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An advanced computational 
intelligent framework 
to predict shear sonic velocity 
with application to mechanical rock 
classification
Majid Safaei‑Farouji1, Meysam Hasannezhad2, Iman Rahimzadeh Kivi3,4 & 
Abdolhossein Hemmati‑Sarapardeh5,6*

Shear sonic wave velocity (Vs) has a wide variety of implications, from reservoir management and 
development to geomechanical and geophysical studies. In the current study, two approaches were 
adopted to predict shear sonic wave velocities (Vs) from several petrophysical well logs, including 
gamma ray (GR), density (RHOB), neutron (NPHI), and compressional sonic wave velocity (Vp). 
For this purpose, five intelligent models of random forest (RF), extra tree (ET), Gaussian process 
regression (GPR), and the integration of adaptive neuro fuzzy inference system (ANFIS) with 
differential evolution (DE) and imperialist competitive algorithm (ICA) optimizers were implemented. 
In the first approach, the target was estimated based only on Vp, and the second scenario predicted Vs 
from the integration of Vp, GR, RHOB, and NPHI inputs. In each scenario, 8061 data points belonging 
to an oilfield located in the southwest of Iran were investigated. The ET model showed a lower average 
absolute percent relative error (AAPRE) compared to other models for both approaches. Considering 
the first approach in which the Vp was the only input, the obtained AAPRE values for RF, ET, GPR, 
ANFIS + DE, and ANFIS + ICA models are 1.54%, 1.34%, 1.54%, 1.56%, and 1.57%, respectively. In the 
second scenario, the achieved AAPRE values for RF, ET, GPR, ANFIS + DE, and ANFIS + ICA models 
are 1.25%, 1.03%, 1.16%, 1.63%, and 1.49%, respectively. The Williams plot proved the validity of 
both one‑input and four‑inputs ET model. Regarding the ET model constructed based on only one 
variable,Williams plot interestingly showed that all 8061 data points are valid data. Also, the outcome 
of the Leverage approach for the ET model designed with four inputs highlighted that there are only 
240 “out of leverage” data sets. In addition, only 169 data are suspected. Also, the sensitivity analysis 
results typified that the Vp has a higher effect on the target parameter (Vs) than other implemented 
inputs. Overall, the second scenario demonstrated more satisfactory Vs predictions due to the 
lower obtained errors of its developed models. Finally, the two ET models with the linear regression 
model, which is of high interest to the industry, were applied to diagnose candidate layers along the 
formation for hydraulic fracturing. While the linear regression model fails to accurately trace variations 
of rock properties, the intelligent models successfully detect brittle intervals consistent with field 
measurements.

An accurate characterization of underground formations is the key to achieve optimized recovery of geo-energies, 
particularly in oil and gas reservoirs. Compressional  (Vp) and shear  (Vs) sonic wave velocities, routinely obtained 
from seismic surveys and wireline logging, play a first-order role in reservoir evaluation under in-situ conditions. 
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Sonic velocity measurements provide significant insights into formation pore  pressure1, rock physical properties, 
including porosity, pore geometry, pore fluid, and mineralogical  content2–4, as well as rock stiffness, strength, 
and brittleness of target  strata5, with a wide range of applications from reservoir management and  development6 
to a variety of geomechanical, geotechnical and geophysical  studies7,8. Therefore, in-situ measurements of com-
pressional and shear velocities, frequently using full-waveform recordings, for example, Schlumberger Dipole 
Sonic Imaging tool (DSI), should be incorporated into the standard practice for reservoir evaluation. However, 
given the high cost of implementation, borehole conditions, and out-of-date logging tools, acoustic shear veloc-
ity measurements are commonly missing spatially across the field or even partially at some intervals along the 
wellbore. As a consequence, field-scale characterizations primarily require filling in this data shortcoming.

Rock acoustic properties can be directly measured on core specimens in the laboratory. Nevertheless, labo-
ratory measurements are more costly and time-consuming. Furthermore, multiple variables, including pore 
pressure, temperature, in-situ stresses, pore fluid, saturation degree, and rock mass scale properties, come to 
influence the sonic wave propagation across the  rock2,9–11. Replicating in-situ conditions in the laboratory may 
be challenging and introduce further uncertainties to the measurements. These experimental challenges have 
motivated researchers to develop shear velocity proxies from wireline logging data. Most notably, collecting 
velocity data from well logging, seismic, and laboratory measurements, Castagna et al.12 proposed a pioneering 
predictive model for shear velocity in siliciclastic rocks. They found an approximately linear relationship between 
shear and compressional velocities.

Castagna and  Backus13 adapted the relation as a quadratic function for carbonate rocks. Since then, numer-
ous empirical correlations have been proposed for shear velocity estimation in various rock types and saturated 
media, mainly in carbonate rocks, broadly encountered as hydrocarbon  reservoirs14–17. Such empirical correla-
tions are advantageous from an implementation point of view because compressional sonic velocity profiles 
are available in most wells. Eskandari et al.18 incorporated other conventional log suites of gamma-ray (GR), 
bulk density (RHOB), laterolog deep (LLD), and neutron porosity (NPHI) into a multivariate regression to deal 
with the potential effects of other environmental, fluid, and rock properties on shear velocity and promote the 
generalization capability of the models.

During the past two decades, artificial intelligence (AI) has drawn increasing attention in petroleum engineer-
ing and geosciences owing to its capability and robustness in modeling complicated phenomena, including res-
ervoir fluid and rock  properties19–22, hydrocarbon-bearing potential of source  rocks23, rock failure  behavior24–28, 
soil  behavior29,30 and seismic  characterization31,32. Predictive models thus got a boost with these new techniques. 
A great deal of research has also been dedicated to predicting shear velocity using a variety of artificial intelligent 
 approaches33,34. Utilized intelligent models were found to contribute to more accurate velocity estimations. But 
how reliable are reservoir evaluations established upon the estimated shear wave velocities? Indeed, can small 
errors in velocity estimations give rise to dramatic discrepancies in estimates of physical, hydraulic, and mechani-
cal properties of formations, which, in turn, may pose notable imperfections in engineering designs? How does 
the credibility of predictive models evolve with emerging new techniques and optimization schemes? And how 
do input variables control the model prediction capabilities? These are a number of key questions that are less 
well addressed and deserve a renewed investigation.

This study seeks the answer to the raised questions in the light of extensive modeling efforts in the context 
of a case study. The prediction of rock acoustic properties is brought to maturity by developing a large set of 
AI models. The data come from Sarvak limestone in a developing oilfield in the southwest of Iran. The models 
are built using wireline logging tracks along a wellbore. The employed models, whose governing algorithms are 
described in detail in the present study, consist of random forest (RF), extra tree (ET), Gaussian process regres-
sion (GPR), Adaptive neuro fuzzy inference system (ANFIS), and its optimization with differential evolution (DE) 
and imperialist competitive algorithm (ICA). The accuracy of the developed models is analyzed using different 
criteria. The synthesized velocity profiles are utilized to evaluate rock elastic properties and discuss how artificial 
intelligence can help improve the detection of candidate layers for hydraulic fracturing. The study manifests how 
untrustworthy are the linear shear velocity proxies for reservoir evaluation purposes.

Data collection and processing
The candidate formation for this study is Sarvak carbonates of an oilfield in the southwest of Iran. The Sarvak 
formation, mainly composed of limestones, serves as a major oil-producing reservoir in this region. A variety of 
sedimentary features has been distinguished in  Sarvak35, with the secondary porosity evaluated to range from 0 
to 10% in the study area, implying a high degree of heterogeneity. The formation has an approximate thickness of 
600 m, which is divided into upper and lower Sarvak layers separated by the 34-m-thick Ahmadi member. More 
than ten boreholes have been drilled to develop this reservoir, but only one well has full-waveform measure-
ments registered by the Schlumberger DSI tool. Besides, conventional well logs, such as NPHI, RHOB, and GR, 
are available. The data set includes a total of 4048 data points, regularly recorded at depth intervals of 15.24 cm. 
Well logs are depth matched and then subjected to environmental and hole size corrections.

The lack of shear velocity measurements has posed significant challenges in conducting geomechanical studies 
in this area and motivated us to develop a robust predictive model. In the first step, the selection of input vari-
ables is of paramount significance. To this end, we seek physically sound relationships between shear velocity 
(Vs) as the output and other logging data as the inputs. Sonic velocities in carbonate rocks were found to depend 
primarily on mineralogy and, more importantly, the amount and type of  porosity36,37. In formation evaluation, 
a combination of  Vp, GR, RHOB, and NPHI are frequently used for a detailed assessment of mineral contents 
and rock porosity. We establish two sets of predictive models: first, by using only  Vp as the input parameter and 
then adopting the four well logs as the model variables, from now on referred to as one input and four inputs 
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models, respectively. The reason for developing the former group is to find out how reliable these simple and 
widely used models are to directly bridge between compressional and shear velocities.

Model development and performance assessment
Modeling approaches. Gaussian process regression (GPR). It was the late 1940s in which the Gaussian 
Process method was suggested and implemented for prediction purposes. This technique found its way into 
machine learning in the middle of the  1990s38. After that, numerous computer simulations tests were performed 
and confirmed the Gaussian Process (GP) method’s high efficiency. One important positive point of Gaussian 
Process Regression (GPR) is its high power in processing multi-dimension, a limited number of samples, and 
non-linear  difficulties39. Generally, a GP is a group of random variables in which a restricted number of these 
variables have a joint Gaussian scattering. A Gaussian Process (GP) is identified through a mean function and a 
positively defined covariance (kernel)  function40.

Given a group of inputs D =
{(

xi , yi
)

, i = 1, 2, . . . , n
}

, xi ∈  Rd, and yi ∈ R.
The mean function is determined through:

Covariance function is given by:

In which: x , x′ ϵ  Rd, and it is required to estimate f (x∗) for the testing data x∗ , after that, the GP could be 
given as:

Because of the regression type of difficulty, the model is defined as  below41:

Affecting ξ − N(0, σ 2
y  ) subsequently, the previous distribution of observed value y is given.

The previous combination distribution of noted value y and estimated f (x∗) 41:

K (X, X) =  Kn =  Kij, it is n × n sequence positive definite matrix, the element of the  Kij = K  (xi,  xj) is implemented 
to calculate the correlation between  xi and  xj. K (X,x∗)=K(x∗,X)−1 is an n × 1 sequence covariance matrix between 
testing data x∗ and training samples X. K ( x∗, x∗) shows the covariance of the test data;  In represents n dimen-
sions unit  matrix41.

Accordingly, the posterior distribution of estimated value f (x∗) is achieved as  below41:

where:

µ∗ , �∗ shows the mean and covariance of f (x∗).

Kernel function. The key role of kernel or covariance functions in the Gaussian process is controlling GPR’s 
accuracy. The employed kernel function in the current study is automatic relevance determination (ARD) expo-
nential.

Random forest (RF).  RF is made up of a series of decision trees that are used to train trees concurrently. This 
method uses the efficiency of decision trees as the final choice for its  model42.  The RF classifier’s unique built-in 
feature selection attribute enables it to control a variety of input features without eliminating specific variables 
to minimize  dimensionality43.

 The RF approach trains the classifier to use bootstrap aggregation (Bagging) to broaden the range of each 
tree in the forest. Markedly, the number of trees B is selected. B separates training data points from the core data 
according to this amount. Since bagging is viewed as an alternative for random sampling, around one-third of the 
database is unused to train each subtree. Any tree’s residual data is known as the "out-of-bag" data point (OOB)44.

 In the RF method, due to the fact that the OOB may be applied to examine the model’s efficiency by exam-
ining the OOB errors, cross-validation is not required 45.  For the training of any decision tree, it is mandatory 
to record the training sample for the tree. Suppose the training set as  D = {

(

x1.y1
)

.
(

x2.y2
)

. • • •
(

xm.ym
)

} , 

(1)m(x) = E[f (x)]

(2)k
(

x, x′
)

= E[(f (x)−m(x))(f
(

x′
)

−m
(

x′
)

)]

(3)f (x) ∼ GP[m(x), k(x, x′)]

(4)y = f (x)+ ξ

(5)y ∼ N[0,K(X,X)+ σ 2
y In]

(6)
[

y
f ∗

]

∼ N

(

0,

[

0,K(X,X)+ σ 2
y In K(X, x∗)

K(x∗,X) K(x∗, x∗)

])

(7)P(f ∗
∣

∣x∗,X, y) ∼ N(µ∗,�∗)

(8)µ∗ = K(X, x∗)[K(X,X)+ σ 2
y In]

−1
y

(9)�∗ = K(x∗, x∗)− K(X, x∗)
[

K(X,X)+ σ 2
y In
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Dt  highlights the training data for tree  ht , and Hoob  depicts the out-of-bag approximation result for sample x, 
thus 45:

 And the error generalization for OOB data becomes:

 The randomness operation of the RF is controlled by the value K, which is typically specified as  k = log2d 45.   
To determine the feature worth of each component  Xi, the factor is randomly quantized. The bellows value is 
used to quantify the relevance of a feature:

 Here, Xi denotes the permuted ith feature in the feature vector X, B suggests the percentage of trees in the 
RF, and ÕOBerrti  symbolizes the method forecast error for the perturbed OOB sample containing the permuted 
feature  Xi for tree t  . OOBerrt refers to the original OOB data sample that contains the permuted component.

 The importance of the permutation feature signifies that an incredible importance quantity highlights that 
the feature is applicable in the estimation, and permuting the feature variable influences the model prediction. A 
minimal beneficial feature has no or little effect on the approximation of the  system46. It should be noticed that 
the minimum leaf size and parent size for the constructed RF model were set to 1 and 19, respectively.

Extra tree (ET) .  ET is a method of learning that applies an averaging strategy on Decision Tree projections 
in order to improve correctness and reduce processing  complexity47,48.  The additional tree strategy generates a 
random set of trees. Their estimates are retrieved accurately, using arithmetic averaging in regression challenges 
and majority voting in classification issues. One significant distinction between the extra tree method and other 
tree-based machine learning algorithms is that neuron division occurs randomly via extra tree cut sites.

The trees are built in the opposite direction of a bootstrap replica, using the entire learning sample. In regres-
sion challenges, the procedure of extra tree splitting requires two key variables: (i) the frequency of random 
splits at each neuron, denoted by K, and (ii) the smallest size of the sample utilized to break a neuron, written 
by nmin 47,48.

 The additional tree algorithm grows trees by identifying the amount of K at each neuron and continuing 
this operation once leaves are reached. Unless all subsamples provide pure responses or the amount of learning 
samples is below  nmin

48.  all subsamples produce pure responses. Extra trees are projected to adequately reduce 
variation by randomly assigning cut points and input features and by group averaging. Nonetheless, bias mini-
mization can be accomplished by adding additional trees that utilize the complete original learning  sample47.

In formal terms, provided a training data, X = {x1.x2. . . . .xN },  where the sample xi = {f1.f2. . . . fD}  fj as the 
feature and jǫ{1.2. . . . .D} .  Extra trees generate M unique DTs. In every DT,  Sp indicates a portion of the training 
data X at child neuron p. Following that, the ETs algorithm selects the optimal split relating to  Sp and a random 
segment of features for each neuron  p49. It should be noted that the minimum leaf size and parent size for the 
developed ET model were set to 1 and 5, respectively.

Adaptive neuro fuzzy inference system (ANFIS).  ANFIS, a widely used strategy for machine learning, combines 
neural networks with fuzzy systems. ANFIS’s primary purpose is to alleviate the constraints of neural networks 
and fuzzy systems while maximizing the positive points of both methodologies.

 ANFIS utilizes the ANN learning procedure to derive rules from input and output data, resulting in the 
creation of a self-adaptive neural fuzzy  system50. In general, three functions are available for building fuzzy 
systems: genfis1, genfis2, and  genfis351.  The genfis3 was used in the current report. The FIS framework is also 
constructed using a Sugeno system based on fuzzy C-means (FCM) clustering. Additionally, in fuzzy systems, 
membership functions may be chosen from a variety of  functions52. In the current research, a Gaussian func-
tion was applied. The ANFIS and ANN training in this work were accomplished using a hybrid technique. This 
technique combines backpropagation and least-squares prediction. The input membership function elements 
are computed using backpropagation, while the output membership function factors are measured using the 
least-squares methodology.

 ANFIS’s architecture is composed of rules, input data, output membership functions, and membership degree 
functions. Fig. 1  illustrates the ANFIS design with two inputs. The first layer establishes each input’s reliance 
on distant fuzzy areas. The next layer increases the weight of rules (wi) by raising the input numbers of each 
neuron. In the third step, the comparative weight of rules is determined. In the fourth stage, neurons are used to 
determine the contribution of rules to the output. The final layer, consisting a single neuron described as a stable 
neuron.53, is used to minimize the variance between the observed and forecasted  output54.  As previously stated, 
the ANFIS paradigm is composed of five layers. The precise characteristics of each layer are listed  below55–58. In 
this research, for the designed ANFIS model by one input, the number of nodes and fuzzy roles were defined 16 
and 3, respectively. However, the number of nodes and fuzzy roles for the formed ANFIS model by four inputs 
were set to 57 and 5, respectively.

(10)Hoob(x) = argmax
∑T

t=1
I(ht(x) = y

(11)εoob(x) =
1

|D|

∑

(x.y)ǫD
I(Hoob(x) �= y)

(12)I(Xi) =
1

B

B
∑

t

ÕOBerrti − OOBerrt
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Layer 1:
 Layer 1 converts the incoming data to language terms. Each input criterion is associated with n neurons, each 

of which represents a preset linguistic phrase. The terms are produced in the initial layer in accordance with the 
previously specified membership functions. The Gaussian function used in this investigation is shown below:

 Z signifies the Gaussian membership function center in this calculation; O  denotes the output layer; and  
σ  reflects the variance term. The ANFIS program will optimize and alter these parameters during the learning 
 period59,60.

Layer 2:59,60:

Layer 3:
 In this layer, the firing energy of each rule is distinguished from the overall firing capacity of all rules by 

normalizing the recorded firing power parameters using the following  equation59,60:

Layer 4:
 This layer recognizes the linguistic phrases associated with the model’s output. The formula below determines 

the influence of each rule on the output of the  model59,60:

In this formula, ri,ni , and mi denotes linear variables. The adjustment and optimization of these variables are 
performed through ANFIS  by the reduction of the discrepancy between predicted and target  quantities59,60.

Layer 5:
 This layer use the weighted average summation technique to convert the complete collection of rules and an 

output to a numerical state according to the below  calculation59,60:

Optimization algorithms. Imperialist competitive algorithm (ICA). ICA is a powerful technique based 
upon imperialism to expand the strength and law of a government far away from its geographical  borders61. 
A first population starts this method as first countries—several best countries among the existing population 
regarded as the imperialists. Indeed, those countries with the minimum objective functions or costs, as an ex-
ample, root mean square error (RMSE), are selected as the  imperialists62.

(13)O1
i = β(X) = exp

(

−
1

2

(X − Z)2

σ 2

)

(14)O2
i = Wi = βAi(X).βBi(X)

(15)O3
i =

Wi
∑

i Wi

(16)O4
i = Wifi = Wi(miX1 + niX2 + ri)

(17)O5
i = Y =

∑

i

Wifi = Wif1 +W2f2 =

∑

i Wifi
∑

i Wi

Figure 1.  The schematic of the applied ANFIS  model19
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The remaining population is considered as colonies and incorporated in the mentioned imperialists. After 
that, imperialistic competition starts between all the empires. Among the empires, the weakest one (with maxi-
mum RMSE) who is disabled to raise its strength and is disabled to succeed in the competition will be deleted 
from the competition. Thus, all colonies go toward their related imperialists associated with the competition 
between empires. In the end, hopefully, the mechanism of collapse will lead to reaching all the countries to a 
state where there is merely one empire around the globe (in the context of the issue), and all the other countries 
are colonies of that one empire. The most potent empire (with minimum RMSE) would be our  remedy63.

Differential evolution (DE) optimizer. The DE optimizer is a swarm-based stochastic optimized defined by 
Storn and  Price64. This practical algorithm has several merits: real coding, user-friendly, local searching feature, 
simplicity, and high  speed65,66. The algorithm operates through the same computational processes employed by 
other evolutionary algorithms. The differential evolution algorithm utilizes the dissimilarity of the parameter 
vectors for exploring the objective  space67.

Statistical evaluation. To show and compare the constructed models, several parameters, namely aver-
age percent relative error (APRE%), average absolute percent relative error (AAPRE%), root mean square error 
(RMSE), and standard deviation (SD), were implemented. Formulas of these equations are provided below:

1. Average percent relative error (APRE):

In which Ei is the relative deviation that is defined as:

2. Average absolute percent relative error (AAPRE):

3. Standard deviation (SD):

4. Root mean square error (RMSE):

In addition, the relevancy factor (r) was calculated to analyze the relationship between the inputs and outputs. 
The following formula was applied to calculate the relevancy factor (r) for input data:

While outputi highlights the value of ith estimated output, outputave implies the mean value of approximated 
output. Inputk,i displays the ith quantity of the kth input factor, while Inputave,k displays the mean amount of the 
kth input  variable68.

Results and discussion
Assessment of the validity and accuracy of one input‑developed models. Table 1 summarizes 
the obtained values of the parameters mentioned above for train, test, and total datasets in which one variable 
 (Vp) has been used as the input. As given in this table and Figs. 2 and 3, the smallest overall AAPRE (1.34%), 
RMSE (57.99), and standard deviation (0.019) belong to the extra tree (ET) model. After the extra tree model, 
the Gaussian process regression (GPR) indicates low values of overall AAPRE (1.54%) and RMSE (66.25). It is 
worth mentioning that the developed methods of Gaussian process regression (GPR) and random forest (RF) 
have closely similar AAPRE and RMSE values (Figs. 2 and 3). Likewise, a relatively similar performance for these 
two models can be concluded, based on the achieved values of AAPRE and RMSE. Collectively, the extra tree 
(ET) model can be regarded as the optimum model that estimated the target with substantially higher accuracy 
than those of the other models in the current study. The performance of the models based on the achieved error 
values can be summarized as below:

(18)Er =
1

n

n
∑

i=1

(Ei)

(19)Ei =

[

Vs
(

exp
)

− Vs(cal)

Vs(exp)

]

× 100, i = 1, 2, 3, . . . , n

(20)AAPRE =
1

n

n
∑

i=1

|Ei|

(21)SD =

√

√

√

√

1

n− 1

n
∑

i=1

(
Vs

(

exp
)

− Vs(cal)

Vs(exp)
)

2

(22)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Vs(exp)− Vs(cal))2

(23)r
(

inputk , output
)

=

∑n
i=1(inputk,i − inputave,k)(outputi − outputave)

√

∑n
i=1(inputk,i − inputave,k)

2∑n
i=1(outputi − outputave)

2
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Figure 4  typifies the cross plots for the models utilized. The projected values are plotted versus the actual 
values in these illustrations. Cross plots exhibit the ideal model line by drawing the X=Y straight line amongst 
the experimental and approximation values. The closer the data on the plot are to the straight line, the better the 
model performs. As can be seen from these data, the predictions of the provided designs exhibit a high degree of 

ET > GPR > RF > ANFIS+ DE > ANFIS+ ICA

Table 1.  The statistical parameters measured for one input models.

Model RMSE (m/s) AAPRE% APRE% SD

RF (Train) 67.10 1.56 −0.02 0.0222

RF (Test) 64.23 1.50 −0.04 0.0212

RF (All) 66.54 1.54 −0.43 0.0220

ET (Train) 55.23 1.29 −0.04 0.0183

ET (Test) 67.93 1.56 −0.04 0.0225

ET (All) 57.99 1.34 −0.04 0.0192

GPR (Train) 66.31 1.53 −0.04 0.0220

GPR (Test) 65.98 1.56 −0.06 0.0219

GPR (All) 66.25 1.54 −0.05 0.0220

ANFIS + DE (Train) 68.03 1.58 −0.06 0.0226

ANFIS + DE (Test) 63.70 1.50 0.03 0.0212

ANFIS + DE (All) 67.19 1.57 −0.07 0.0223

ANFIS + ICA (Train) 68.37 1.59 −0.06 0.0227

ANFIS + ICA (Test) 64.07 1.51 −0.12 0.0213

ANFIS + ICA (All) 67.54 1.58 −0.07 0.0224

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

RF ET GPR ANFIS+DE ANFIS+ICA 

AAPRE

Figure 2.  The AAPRE values of the five developed models based on one input (Vp).
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Figure 3.  The RMSE values of the five constructed models based on one input (Vp).
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Figure 4.   Plots of the developed paradigms (a) RF, (b) ET, (c) GPR, (d) ANFIS + DE, and (e) based on one 
input (Vp).
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consistency along the unit slope line.  Fig. 5. depicts the error distribution profile for the developed extra tree (ET) 
structure, which is the optimal model. The system is more realistic in this picture if the errors are concentrated 
in a smaller zone close the zero-error line. Clearly, a substantial proportion of data is located near the zero line 
of the relative error (RE). This denotes the high accuracy of the developed extra tree (ET) model. 

 Further, Fig. 6 depicts the cumulative frequency of the absolute relative error for the models used in this 
study. As indicated by this chart, the ET model is capable of approximating higher than 30% of Vs points with an 
absolute relative error of below 0.5 percent. Additionally, roughly 90% of the estimated Vs values through the ET 
model show an absolute relative error of lower than 3%. Correspondingly, The ET model’s superior performance 
in predicting the Vs in contrast to other approaches can be deduced.

Outlier detection and utility domain of the constructed ET model (one input model).  Outlier detection is a time-
efficient method for finding a data set that is distinct from the rest of the data in a  databank69.  The Leverage 
technique is a well-known methodology for detecting outliers, as it is based on data residuals (the departure of 
a model’s expectations from experimental findings)69–72.  A hat matrix (H) is given in the leverage approach to 
establish the hat indexes or leverage of data as  follows69,73:

In which, X denotes a two-dimensional matrix containing N rows (data sets) and K columns (model fea-
tures). Furthermore, T represents the transpose multiplier. The diagonal components of H typify the hat values 
of  data69,73.

In a Williams plot, standardized residuals are plotted against hat values and various areas of out of leverage 
data, suspected data, and valid data are recognized. The standardized residuals’ formula (SR) for each data point 
is described as  bellows73:

 In which ei represents the deviation of the estimated data from its experimental value (estimated output-meas-
ured data), RMSE stands for the root mean square error of the model, and Hii denotes the hat index of the ith 
data set.

In the leverage approach, warning leverage  (H*) is determined to reject or accept the model results and cal-
culations. This criterion is known as  H* = 3(k+1)

N  and commonly, a value of 3 with an SD of ±3 from the mean is 
selected to cover 99% of the dispersed data. Under the circumstances in which most of data sets end up within 
the intervals of 0 ≤ Hii ≤  H* and −3 ≤  SRi ≤ 3 , it may be inferred that the proposed model and its approxima-
tions are valid, and the experimental data implemented for model development are  reliable69,73.

The data points in the ranges of −3 ≤ SR ≤ 3 and  H* ≤ H are known as good high leverage points. These points 
are outside the applicability area of the used model. The data sets that are situated in the interval of SR ˂ −3 or 
SR > 3 (notwithstanding their H value) are known as bad high leverage points. These data points are regarded 
as experimentally suspected data set that may be derived from an error over the experimental  calculations69,73. 
Figure 7 depicts the Williams plot and notably implies that all 8061 data points are valid data.
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Group error analysis (one input models). In the group error technique, the error values along with the data 
in various intervals are measured and plotted. The data are separated into various intervals, and their error in 
each interval is measured and  plotted73. In the present study, the Vp data points were divided into five sections, 
and the average AAPRE for each section was calculated. Figure 8 plots input values against AAPRE values for 
all five smart models. As can be observed, the extra tree (ET) model collectively provides lower AAPRE values 
compared to other models. However, it should be noted that although optimized ANFIS models demonstrate 
the higher AAPRE values in the range of 5784 to 6331 and 6331 to 6878 m/s than other models, the minimum 
AAPRE values within the first three sequences belong to these optimized models. Also, it is visible that for all five 
ranges of Vp values, the ANFIS model optimized with DE and ICA illustrates tightly similar trends.

Assessment of the validity and accuracy of four inputs‑constructed models. Table 2 summa-
rizes the achieved values of the statistical parameters for train, test, and total datasets. As given in this table 
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and Figs. 9 and 10, the extra tree (ET) model provides the smallest overall AAPRE (1.03%), RMSE (47.55), and 
standard deviation (0.015). The Gaussian process regression (GPR) ranked second based on the mentioned 
errors’ values. The GPR model indicates low values of overall AAPRE (1.16%) and RMSE (54.76). Similar to the 
constructed models based on one input, a closely similar performance can be concluded for the Gaussian process 
regression (GPR) and random forest (RF) models due to their subtle differences in acquired AAPRE and RMSE. 
Likewise, it can be noticed that the optimization algorithms’ performances do not differ considerably from each 
other. Therefore, the extra tree (ET) model can be recognized as the ideal model approximating the target (Vs) 
with higher accuracy than the other created models in this paper.

The performance of the constructed models based on the acquired error values can be summarized as below:

Even though the performance of the models developed with one input follows the above trend except for 
optimizers, generally lower error values have been obtained when models are developed with four inputs.

Figure 11 shows the plots of the applied systems. From these cross plots, it is apparent that the predictions 
of the applied models generally demonstrate a highly satisfactory agreement with the straight line. However, it 
can be observed that the data set belonging to the extra tree (ET) model (Fig. 11c) are closer to the unit slop line.
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Figure 8.  Group error diagram illustrating AAPRE values for the developed models based on one input (Vp).

Table 2.  The statistical parameters measured for four inputs models.

Model RMSE(m/s) AAPRE% APRE% SD

RF (Train) 53.45 1.22 −0.03 0.0177

RF (Test) 60.17 1.39 0.05 0.0198

RF (All) 54.86 1.25 −0.01 0.0182

ET (Train) 44.45 0.98 −0.03 0.0147

ET (Test) 58.29 1.25 −0.006 0.0192

ET (All) 47.55 1.03 −0.03 0.0157

GPR (Train) 52.84 1.12 −0.03 0.0174

GPR (Test) 61.84 1.28 −0.009 0.0205

GPR (All) 54.76 1.16 −0.02 0.0180

ANFIS + DE (Train) 67.33 1.6322 0.1053 0.0223

ANFIS + DE (Test) 69.39 1.6691 0.11 0.0230

ANFIS + DE (All) 67.74 1.6396 0.10 0.0224

ANFIS + ICA (Train) 65.16 1.4812 −0.07 0.0216

ANFIS + ICA (Test) 67.47 1.52 −0.03 0.0224

ANFIS + ICA (All) 65.63 1.49 −0.06 0.0217
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Illustrating the error distribution curve of the optimum model is another tool implemented to assess the 
developed models based on four inputs graphically. Figure 12 shows this curve for the developed extra tree (ET) 
as the ideal model. As it is visible, the major part of the data points has been situated near the zero line of the 
relative error (RE). This suggests the high accuracy of the developed extra tree (ET) model.

The cumulative frequency of the models’ absolute relative error applied based on four inputs, and created 
correlation is depicted in Fig. 13. As this figure clarifies, the ET model could estimate approximately 93% of Vs 
points with an absolute relative error of less than 3%. Correspondingly,  the ET model’s superior effectiveness in 
forecasting Vs than other strategies can be concluded. 

Sensitivity analysis of the ET model (four inputs model). Sensitivity analysis investigates the effect of a model’s 
input variation on the model’s output value. In this regard, the relevancy factor is a proper method. The relevancy 
factor calculates the amount of each input parameter influence on the output. A higher value of relevancy fac-
tor (r) for an input indicates a more prominent effect by that input on the  output73. Figure 14 typifies the effect 
of four inputs on the Vs as the target parameter in this research. It implies that the Vp has a considerably more 
significant influence on the Vs value in comparison with the other three inputs. Therefore, the generally similar 
performance of the one-input and four-input developed models based on the obtained errors can justify the sen-
sitivity analysis outcome, denoting Vp used as the only input in the first scenario of this paper impose a higher 
impact on the Vs as the target parameter.

Outlier detection and utility domain of the constructed ET model (four inputs model). The result of the Lever-
age approach for the extra tree (ET) model constructed with four inputs is demonstrated in Fig. 15. It is plainly 
visible that most data sets are situated in the valid zone, and there are only 240 out of 8060 “out of leverage” data 
sets. Additionally, only 169 out of 8060 data points are suspected data. These amounts prove that the experimen-
tal data are reliable and that the developed ET model is statistically valid.

Group error analysis (four inputs models). Figure 16 indicates the Group error distribution of four inputs within 
five divided sequences. For the Vp input case, as demonstrated in Fig. 16a, the smallest AAPRE within the inter-
val of 4144 to 4691 belongs to the GPR model. The extra tree (ET) model shows a lower AAPRE than that of 
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Figure 11.  Cross plots of the developed models (a) RF, (b) ET, (c) GPR, (d) ANFIS + DE, and (e) ANFIS + ICA 
based on four inputs.
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other developed methods for the other three ranges. Ultimately, in the range of 6332 to 6879, the random forest 
(RF) model indicates a lower AAPRE compared to those of other models.

In the case of the second input (GR) (Fig. 16b), it is evident that for all five defined intervals, the extra tree 
(ET) model has the minimum AAPRE. Regarding RHOB (Fig. 16c), the extra tree (ET) model generally typifies 
the lower AAPRE compared to other models. However, for the last defined range of RHOB values (> 2.72), the 
Gaussian process regression (GPR) model implies a notable lower AAPRE than that of other models. Finally, 
considering the NPHI input (Fig. 16d), the extra tree (ET) model collectively shows lower AAPRE values than 
other developed intelligent models.

Implications to candidate selection for hydraulic fracturing. Hydraulic fracturing widely serves as 
an essential technique to enhance the productivity of low-permeability hydrocarbon reservoirs. Massive hydrau-
lic fracturing involves the injection of large volumes of water at high pressure and rates, making economic 
production from gas shales of nano-darcy-range permeability  viable74,75. However, not all depth intervals in 
the reservoir are appropriate for fracturing. Indeed, a promising selection of candidate layers for a fracturing 
completion is the key to ensure high profitability. The degree to which the rock is efficiently fractured to create a 
wide and sufficiently permeable fracture network for the hydrocarbon to flow is characterized by the brittleness 
index,  BI76,77. Consequently, the literature has witnessed in recent years tremendous efforts to develop accurate 
and credible brittleness models (see, for instance, Kivi et al.78, Meng et al.79 for a review). Among them, Rickman 
et al.75 proposed a brittleness index BI[−] by hypothesizing that brittle rocks possess relatively high Young´s 
modulus E[Pa] and low Poisson´s ratio ν[−] , which is as follows
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where the superscripts “min” and “max”, respectively, stand for the least and highest elastic moduli values. The so-
called elastic brittleness index has drawn widespread attention in field applications owing mainly to its simplicity 
and proficiency, proven through comparison with rock failure behavior in  laboratory17 and field  observations80,81. 
Elastic moduli can be conveniently evaluated from wireline logging data, which is written as:

where ρ[kg/m3
] , Vp[m/s] and Vs[m/s] denote the rock´s bulk density and compressional and shear sonic veloci-

ties, respectively. Equations (23) to (25) point to the importance of developing shear velocity proxies in opti-
mizing the hydraulic fracturing operation where full-waveform sonic data are partially or thoroughly missing. 
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Figure 15.  The Williams plot of the ET model with four inputs.
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To further highlight this significance, we evaluate the elastic moduli and brittleness profiles across the studied 
formation using the most accurate artificial intelligence models established in Sects. 4.1 and 4.2, i.e., ET models 
with one and four input variables, as well as linear regression model, which is of interest due to its simplicity to 
the industry. The extracted linear relation between the shear and compressional velocities is as follows:

where the velocities are in m/s. The developed correlation represents a high accuracy, characterized by an AAPRE 
and RMSE of 2.2 and 89.03, respectively, which are comparable to the values achieved from artificial intelligence 
models (see Tables 1 and 2). The resultant statistics seem to attest to the high precision of the constructed linear 
model.

The reliability of the created models can also be inferred from the estimated profiles of Young´s modulus along 
with the examined formation (Fig. 17). The measured Young´s modulus tracks using modeled shear velocities 
(ET models and linear regression) and DSI data return almost a perfect match. However, discrepancies arise 
when comparing vertical distributions of Poisson´s ratio obtained from the mentioned three models (Fig. 17). 
The four-variable ET model estimates of shear velocity result in a Poisson´s ratio profile that is in good agreement 
with the actual one, i.e., calculated from DSI data. Although the single input ET model satisfactorily captures 
the general evolution trends of the Poisson´s ratio across the layer, a perfect quantitative match is missing. This 
comparison clearly highlights a key and complex dependence of sonic velocity on a set of contributing factors, 
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which a combination of well logging data can only realistically reflect this complexity. This inconsistency may 
not necessarily pose major uncertainties to our analysis because what matters in candidate selection for hydraulic 
fracturing is the relative sequence of brittleness and not its absolute value.

Interestingly, despite admissible velocity measurement capabilities, the linear model completely fails to esti-
mate Poisson´s ratio profile neither qualitatively nor quantitatively. This disagreement is evidently due to the 
fact that Poisson´s ratio only depends on the ratio of compressional to shear velocity (see Eq. 25). Accordingly, 
the smaller the absolute value of the velocity intercept, the smaller the variability of Poisson´s ratio. Thus, the 
closer its value is to a constant controlled by the velocity ratio. The derived linear relation here narrows down 
the variation of Poisson´s ratio to as small as 0.3 to 0.32 (Fig. 18).

We assessed the brittleness profiles along the formation using equation (33) and the predicted elastic moduli. 
We also employed the well-established k-means clustering  technique82 to develop a mechanical rock classifica-
tion and diagnose rock classes of different brittleness ranges. After a trial-and-error procedure for clustering, we 
assumed four rock clusters for illustration purposes. One should bear in mind that the number of rock clusters 
should be determined based on the identified rock types through a detailed geological analysis of recovered 
cores and thin  sections83. Furthermore, for a robust screening of sweet spots, the clustering should also take 
into account other affecting parameters such as rock porosity, permeability, saturation, and in-situ stresses, 
which is out of the scope of this study. As expected from elastic moduli predictions, a comparison of brittleness 
profiles and clusters associated with ET model evaluations and recorded velocities discloses a good agreement 
(Fig. 19). The lowermost 100 m of the formation and some scattered intervals in its middle and top (light and 
dark green clusters) are found to have relatively higher brittleness compared to the adjacent zones (purple and 
red clusters). Therefore, the former groups can be considered as target layers for hydraulic fracturing while the 
latter potentially act as fracture barriers. However, the regression-based brittleness estimate, inheriting errors 
from elastic parameter calculations, is not able to follow the overall trends, and the associated fracturing design 
would be misleading. Briefly, it can be concluded that using linear models to estimate the shear sonic velocity 
gives rise to certain uncertainties in evaluating the rock Poisson´s ratio and negatively impacts subsequent 
geo-mechanical studies. Hence, their application to fill in data gaps should be restricted or treated cautiously. 
Instead, the employed intelligent approaches provide powerful tools for velocity estimations and should be taken 
as common practice in the industry.
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Conclusions
In this paper, two scenarios were adopted to estimate Vs from petrophysical well logs of GR, RHOB, NPHI, and 
Vp. For this objective, five different intelligent models of random forest (RF), extra tree (ET), Gaussian process 
regression (GPR), and the optimization of ANFIS with differential evolution (DE) and imperialist competitive 
algorithm (ICA) were employed.

In the first scenario, the target was predicted based on only Vp and the extra tree (ET) model provided lower 
AAPRE than other intelligent models. Furthermore, cross plotting the approximated Vp against its measured 
values for the extra tree (ET) model showed more uniformity than other implemented models. The error distribu-
tion curve also typified the high accuracy of the extra tree (ET) model. The cumulative frequency of the absolute 
relative error further supported better performance of the extra tree (ET) model than that of other developed 
models. Notably, the Williams plot of the data sets illustrated that all 8061 data point are valid. Ultimately, the 
group error analysis proved that the extra tree (ET) developed model has a lower AAPRE within all divided data 
sets than other models.

The second scenario predicted Vs from the integration of Vp, GR, RHOB, and NPHI inputs. Like the first 
approach, the minimum AAPRE was acquired by the extra tree (ET) model in this approach. Likewise, the 
cross plot of experimental Vp values versus its approximated values through the ET constructed model indi-
cated more uniformity than other models. More acceptable performance for the ET model was demonstrated 
by its error distribution curve and cumulative frequency of the absolute relative error. The leverage approach 
also suggested that both measured data and the developed ET model are statistically valid. Also, the sensitivity 
analysis outcome denoted that the Vp has a higher impact on the target parameter (Vs) than other used inputs. 
Generally, it can be concluded that the second approach is more acceptable because of the lower achieved errors 
of its constructed models.

The field applicability of ET models as the most accurate developed intelligent approach was verified and 
compared with the linear regression model. The ET models, particularly that of the second scenario, satisfac-
torily estimated elastic moduli profiles in close quantitative agreement with field measurements and diagnosed 
brittle layers for hydraulic fracturing along Sarvak formation. Interestingly, although of acceptable accuracy, 
the regression-based velocity profile led to pronounced uncertainties in evaluating the rock Poisson´s ratio and 
subsequent geo-mechanical evaluations, for instance, as discussed in this study, the relative sequence of brittle 
layers for hydraulic fracturing. This highlights the outperformance of the established intelligent frameworks 
for sonic velocity estimations and strongly suggests their wide employment in reservoir evaluation practices. 
Nevertheless, the choice of appropriate input well-logging variables, particularly when any of the conventional 
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Figure 18.  Vertical distributions of Poisson´s ratio along the formation. Calculations based on modeled shear 
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Figure 19.  Brittleness-based rock clustering of Sarvak formation. The first four tracks depict the extracted 
brittleness profiles, distinguished by the source shear velocity, and what come next are the corresponding 
identified rock classes. The clusters are represented by red, purple, light, and dark green colors corresponding to 
an increasing order of brittleness.
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log data is not available, and a universal intelligent model for estimating shear sonic velocity for different rock 
types yet remain a topic of ongoing research.
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