a validation cohort with a AUC: 0.883 (95% CI: 0.73–1.00, p < 0.001). The 
difference between molecular mechanisms of adenocarcinoma and squamous carcinoma histology 
was also determined via the IM-Index (OR: 1.2 [95% CI 1.14–1.35, p = 0.019]). In addition, a structural 
metabolic behavior pattern and signaling property in host immunity were found (bonferroni 
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correction, p = 1.32e − 16). Taken together our findings indicate that this AI-based approach may be 
used for “Super Early” cancer diagnosis and amend the current immunotherpay for lung cancer.

Lung cancer is associated with high mortality worldwidely1,2. Although newer diagnosis and treatment modali-
ties for lung cancer have been substantially improved over the past 5 years, survival rates remain extremely low 
(5%)3. Early diagnosis is of particular importance since it can identify patients who would benefit from these 
newer therapeutic strategies and thus improve survival. Currently, definitive diagnosis and tumor staging rely 
on surgical biopsy. However, these invasive procedures often fail to provide adequate tissue specimens for tumor 
subtyping/characterization and patients with benign lesions are put at unnecessary risk. Thus, a non-invasive 
method that can differentiate between benign and malignant lung cancer at the earliest stages of disease would 
be of great clinical benefit.

Accumulating evidence has suggested that the total lymphocyte count, neutrophil–lymphocyte ratio, and 
platelet-lymphocyte ratio can be used to predict treatment outcomes of diverse therapies such as chemotherapy4, 
targeted therapy5, surgery6 and immunotherapy7,8. Other evidence clearly indicates that peripheral blood leu-
kocytes play an essential role in diverse malignant transformation processes such as tumor angiogenesis9, 
proliferation10, metastasis11 and treatment resistant12. These findings suggest that peripheral blood leukocytes, 
being critical components of the immune system, may contain valuable and stable information for diverse clinical 
applications including early lung cancer diagnosis.

A recent paradigm for cancer development is the cancer immunoediting concept (CIC). This concept is 
an extension of the “immune surveillance” hypothesis13 and describes the host immune system’s essential, but 
contradicting, roles in tumor growth and metastasis14. It embodies the fundamental struggle between host and 
tumor, and consists of three interdependent phases of cancer progression: elimination, equilibrium, escape15. 
The CIC has been unequivocally established as a prominent paradigm in tumor immunology16, yet there are 
three remaining questions: i) how to differentiate between these three phases in real time, ii) how to assess the 
overall functional state of the host immune system, and iii) whether tumor cells can modulate these phases to 
alter host immunity and effect its own survival and progression.

Any activation of the immune system is a energy-demanding process and is accompanied by a dramatic 
metabolic remodeling response17. The levels of metabolic nutrients including glucose, fatty acids and amino 
acids are strongly correlated to the functional status of immune cells18–20. Moreover, activation of the immune 
system is also an intensive signaling process, in which diverse signaling pathways function to sense antigen21, to 
invoke development and differentiation of immune-cells22–24 and to conduct immune functions and tolerance25,26. 
Therefore, metabolism and signaling “collaborate” in an inseparable manner to ensure appropriate and efficient 
functionality of the immune system27. Fluxes in intracellular metabolic networks reflect the magnitude and 
direction of cellular responses to external stimuli or conditions. Though powerful, metabolic flux predictions 
can be improved by incorporating absolute gene expression data. Indeed, many studies have shown that tran-
scriptomic data can be applied to calculate the pathway flux to describe quantitatively the intensity of metabolism 
and signaling28–30. We hypothesize that metabolic pathway flux analysis applied over a genome-scale signaling 
pathway network during cancer development might provide more accurate insight into the functional status of 
the immune system.

Recently developed machine-learning based approaches have been applied to pathological images, includ-
ing computed tomography and immunostained tissue sections, in an effort to improve cancer diagnosis31–33. 
However, this approach demonstrated only limited ability to differentiate between benign and malignant lesions, 
likely because of a relative scarcity of machine training data for benign lesions. Other studies tried to identify 
molecular signatures at the DNA, RNA and epigenetic levels by comparing tumor and normal tissues. However, 
the resultant molecular signatures varied significantly due to the heterogeneity of the tumor tissue and the applied 
statistical approaches34–36.

In the current prospective study, we utilized immune-related information to define an index system (IM-
Index) in an AI model and subsequently applied the IM-Index to analyze the RNAseq of peripheral blood leu-
kocytes of 99 participants with unknown pulmonary nodules and 10 healthy participants. Using this approach, 
our results show that RNAseq data from peripheral leukocytes distinguishes between benign versus malignant 
pulmonary nodules with high accuracy. Further, our technique could differentiate between adenocarcinoma 
and squamous cell carcinoma in the malignant nodules. This non-invasive, AI-based approach creates a unique 
opportunity to significantly improve early cancer diagnosis and staging of disease.

Patients and methods
Study objective and design.  The aim of this study was to develop a highly accurate, non-invasive method 
for early cancer diagnosis that exploited immune information contained in peripheral blood leukocytes. Periph-
eral blood samples (3–5 mLs) were obtained through evacuated blood collection tubes (BD, New Jersey, USA) 
from 99 individuals with clinically evident pulmonary nodules (benign and malignant), as well as 10 healthy 
persons (Table 1). Additionally, a validation cohort consisting of 40 patients were recruited (Table 1 & Supple-
ment Table 1). Participants were from Wuhan Tongji Hospital, Wuhan Pulmonary Hospital and Wuhan No.1 
Hospital (PR China) in 2019. Due to the exploratory nature of this study no prospective sample size calculation 
was done. The number of participants to be studied was estimated from past experience. A clinical and histologi-
cal diagnosis was available for all individuals. The inclusion criteria included: i) age between 18 and 80 years, ii) 
diagnosis of pulmonary nodule requiring surgery and subsequent histopathological analysis, iii) availability of 
blood specimen for sequencing, iv) willing to participate in this project. Patients were excluded if they: i) were 
pregnant or lactating; ii) had received treatments before diagnosis; iii) had a prior medical history of cancer or 
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Malignant Benign Validation p-value

Number of patients 78 21 40 …

Age, years 59.0 [53.2–64.8] 53.0 [43.0–64.0] 55.6 [47.3–62.7] 0.040

Sex … … … 0.524

Male 45 (57.7) 12 (57.1) 27 (67.5) …

Female 33 (42.3) 9 (42.9) 13 (32.5) …

Clinical stages … … … 0.419

I 52 (66.7) … 23 (57.5) …

II 10 (12.8) … 4 (10.0) …

III 13 (16.7) … 3 (7.5) …

IV 3 (3.8) … 0 (0.0) …

T stage … … … 0.325

1 36 (46.2) … 14 (35.0) …

2 33 (42.3) … 13 (32.5) …

3 5 (6.4) … 2 (5.0) …

4 4 (5.1) … 1 (2.5) …

N stage … … … 0.076

0 62 (79.5) … 25 (52.5) …

1 3 (3.8) … 2 (5.0) …

2 12 (15.4) … 2 (5.0) …

3 1 (1.3) … 1 (2.5) …

M stage … … …  < .001

0 75 (96.2) … 28 (70.0) …

1 3 (3.8) … 2 (5.0) …

Pathological type … … … 0.110

Adenocarcinoma 52 (66.7) … 20 (50.0) …

Squamous carcinoma 19 (24.4) … 7 (17.5) …

Other carcinoma 7 (9.0) … 3 (7.5) …

Invasive depth … … … 0.003

0 1 (1.3) … 2 (5.0) …

1 8 (10.3) … 2 (5.0) …

2 69 (88.5) … 26 (65.0) …

Differentiation grade … … … 0.020

1 6/63 (9.5) … 4 (10.0) …

2 52/63 (82.5) … 24 (60.0) …

3 5/63 (7.9) … 2 (5.0) …

No. of pulmonary nodules … … … 0.699

1 63 (80.8) 19 (90.5) 35 (62.5) …

2 13 (16.7) 2 (9.5) 4 (10.0) …

3 2 (2.6) 0 1 (2.5) …

TIL grade … … … 0.288

0 52/72 (72.2) 0 22 (55.0) …

1 19/72 (26.4) 1/1 (100) 7 (17.5) …

2 1/72 (1.4) 0 1 (2.5) …

TII 10.0 [6.0–15.0] 10.0 [10.0–10.0] 10.0 [6.0–15.0] 0.849

CD8 1.0 [1.0–1.5] 1.0 [1.0–1.0] 1.0 [1.0–1.0] 0.571

PD-L1 3.0 [3.0–8.0] 1.0 [1.0–1.0] 3.0 [2.5–4.25]  < .001

CPS 4.0 [3.0–11.0] 1.0 [1.0–1.0] 4.0 [1.75–11.0]  < .001

TIMIT … … … 1.000

I 27 (37.5) 1 (4.7) 11 (27.5) …

II 21 (29.2) 0 8 (20.0) …

III 7 (9.7) 0 3 (7.5) …

IV 17 (23.6) 0 8 (20.0) …

Smoking 33 (42.3) 7 (33.3) 17 (42.5) 0.615

Macrophage … … … 0.877

 < 5 57 (79.2) 1(4.7) 24 (60.0) …

5–10 13 (18.1) 0 4 (10.0) …

Continued
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other related malignancy including chronic inflammation-related lung diseases, tuberculosis, and autoimmune 
disease; or vi) were not willing to participate in this study. Blood samples were not studied if: i) resultant plasma 
specimens were contaminated; or ii) blood specimens were not prepared for analysis within 24 h. According to 
the World Health Organization (WHO), a current smoker is someone who smokes daily at least one cigarette.

Written informed consent was obtained from all participants. This study was approved by the Chinese Eth-
ics Committee of Registering Clinical Trials (No.: ChiECRCT20190174) and all methods were performed in 
accordance to clinical guidance and regulations. Patient demographic and clinical data including age, gender, 
TNM-stage, diagnosis, tumor grading, nodule size and others were additionally collected. Tumor biopsies from 
lung cancer patients enrolled in a previous study37 were used to generate tumor-specific molecular data. All data 
analyses were performed in the Tongji Hospital, Wuhan, China. Clinical and sequencing data remain in place and 
are secured within the hospital data information system. The data analysis team was blinded with respect to the 
study endpoint (malignancy). Average RNAseq sequencing of leukocytes in these samples was conducted and 
integrated into an AI model in order to perform a pathway flux analysis at a system level. Based on the results, a 
host-based immune-related index (IM-Index) was developed and tested for its ability to predict the malignancy 
of pulmonary nodules. Predictive accuracy of the IM-Index-based method for diagnosis of malignancy were 
assessed in relation to standard histopathological confirmation of malignancy from tumor biopsies. Figure 1A 
visualizes the workflow of this study.

Peripheral leukocyte isolation and extraction.  Each blood sample was centrifuged at 1600 × g for 
10 min, take 400 μL of the middle layer (leucocyte layer), added it to a 2 mL Eppendorf (EP) tube, added 1.2 mL 
of red blood cell lysate, from vortex to central mixed, placed at room temperature for 5–10 min, and centrifuged 
at 4 °C for 1 min at 10000 g; Used a pipette to aspirate the upper layer of solution, discarded, and added 1 mL 
trizol reagent (Vazyme Biotech, Nanjing, China) and mixed well; Added 200 μL of chloroform, shaked and 
mixed, and place at 4 °C for 10 min; Centrifuged at 12000 rpm for 10 min at 4 °C; Took the supernatant, added 
the same volume of isopropanol as the supernatant, and let stand on ice for 25 min; Centrifuged at 12,000 rpm 
for 10 min at 4 °C, discarded the supernatant; Added 1 mL 70% ethanol (75%) and centrifuged at 12000 rpm for 
10 min at 4 °C, and repeated this step once more; Centrifuged at 4 °C 12,000 rpm for 2 min, left it for 2-5 min to 
air dry; After adding 30 μL of DEPC water, Nanodrop (Thermo Scientific, Waltham, USA) was used to measure 
the RNA concentration.

RNAseq data analysis.  The RNA concentration was measured by Nanodrop (Thermo Scientific, Waltham, 
USA) and RNA quality was determined by Qubit RNA IQ assay. Only RNA samples with RNA Integrity Number 
(RIN) > 7 were studied. An RNAseq analysis of each qualified sample was performed and an RNA library was 
prepared and sequenced (paired-end 150-bp reads) using VAHTS mRNA-seq v3 Library Prep Kit for Illumina 
(Vazyme Biotech, Nanjing, China) and daDNA HS Assay Kit (YEASEN Biotech, Shanghai, China). In brief, the 
mRNA was isolated and fragmented from total RNA, then the synthesis and purification of double-stranded 
cDNA was implemented. After terminal repair and junction ligation, the ligation products were purified, the 
fragment size was sorted, and the library was amplified. Lastly, the sequencing results of the mRNA were ana-
lyzed. Based on these results, sequence reads were aligned using Salmon (v0.9.1), and the transcript quantifica-

Malignant Benign Validation p-value

 > 10 2 (2.8) 0 2 ( 5.0) …

Ki67 0.3 [0.1–0.6] … 0.3 [0.1–0.6] …

Tumor diameter, cm … … … …

Imaging 2.4 [1.6–3.6] 2.0 [1.6–3.8] 2.5 [1.2–3.2] 0.562

Surgical 3.0 [1.9–4.0] 2.0 [1.5–3.5] 2.5 [1.5–3.8] 0.160

Pathological 2.5 [1.5–4.0] 2.0 [1.0–3.0] 2.2 [1.5–3.8] 0.138

CEA, ng/mL 41.0 [18.3–63.8] 21.0 [10.0–53.0] 34.0 [10.8–55.3] 0.092

NSE, ug/L 44.5 [17.3–66.8] 37.0 [23.0–52.0] 42.0 [15.3–70.3] 0.604

CYFRA19, ug/L 39.0 [15.3–59.8] 21.0 [12.0–45.0] 32.0 [11.8–53.0] 0.137

SCC , ng/mL 10.0 [7.0–14.8] 8.0 [5.0–12.0] 8.0 [6.0–10.3] 0.044

ProGRP, pg/mL 34.5 [11.5–54.0] 33.0 [18.0–56.0] 32.5 [10.3–58.5] 0.775

WBC count, × 109/L 5.6 [4.6–7.4] 5.7 [4.5–6.5] 5.9 [4.6–7.6] 0.745

Neutrophil count, × 109/L 3.4 [2.5–4.7] 3.2 [2.8–4.0] 3.9 [2.7–5.1] 0.619

Lymphocyte count, × 109/L 1.6 [1.3–1.9] 1.6 [1.4–1.9] 1.5 [1.3–1.8] 0.451

Hemoglobin, g/L 133.0 [124.0–141.0] 140.0 [119.0–152.0] 138.0 [124.0–151.0] 0.220

PLT count, × 109/L 232.0 [181.0–260.0] 227.0 [205.0–268.0] 213.0 [172.0–254.5] 0.863

Table 1.   Clinical characteristics and laboratory findings. CEA carcinoembryonic antigen; CPS carbamoyl-
phosphate synthase 1; CYFRA19 cytokeratin fragment 19; NSE neutron-specific enolase;PLT platelet count; 
ProGRP progastrin-releasing peptide; SCC squamous cell carcinoma; TIL tumor infiltrating leukocyte; WBC 
white blood cell.
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tion was performed by aggregating the transcript counts. Salmon uses the raw fastq sequence reads and the 
reference transcriptome assembly (GRCh37). A quasi-mapping method is then applied where the program tool 
computes the mapping of reads to the transcript positions without performing a base-to-base alignment of reads 
to the transcript.

Pathological diagnosis.  Surgically resected lung cancer tumor specimens were fixed in 10% neutral-buff-
ered formalin (NBF) and embedded in paraffin. All embedded blocks were cut into 3 μm in thickness, H&E-

Figure 1.   Workflow and analysis of differential expression genes between three groups. (A) The schematic 
representation of the workflow for peripheral blood-based IM-Index calculation. Each blood sample was 
sequenced to generate RNAseq data, which was integrated into the AI model. Subsequently, the AutoAnalysis 
was performed to calculated the pathway flux in the AI model, the IM.Index was calculated and diagnosis was 
defined correspondingly. (B) Haematoxylin and eosin (H&E) stained tissue sample of a malignant participant 
showing invasive carcinoma at the margin (top) and widespread malignancy (down). (C) H&E stained tissue 
sample from a benign participant with dysplastic epithelia at the margin (top) and widespread low aggressive 
tissue development (down). (D) Analysis of differential expressed genes between malignant and benign 
groups, the result showed that 190 genes were found to be differential expressed, however, the gene ontology 
(GO) enrichment analysis in this gene set did not reach a positive result. (E) The same analysis was conducted 
between malignant and control groups, the results showed that 3101 genes were differentially expressed between 
both groups, however, the GO enrichment analysis showed a negative result either.
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stained, and imaged using a Nikon 80i optical microscopy. The expression of CD8 and PD-L1 in lung cancer 
tissue was measured by EnVision immunohistochemistry (IHC) using EnVision™ system. Rabbit anti-human 
CD8 monoclonal antibody (Clone SP16, cell membrane-located) was purchased from ZsBio (Beijing, China). 
Mouse anti-Human PD-L1 monoclonal antibody (Clone 22C3, cell membrane-located in cancer cells and cell 
membrane- or cytoplasm-located in immune cells) was obtained from DAKO (Santa Clara, CA, USA). Com-
mercially available normal lung tissues and PBS buffer were used as negative and blank controls, respectively.

The construction of artificial intelligent (AI) MODEL.  The construction of AI model utilized the bio-
logical knowledge derived from literature references such as PubMed and publicly available databases such as 
Reactome (https://​react​ome.​org/). The model possesses four layers with following relationship: (1) gene → (2) 
RNA → (3) protein/complex/compound → (4) pathway → (1) gene (Supplement Fig.  1A) with last layer (115 
pathway) being connected back to the first layer (3643 gene) due to diverse feedback mechanisms. A summary 
of the statistical component of the AI model is provided in Supplement Table 1. The signaling and metabolic 
components of the AI model were derived from our previously published molecular signaling map (MSM)38 and 
metabolic network (MCPM)13, respectively. Each component in the AI model is associated with a unique cor-
responding ID. For instance, gene is linked with Ensemble-ID, protein with UniProt ID, compound with ChEBI-
ID and so on. The unique-ID system is organized with the modeling station of SimCell. The transcriptional- 
and translational-regulations and feedback loops have also been considered in AI model. The transcriptional 
regulation information derives from the TRANSFAC database (http://​genex​plain.​com/​trans​fac). The miRNA 
regulation network has been integrated based on the information from miRNA database miRBase (http://​www.​
mirba​se.​org/) and miRNA target database mirWalk (http://​zmf.​umm.​uni-​heide​lberg.​de/​apps/​zmf/​mirwa​lk2/). 
The miRNA pattern were defined two aspects: miRNA gene transcription and miRNA target binding (Supple-
ment Fig. 1B). The kinetic parameters for the AI model were derived from different kinetic databases including 
BRENDA (https://​www.​brenda-​enzym​es.​org), SABIO-RK (http://​sabio.h-​its.​org/), and NIST (https://​kinet​ics.​
nist.​gov/​kinet​ics/​index.​jsp). This layer-structure is translated into a two-array digital structure for pathway flux 
calculation (Eq. (1) and (2), described in the following section) (Supplement Fig. 1C).

Genome‑scale pathway flux analysis (GPFA).  The GPFA is developed to detect whether a therapeutic 
intervention can invoke a genome-scale significant change of data flux within a cellular system. The data flow 
(flux) was generated from AutoAnalyze14 based on related readout components in the AI model. For instance, a 
molecular reaction R with role ∈ {e, g, i, s, tr(a) , tr(r) }, R symbolizes a reaction set; (e: enzyme; g: gene; i: inhibi-
tor; s: substrate; tr(a): transcriptional activator , tr(r): transcriptional repressor):

The data-flow for this reaction I ∈ R is computed by applying the mass action law with the required input 
concentrations of related reactants, c(objects). Here,

The concentration of each reactant is determined by the input of gene expression profile of a corresponding 
patient. The flux of a pathway P is defined as flux(P), the amount of information flowing through this pathway:

N(P): the number of reactions of the pathway P; Crosstalk(P): the crosstalks pathways related to the pathway P.

Statistical analysis.  Spearman’s correlation coefficients were calculated to investigate the correlation 
between the IM index, and other biomarkers and laboratory markers. Logistic regression models were per-
formed to investigate the ability of a marker to distinguish two groups of patients: malignant vs. non-malignant. 
Only complete observations are considered. For the IM-index and each biomarker, a logistic regression model 
was fitted separately. Receiver operating characteristic (ROC) analyses were conducted to compare their per-
formance. Area under the curve (AUC) and the 95% confidence intervals were calculated. Odds ratio (OR) 
was calculated to reflect the prediction rate. With the null hypothesis that the biomarker gives equal or better 
classification than the index, one-sided hypothesis test was performed and bootstrapped p-value of the test 
was calculated (with 2,000 replications). Kruskal–Wallis test and Wilcoxon test were performed to analyze the 
index-based classification. For all analyses, p values < 0.05 were considered to be statistically significant. p values 
were not adjusted for multiple testing because of the explorative manner of the analyses. Statistical analyses were 
performed using R software15.

Result
Clinical characteristics of participants.  The median age of participants in original cohort was 58.0 years 
old (interquartile range [IQR] 52.0–64.0), sex and smoking status were almost equally distributed with slightly 
more male than female patients (57.6% vs. 42.4%) and slightly more non-smokers than smokers (59.6% vs. 
40.4%). In this original cohort, 78 patients were diagnosed with malignant (78/99, 78.8%) and 21 with benign 

(1)Ij(reaction, role) =

∏

c(object)

objects ∈ reactant (reaction, role).objects

(2)c
(

objecti
)

=

∏

c(gene)

reactants ∈ (reaction, role).genes

(3)flux(P) =

(

∑

i∈P

Ii(reaction, role)/N(P)

)

− flux(crosstalk(P))

https://reactome.org/
http://genexplain.com/transfac
http://www.mirbase.org/
http://www.mirbase.org/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
https://www.brenda-enzymes.org
http://sabio.h-its.org/
https://kinetics.nist.gov/kinetics/index.jsp
https://kinetics.nist.gov/kinetics/index.jsp
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pulmonary nodules (21/99, 21.2%) by standard diagnostic test (Table 1). In addition, 10 healthy participants, 
who attended routine medical check in Tongji Hospital, were included and defined as control cohort, with a 
mean age of 32.5, no smoking history, no comorbidity, and 60% female. Of the 99 pulmonary nodules in the 
original cohort, post-operative histopathological analysis categorized 78 (78/99, 78.8%) as malignant, having 
aggressive tumor tissue development with dysplastic epithelial / invasive carcinoma at the margin and carci-
noma in situ at the center; immunohistochemistry confirmed this malignant signature (Fig. 1B). Twenty-one 
nodules (21/99; 21.2%) were categorized as benign, having a low aggressive / adequate tissue development with 
normal epithelial at the margin and dysplastic epithelial at/near by the center (Fig. 1C). Among these, 57.1% 
(12/21) had at least one elevated tumor marker or malignant dysplasia sign (intraoperative frozen sections), and 
76.2% (16/21) had nodules over 1.5 cm in diameter. These clinical features were consistent with the character-
istics of the equilibrium phase of the CIC. Within the malignant group, patients were mainly in stage I (52/78, 
66.7%) of disease, smaller numbers were in stages II (10/78, 12.8%), III (13/78, 16.7%) and IV (3/78, 3.8%). 
By histological analysis, the majority of tumors were adencarcinoma (52/78, 66.7%) or squamous carcinoma 
(19/78, 24.4%), moderately differentiated (33/63, 52.4%), and positive for EGFR mutation (19/30, 63.3%). Fur-
thermore, in the malignant and benign groups, pulmonary nodule number and size were measured from three 
perspectives (imaging, surgery, and pathology) and showed a median maximum nodule diameter of 2.3 cm, 
2.5 cm, and 2.2 cm respectively. Protein levels of five lung cancer-specific biomarkers were measured in tumor 
tissues and peripheral blood specimens from patients in the benign and malignant groups. Counts of different 
immune cells in the tumor microenvironment (TME) and the peripheral blood were also measured for both 
groups (Table 1). Additionally, an independent validation cohort was subsequently recruited, which consists of 
30 patients with malignant pulmonary nodes and 10 with benign pulmonary nodes. Clinical characteristics of 
this validation cohort were summarized in the Table 1 and Supplement Table 1. After acquisition of each blood 
sample and performance of the differential cell count, leukocytes were isolated and preprocessed for RNAseq 
analysis (Methods).

Analysis of differential expression genes in three participant‑groups.  Based on our understand-
ing of the CIC, we hypothesized that the function of the immune system should vary between normal, benign 
and malignant groups. Thus we initially investigated the differentially expressed genes from peripheral blood 
leukocytes from these groups. For this purpose, the DEseq216 was applied to analyze RNAseq data. The results 
showed that 190 genes (161 upregulated, 29 downregulated) were differentially expressed by comparing between 
malignant and benign groups (LogFC > 2 & Bonferroni correction < 0.05; Fig. 1D). Between malignant and con-
trol groups 3101 genes (3072 upregulated, 29 downregulated) were differentially expressed (the same criteria; 
Fig. 1E). Subsequently, the gene ontology (GO) enrichment analysis showed that the differential expressed genes 
from each set were not enriched in any of the three main ontological categories (biological process, cellular 
component, and molecular function). The common set between both upregulation-gene sets (161 ∩ 3072) con-
tained 125 genes. However, the GO enrichment analysis with this set showed no commonality. Similarly, both 
downregulation-gene sets (29 ∩ 29) shared no common genes (Fig. 1D,E).

Application of genetic information from peripheral blood leukocytes for malignancy diag-
nosis.  To determine if differences between participant groups could be observed on a molecular pathway 
level, a genome-scale pathway flux analysis (GPFA) was performed using an artificial intelligence (AI) model 
(Methods). Pathway flux was calculated by AutoAnalysis37 based on RNAseq of peripheral blood samples from 
each participant. Results showed that flux in 43 pathways significantly differentiated between the three groups 
(p < 0.05; Fig. 2A). In particular, the malignant group had a strong flux intensity in the majority of these analyzed 
pathways such as tryptophan metabolism and citrate-cycle (Fig. 2B & Supplement Fig. 2), whereas almost no 
pathway with any enhanced flux activity was evident for the healthy controls (Fig. 2A; Supplement Fig. 2). Flux 
in the benign group was in between the normal and malignant groups (Fig. 2A; Supplement Fig. 2). Based on 
these results, an index system was defined to summarize flux intensities of these pathways, which derived from 
the gene expression of 3643 genes.

The index system was termed immune-related index (IM-Index) using following definition:

The default values of α, β are set to 1 in this study. The Kruskal–Wallis test showed that IM-Index could dif-
ferentiate between the three groups (OR: 1.17 [95% CI: 1.1–1.25, p < 0.001]; Fig. 2C), the median of IM-Index 
from the malignant, benign and control groups were: 3429.3, 2483.4, 1869.8 respectively. The Receiver Operat-
ing Characteristic (ROC) analysis showed that IM-Index was able to differentiate between benign (n = 21) and 
malignancy (n = 78) pulmonary nodules with an AUC: 0.822 (95% CI: 0.75–0.91, p < 0.001) (Fig. 2D). Moreover, 
IM-Index out-performed five different lung cancer-specific peripheral blood biomarkers (CEA, CYFRA19, NSE, 
ProGRP, and SCC) for malignant cancer diagnosis (Fig. 2D; Table 2). In the validation cohort, the Kruskal–Wal-
lis test showed that IM-Index could differentiate between malignant and benign groups (OR: 1.31 [95% CI: 
1.18–1.43, p < 0.001] ; Fig. 2E) and the ROC analysis showed the corresponding result of AUC: 0.883 (95% CI: 
0.73–1.00, p < 0.001; Fig. 2F).

In addition, a simplified pathway interaction map of leukocyte (PIML; Fig. 3A) within the AI model was cre-
ated to visualize pathway flux in these three groups. These PIMLs represent the unique pathway signature three 
groups (healthy, benign and malignant) respectively (Fig. 3B–D), which could represent unique signatures for 
each phase of the CIC in lung cancer.

IM - Index = α∗
∑

p ∈ signaling transduction

flux(P)+ β ∗

∑

p ∈ energy metabolism

flux(P)
(

Supplement Information 2
)
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Using the IM‑index and leukocyte RNAseq to distinguish malignant lung cancer subtypes.  A 
refined analysis focused tumor/host interactions on the malignant group. From the tumor side, postoperative 
pathological analysis showed that participants of lung adenocarcinoma, 66.2% of the malignant group, often had 
origin from bronchial mucosa and grew later in the small bronchi of the lung (Fig. 4A). The disease progression 
was often aggressive. The participants with lung squamous carcinoma, 24.7% of the malignant group, originated 
mostly from larger bronchi and were often associated with bronchoonstriction and obstructive pneumonia 
(Fig. 4B). The majority of this sub-group had a history of smoking and the mean age of this group is 67 years old. 
In general, the disease progression was milder. 

The IM-Index could differentiate both types of lung cancer with statistical significance (OR: 1.2 [95% CI: 
1.14–1.35, p = 0.019]; Fig. 4C). GPFA showed that signaling pathways mTor (bonferroni correction, p = 0.02), HIF 
(p = 0.02), FOXO (p = 0.01), PI3K-AKT (p = 0.04), integrin (p = 0.04), JAK-STAT (p = 0.01) and others displayed 
a higher flux in the adenocarcinoma sub-group compared to the squamous cell carcinoma group (Fig. 4D,F). In 
addition, the metabolic pathways such as citrate-cycle (p = 0.001), lipid (p = 0.003), amino acid (p = 0.002) and 
glycolysis (p = 0.001) showed a higher flux in the adenocarcinoma sub-group (Fig. 4E; Supplement Fig. 3). These 

Figure 2.   (A) Heatmap of the differentiated flux of 43 molecular pathways in three participant-groups; (B) 
top 6 pathways selected from the 43 molecular pathways from (A). (C) Boxplot of the immune-related index 
(IM-Index) for malignant (red), benign pulmonary nodules (green), as well as healthy controls (blue). The 
p-value obtained through the Kruskal–Wallis test showed statistical significance with p < 0.001. (D) ROC 
analysis results comparison of IM-Index (AUC: 0.822) and 5 lung cancer-specific biomarkers. (E) Boxplot of 
IM-Index comparison between malignant and benign subgroups in validation cohort; (F) ROC analysis of 
IM-Index in the validation cohort.

Table 2.   AUC value comparison between IM-Index and 5 other lung cancer-specific biomarkers.

Comparison AUC of the index AUC2 of the biomarker Bootstrapped p-value

IM-Index vs. CEA 0.822 0.668 0.029

IM-Index vs. NSE 0.822 0.58 0.002

IM-Index vs. CYFRA19 0.822 0.676 0.034

IM-Index vs. SCC 0.822 0.644 0.01

IM-Index vs. PROGRP 0.822 0.559 0.002
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findings demonstrate that development of adenocarcinoma is a signaling-intense and metabolically demanding 
process and likely reflects the more aggressive nature of this type of lung cancer.

Lung cancer pathogenesis: immune‑related pathway activity of host versus tumor.  The gene 
expression profiles from biopsies were collected from a previous study37, and then integrated into the AI model. 
AutoAnalysis was performed with the model to calculate pathway fluxes for each biopsy and subsequently GPFA 
was performed. The results were divided into separate signaling (Fig.  5A) and metabolic (Fig.  5B) perspec-
tives. High and low signaling pathway activities (high vs low pathway flux) were clearly differentiated from one 
another and such pathways could distinguish between host (peripheral blood leukocytes) and tumor responses. 
For instance, the signaling pathways VEGF (bonferroni correction, p = 4.76e−17), PDGF (p = 8.81e−16), and 
FGF (p = 2.94e−18) all showed a higher activity (high flux) on tumor-side (Fig. 5A; Supplement Fig. 4), which 
potentially reflects a sustained angiogenesis39,40. The mTor (p = 5.74e−17) and WNT (p = 2.44e−16) pathways 
were also more highly activated on tumor-side (Fig. 5A; Supplement Fig. 4), which may be associated to the 
uncontrolled proliferation41,42. The signaling pathways HIF (p = 1.32e−17), FOXO (p = 7.88e−14) and NOTCH 
(p = 1.52e−17), associated with tissue invasion were also more highly activated on the tumor-side43–45. In con-
trast, signaling pathways associated with a highly functioning innate immune system (TLR, COX)46,47, the 
functionality48, differentiation19, and maturation49 of T-Lymphocytes (JAK-STAT, EPO, Integrin), and the func-
tionality of the T- and B-cell50,51 (TCR, BCR, Interleukin, ATM) were more highly activated on the host-side 
(peripheral blood) (p < 0.05; Fig. 5A; Supplement Fig. 4).

From the metabolic perspective, it is shown that there is a clear and structural metabolism pattern for the 
host-side (Fig. 5B; Supplement Fig. 4): relatively high activities of valine, leucine and isoleucine biosynthesis 

Figure 3.   Schematic Immune-related Pathway Interaction Map and IM-Index. (A) A simplified overview 
of the abstract signaling interaction and crosstalk between different signaling and metabolic pathways in the 
artificial intelligent (AI) model. The map is termed PIML (pathway interaction map of leukocyte). Each element 
symbolizes a corresponding pathway containing up-, middle-, and downstream components including gene, 
RNA, protein, compound, and complex. (B–D) three PIMLs visualize these three groups with median IM-Index 
respectively.
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Figure 4.   Histopathology of adenocarcinoma and squamous carcinoma tissues and differentiation between 
both sub-groups. (A) Haematoxylin and eosin (H&E) stained tissue sample of a participant (M11) showing 
adencarcinoma tissue at the center (left) and widespread malignancy (right) (B) H&E stained tissue sample of a 
participant (M43) showing squamous carcinoma at the center (left) and at the margin (right). (C) Boxplot of the 
immune-related index (IM-Index) for adenocarcinoma (red) and squamous carcinoma sub-groups (cyan). The 
p-value obtained through the Wilcoxon test showed statistical significance with p = 0.019. (D,E) Heatmap of the 
differentiated activities (fluxes) of signaling- and metabolic pathways for both sub-groups. (F) five differentiated 
signaling pathways between adenocarcinoma and squamous carcinoma groups.
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(p = 7.08e−18), nitrogen (p = 3.12e−17), glutamine and phenylalanine metabolism (p = 3.43e−18); relatively 
low activities of butanoate metabolism (p = 1.06e−18), beta-alanin metabolism (p = 1.15e−18) and citrate cycle 
(p = 1.16e−18). In contrast to the host-side (peripheral blood), a clear pattern in its metabolic pathways did not 
become evident on the tumor-side (Fig. 5B; Supplement Fig. 4).

Discussion
The current study combined peripheral blood leukocyte-based RNAseq data with an AI model as a rapid, non-
invasive tool for early diagnosis of malignancy in pulmonary lung nodules. Current knowledge of biochemical 
signaling and metabolic pathways was collected and applied to inform the AI model. This AI model is unique 
because its construction is only driven by the biological knowledge, and not influenced by any existing genetic 
data. The model, facilitated with flux-flow based algorithm from AutoAnalyze, was used to calculate fluxes in 
pathways involved in host immunity. Based on these results an immune-related index (IM-Index) was defined 
and tested for its diagnostic potential. The IM-Index clearly differentiated between patients with malignant versus 
benign pulmonary nodules with a high accuracy (AUC: 0.822 [95% CI: 0.75–0.91] p < 0.001; Fig. 2). These results 
demonstrate for the first time that combining genetic information from peripheral blood leukocytes with AI 
modeling can accurately define the malignancy status of pulmonary nodules. The result in the validation cohort 
analyzed with IM-Index further confirmed its predictive ability. These results suggest that this approach could 

Figure 5.   Heatmap of signaling and metabolic pathways comparing host- and tumor-side from the malignant 
tissue and peripheral blood samples. (A) Comparison of flux activities within signaling pathways in the 
AI model between host- and tumor-side from lung cancer patient samples. (B) Flux activities of metabolic 
pathways in the AI model between host- and tumor-side. (C) Ten highly differentiated pathways for the 
comparison between host- and tumor-side.
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be used successfully for early clinical diagnosis and potentially the response to treatment. Further, by clearly dif-
ferentiating between patients with benign nodules and healthy controls, the IM-Index may be able to distinguish 
the three phases of cancer pathogenesis as defined by the Cancer Immuno-editing Concept (CIC).

In addition, this approach provided novel mechanistic insight into the host/tumor relationship. For instance, 
signaling pathways such as WNT52, NOTCH53, ERK54 and others were significantly and uniquely activated in the 
malignant group, which likely reflects a robust host immune response to aggressive tumor behavior (Fig. 2A). 
Similarly, malignancy was associated with increased metabolic activation in leukocytes, including nitrogen55, 
fatty acid56, cysteine, and methionine57.

Smaller differences in pathway fluxes (activities) between the benign and control groups further imply that 
early, more subtle changes in host immunity may occur during the equilibrium phase. This finding may neces-
sitate addition of more refined stages to the current CIC definition.

Several recent studies have attempted to extract information from peripheral blood leukocytes for diagnosis 
in lung cancer58, however, these focused solely on the expression levels of a few selected proteins and did not 
investigate the overall functional status of host immunity. In contrast to such studies, our work detailed a broad 
range of metabolic and signaling pathways unique to the host- and tumor-side of cancer pathogenesis on a 
systems level. Specifically, pathways that enforce proper immune functioning were activated on the host-side 
of the equation. On the tumor-side, cells strongly exhibited the hallmarks for malignancy. This supports our 
notion that signaling- and metabolic-pathway related information derived from host immune cells could be 
used to aid in sustaining a rapid and accurate assessment of host immune function. By contrast, chaotic and 
unstructured patterns of signaling and metabolism were found on the tumor-side, likely reflecting uncontrolled 
cellular proliferation and tumor growth.

These dramatic and dynamic differences could be exploited to develop novel therapeutic interventions that 
shift the balance toward host immunity and tumor cell elimination. Such therapeutic intervention targeting host 
versus cancer metabolism could be made on a personalized level. For example, the pentose-phosphate pathway 
(PPP), steroid biosynthesis, fatty-acid metabolism and citrate cycle all showed relatively high activities in the 
majority of tumor samples, a strong indication of heightened metabolic demands (Fig. 5). As these demands 
accelerate, these metabolic pathways may offer vulnerable targets and time points when treatment may be espe-
cially effective. Changing metabolic and signaling patterns during and after therapy could also indicate treatment 
efficacy, host immune status and overall prognosis.

Cancer research has entered the era of “Big Data”. The key challenge is how to combine large-scale, high-
dimensional and complex data for clinical applications. The recent development of artificial intelligence (AI) may 
provide a novel approach to meet this key challenge. Multiple studies have attempted to develop AI models to 
reduce dimensionality of big data and extract high-level features for prediction purposes31–33, which ultimately 
leads to the focus on the selection of training data. This may intricately increase the risk of over-parameterization. 
The present study definitely shows that an unbiased AI model can be constructed with solely a knowledge-based 
platform and that this model can be successfully applied using understand complex biological systems such as 
the human immune system. Further, pathway flux analysis is an invaluable approach to manage bio data’s the 
“curse of dimensionality”59 of big data.

There are several limitations to our study. First, although our IM-Index represents the latest biochemical 
signaling and metabolic information regarding strength and function of the host immunity, this field is complex 
and extensive, with new knowledge constantly evolving. Thus, the IM-Index definition will require consistent 
updating. Second, the current parameters α, β of IM-Index were set to a default value of 1 for this study since 
relevant information to define more precisely these parameters are lacking. Both parameters may also vary based 
on the type of cancer. It is also possible that pathway defined within this index system need to be parameterized. 
Therefore, follow-up studies may provide information to refine our model and increase its diagnostic accuracy 
and sensitivity. Third, although the AutoAnalysis does not strictly depend on kinetic parameters, such parameters 
in the AI model were derived from different kinetic databases. Future work will focus on the improvement of 
kinetic parameter settings in a more systematical and consistent way to meet the updated version of AI model. 
Fourth, there are several assumptions within the AI model including that the concentrations of H2O, and O2 
remain constant during the simulation in AutoAnalysis. Lastly, the number of patients studied is limited and 
group size is not equally distributed, thus limiting the statistical power. In addition, other types of lung cancer 
have not been included.

In light of our findings and their significant potential for early diagnosis of malignant lung cancer, additional 
prospective studies in a larger, multicenter cohorts of patients having various types of lung and non-lung cancers 
are warranted.

Conclusion
Our findings demonstrate that a non-invasive peripheral blood leukocyte-based AI model with IM-Index could 
be used clinically to differentiate sub-types of malignant lung cancer. Further, this approach provides important 
information regarding lung cancer pathogenesis and host/tumor interactions that could be exploited for devel-
opment of novel treatment modalities.
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