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Contactless radar‑based breathing 
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Vital sign monitoring systems are essential in the care of hospitalized neonates. Due to the immaturity 
of their organs and immune system, premature infants require continuous monitoring of their vital 
parameters and sensors need to be directly attached to their fragile skin. Besides mobility restrictions 
and stress, these sensors often cause skin irritation and may lead to pressure necrosis. In this work, 
we show that a contactless radar‑based approach is viable for breathing monitoring in the Neonatal 
intensive care unit (NICU). For the first time, different scenarios common to the NICU daily routine are 
investigated, and the challenges of monitoring in a real clinical setup are addressed through different 
contributions in the signal processing framework. Rather than just discarding measurements under 
strong interference, we present a novel random body movement mitigation technique based on the 
time‑frequency decomposition of the recovered signal. In addition, we propose a simple and accurate 
frequency estimator which explores the harmonic structure of the breathing signal. As a result, the 
proposed radar‑based solution is able to provide reliable breathing frequency estimation, which is 
close to the reference cabled device values most of the time. Our findings shed light on the strengths 
and limitations of this technology and lay the foundation for future studies toward a completely 
contactless solution for vital signs monitoring.

Nearly 15 million infants are born annually before the 37th week of pregnancy, meaning that about 10% of all 
births worldwide are  premature1. Due to their immature organ systems and associated functions, as well as their 
immune system, these infants are at a higher risk of infections, chronic diseases and respiratory problems. The 
immaturity of breathing regulation and lungs often lead to apnea-bradycardia and respiratory distress syndromes. 
This is commonly followed by bronchopulmonary dysplasia in 27% of the infants born at less than 30 weeks of 
 gestation2–5. Consequently, further development of these premature infants has to continue ex-utero, and they 
usually have to spend several weeks at a Neonatal Intensive Care Unit (NICU).

During this period, continuous monitoring of their underdeveloped organs is necessary. Often, newborns 
are dependent on parenteral nutrition, respiratory support, and invasive diagnostic interventions which, albeit 
being essential for survival, may cause stress to the child. Basic vital parameters such as respiration, heart rate 
and oxygen saturation also need to be monitored. To this end, several sensors are directly attached to their fragile 
skin and connected to the monitoring systems through cables. Besides mobility restrictions, these sensors often 
cause skin irritation and may eventually lead to pressure  necrosis6–11.

In order to promote the development of premature babies, a number of efforts have been made toward 
non-invasive monitoring and diagnostic solutions. The use of sensors that can monitor a variety of vital signs 
without a cable connection, but bonded to the skin, is being investigated  in12,13. Current studies are also inves-
tigating the potential of different non-contact techniques for non-invasive diagnostics in children. Efforts are 
underway to detect pathological changes in body excretions by analyzing volatile organic  compounds14,15. There 
are approaches using optical methods to monitor pulse rate and oxygen saturation without direct skin contact 
and cable connection, based on e.g. dynamic light  scattering16,  video17 or  photoplethysmography18,19. Of high 
relevance for preterm infants is also the diagnosis of respiratory pathologies and classification regarding periodic 
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breathing and  apneas20,21. This task is addressed using different non-contact techniques, which require redundant 
measurements of various vital signs, e.g. respiration motion, heart rate, oxygen saturation or nasal  breathing22–24.

The contactless monitoring of the cardiorespiratory activity neither confines nor inhibits the patient, reduces 
hygiene risks and does not cause any discomfort, irritation or skin  damage25,26. In this context, radars have already 
been proven to be a promising  technology27–29, being intrinsically low-power, low-cost and privacy preserving. 
Unlike camera-based  systems30,31, radar signals can penetrate through different materials (such as plexiglass, 
clothing, mattresses and blankets), and are not affected by skin pigmentation or ambient light levels. However, 
due to the reduced transmitted power, these signals can be easily buried in the background noise, or masked 
by stronger external interference, including body movements from the monitored  patient32. This interference 
is a major challenge for accurate estimation in contactless solutions as well as for cabled devices. Specific signal 
processing techniques are thus needed in order to ensure reliable and robust measurements.

Recent  works33,34 have demonstrated that an ultrawideband radar can provide reliable breathing rate estimates 
for neonates under specific conditions. However, these investigations were limited to a single scenario, where the 
neonates were lying over an open-air crib, always in supine position. In addition, radar performance was evalu-
ated only during minimal movements of the monitored patients. In this article, we take one step further by using 
a simpler continuous-wave (CW) radar device, and investigating premature infants under different scenarios 
common to the NICU routine, irrespective of the amount of movement or external interference. The specificity of 
the monitored patients in a real clinical setup creates several challenges which were addressed through different 
contributions in the proposed signal processing framework. Particularly, rather than just discarding measure-
ments under strong  interference33–37, we present a novel random body movement mitigation technique based 
on the time-frequency decomposition of the recovered signal. Additionally, we propose a simple and accurate 
frequency estimator, which explores the harmonic structure of the breathing signal.

Problem formulation. The activity of the cardiovascular and respiratory systems causes some physical and 
physiological effects on the human body. The chest wall moves during the inspiration/expiration cycle as a result 
of the diaphragm and intercostal muscle movements. This small and periodic displacement can be detected by 
radar, allowing accurate estimation of the breathing rates under certain conditions. Figure 1a illustrates the basic 
operational principle of a CW radar. The transmitted signal propagates through the free space and reaches every 
object in the radar’s field-of-view, being reflected back with additional phase information regarding each object’s 
position. The received signal can thus be modeled as a scaled and time-shifted version of the transmitted signal, 
in which the phase variation over time contains valuable information regarding the scene movement. This time-
varying phase θ(t) can usually be recovered as

where � is the radar operating wavelength, and d(t) represents the displacement signal which, ideally, would cor-
respond only to the chest wall motion due to the breathing mechanism. As seen by the radar, this movement is 
mainly originated by the reflected points over the chest moving surface, but it may additionally include residual 
motion from the belly, sides and the back, depending on the patient relative position. In healthy adults, standard 
amplitudes for this motion range between 4 mm to 12  mm38, with breathing rates varying from 5 to 25 breaths 
per minute (bpm)39. For premature infants, these amplitudes can be smaller than 1 mm, while average breathing 
rates can normally reach 60  bpm40, and go up to 80 bpm under specific  conditions41.

(1)θ(t) = 4πd(t)

�
,

Figure 1.  Continuous-wave radar for breathing monitoring in the NICU. (a) Basic operational principle. 
(b) Block diagram of the signal processing chain. Before estimation, the received signals from the analog-to-
digital converter (ADC) are phase demodulated and further processed in the random body movements (RBM) 
mitigation unit.
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Perfect recovery of the chest wall motion d(t) would allow precise estimation of the breathing frequency fb 
by simple analysis of the movement periodicity. However, in a real clinical setup, besides unavoidable hardware 
imperfections, the received radar signal is usually mixed with additional reflections from the external environ-
ment, arising not only from different body movements of the monitored patient, but also from every moving 
object in the scene. These interfering signals are usually much stronger than those induced by the chest wall 
millimeter displacement, and this makes accurate recovery and subsequent estimation of the breathing frequency 
a challenging task. In addition, when considering premature infants, the reduced amplitudes of the chest wall 
motion, and the wider range of possible breathing rates pose an additional signal processing challenge in relation 
to previously reported research with adults.

Clinical setup and protocol. The study was performed in the Department of Pediatrics, at the Saarland 
University Medical Center (Homburg, Germany). Figure 2a shows a premature neonate being monitored with 
the conventional method. Besides the sensors attached to the chest and abdomen, and connected by cables to 
the central monitoring unit (for oxygen saturation, heart rate, and respiration), an additional peripheral venous 
catheter and a gastric tube are also necessary in this stage. The clinical setup, including the neonatal cot, the 
radar device, and the reference monitoring system is shown in Fig. 2b–d. The radar is certified for operation in 
the 24-GHz ISM (industrial, scientific and medical) band, and it was installed outside the cot, attached to a low-

Figure 2.  Clinical setup. (a) Conventional monitoring of premature neonate: connection by cables to the 
central monitoring unit (heart rate, oxygen saturation, respiration), and an additional peripheral venous 
catheter. (b) NICU room view. Both radar and the reference cabled device were controlled from the external 
computer. (c) Close top view. The radar was attached to a low-vibration tripod, 45 cm away from the infant. (d) 
Close side view with twins sharing the same bed.
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vibration tripod. The relative distance to the monitored infant was around 45 cm to 50 cm. Due to the radar’s 
inherent capabilities, no modification to the cot structure was necessary, and the plastic cover could remain 
closed during the measurements. In Fig. 2d, twins are sharing the same bed, with only one being monitored with 
the contactless method. Cobedding of twins is a common procedure in the NICU, with several studies reporting 
physiological benefits to the  infants42,43.

A total of 12 premature infants were included in the study. The Supplementary Table 1 shows a summary 
of the patient’s information. They were selected on the basis of medical opinion, and taking into account the 
medical safety of participating in the study. For each infant, the measurements were carried out in three different 
days, at noon (after feeding), over a period of 25 minutes each. Their natural position was not changed during 
each measurement. Besides the supine (with the chest facing the radar), prone (with the back facing the radar) 
and side positions, we have also investigated cobedding cases with only one infant being monitored using the 
contactless method. The idea was to investigate the different effects when collecting radar data from the chest/
abdomen and back. Additionally, if monitoring twins is possible, and what would be a safe distance (in terms 
of radar interference) between them. The basic principle that guided the data collection protocol was to ensure 
seamless operation at the NICU. A detailed description of the patient’s protocols is shown in Supplementary 
Tables 2a–d, including all interventions and additional transients manually annotated during the measurements.

Signal processing background. Figure 1b shows the basic block diagram of the signal processing chain. 
The initial signal processing step for CW systems is commonly known as phase demodulation. It is essentially 
the process where the received in-phase and quadrature (I and Q) signals from the radar’s analog-to-digital con-
verter (ADC) are combined with the aim to recover the displacement signal d(t). Among several methods, the 
two most used are the arctangent demodulation (AD)44 and the complex signal demodulation (CSD)45. While 
the AD enables precise recovery of the chest wall motion, it is highly sensitive to hardware calibration, and to 
the presence of DC offsets, noise, and external interference. The CSD is more robust to these effects, but it relies 
on small displacements for recovering an approximation of the breathing motion (please refer to the Methods).

Figure 3 shows examples of the recovered breathing motion from radar data, in comparison to the actual 
(reference) displacement acquired from the cabled device. Initially, to precisely reconstruct the chest wall dis-
placement, we selected “clean” segments of data (no external interference), and the AD was used in both cases. 
While Fig. 3a depicts a normal breathing pattern obtained at supine position, Fig. 3b shows an occurrence of the 
Cheyne-Stokes (periodic) breathing  pattern46, with the infant at prone position. This special form of breathing 
is physiologically found in neonates, and is defined by a cyclic variation between hyperpnea and  hypopnea47–49, 
i.e. repetitive short cycles of pauses and breaths. Despite small differences between the recovered radar signals 
and the reference device, the periodic breathing movement can still be clearly identified in both cases. The small 
amplitudes of the chest wall motion can also be visualized, with displacements around 2 mm in supine position 
and 0.5 mm in prone position. These amplitudes are well below typical values for adults reported in previous 
 research50–52.

The approximated breathing motion, obtained with the CSD, is shown in Fig. 3d,e. Despite noticeable differ-
ences when compared to the AD, Fig. 3g,h show that both techniques yield signals with the same fundamental 
frequency, corresponding to the average breathing frequency. Given the small displacements we aim to detect, 
and the challenging conditions of this real clinical environment, the CSD was adopted in our solution for 
long-term monitoring. The harmonic structure of the breathing signal can also be visualized, with the second 
harmonic being clearly distinguishable. This harmonic structure can be used for improving estimation, as we 
will show latter. However, as depicted in Fig. 3c,f,i, under external interference and eventual ADC saturation, 
both demodulation methods fail to reconstruct the chest wall motion. The spectrum becomes dominated by the 
interference components, which will then prevent accurate breathing frequency estimation. Therefore, additional 
processing is necessary in order to attenuate these effects.

Random body movement mitigation. Most research on contactless vital sign monitoring with radar 
sensors focus on a single-person setup under ideal motionless  conditions53. In practical monitoring situations, 
the subject may often move body parts like hands, legs or torso, and even the entire body. These unwanted but 
unavoidable movements are usually called random body movements (RBM). The amplitude of their reflected 
signals is often much stronger than the millimeter-scale breathing motion, which will potentially be masked by 
this interference. Since spontaneous RBM are inevitable, solving this problem is fundamental to reliable vital 
sign detection in practical applications.

Several methods for RBM mitigation were already  proposed54, and even though specific types of movements 
could be effectively cancelled out, they usually require more complex systems. Most solutions rely on additional 
or duplicated hardware, thus suffering from practical limitations such as misalignment, synchronization, and 
 cost45,55,56. Another direction of research basically tries to identify segments of vital sign data with RBM, and 
simply discard these corrupted segments before  estimation33–37. However, depending on the processing window 
duration, even very short RBM will affect several seconds of good signal. Therefore, rather than simply discard-
ing segments of data, an approach which allows useful exploitation of these episodes with moderate RBM is 
desired. Recent work has begun to address RBM using a single sensor and within more challenging  scenarios32. 
Nonetheless, experimental validation is still performed under controlled situations, with RBM being emulated 
through predefined behavior, which results in limited interference over the desired signal.

First, let us assume that RBM are sparse, i.e. they are not frequent and, when they occur, their duration is small 
in relation to the observed time window. This contrasts with the constant and periodic nature of the breathing 
movement. Additionally, their amplitudes are usually much stronger than the standard breathing signal. These 
specific time and frequency features will be present in the spectrogram of the recovered signal, which can be 
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analyzed toward identifying and possibly removing this interference. For addressing this, we will use the non-
negative matrix factorization (NMF)57,58, a matrix decomposition technique usually employed for extracting 
features from a set of nonnegative data. If x(t) (Fig. 1b) is the recovered signal containing the chest wall motion 
and eventual RBM interference, its magnitude spectrogram |X| can be obtained through the Short-Time Fourier 
Transform (STFT) of x(t). The NMF will then decompose |X| as

where the matrices H and W contain, respectively, the associated time and frequency basis components of |X| , 
with K being a predefined number of basis. In other words, W  can be seen as the set of frequency templates 
of |X| , while H contains the timing information related to the activation of these templates. If we look into the 
time activation matrix H , the basis components with sparse behavior and higher amplitudes will often indicate 
the epochs when the RBM interference is present. Despite the unpredictable frequency spectrum, which will 
eventually overlap with breathing frequencies, the RBM distinct time behavior can be captured by the NMF 
time activation bases H , whereas the corresponding bases in W  will retain its frequency content. This allows 
additional flexibility for filtering the RBM interference when compared to standard spectral analysis methods. 
We can thus reconstruct the filtered spectrogram ˆ|X| , by simply adding back all the wih

T
i  matrices, except for the 

ones containing the interfering components.
Figure 4a shows a 60-s processing window for illustrative purposes, where the recovered signal x(t) (after 

CSD) is corrupted by segments of RBM, with its normalized spectrogram |X| in Fig. 4b. In the case of the CSD, 

(2)|X| ≈ WH =
K
∑

i=1

wih
T
i ,

Figure 3.  Recovered chest wall motion with different breathing patterns. (a) Normal breathing pattern, under 
good conditions (no interference). (b) Periodic (Cheyne-Stokes) breathing pattern. (c) Normal breathing pattern 
corrupted by external interference and ADC saturation. (d–f) Approximation using the CSD. (g–i) Spectrum 
comparing AD and CSD.
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the spectrogram is calculated based on the complex samples of the recovered signal x(t), and therefore considers 
both I and Q channels simultaneously. The NMF decomposition into K = 11 frequency ( W ) and time basis ( H ) 
components is depicted in Fig. 4c,d, where each color represents a pair of basis components, with the frequency 
content in Fig. 4c, and the corresponding time activation in Fig. 4d. It can be seen that (please refer to the green 
and blue bases for instance), due to its random nature, the RBM interference has frequency components spread 
over the entire spectrum, overlapping with the breathing frequency region. While a variety of frequencies can be 
visualized in W , the sparse and strong bases corresponding to RBM can be clearly identified in H (please refer 
to the Methods). Removing the selected bases allows the reconstruction of the filtered spectrogram in Fig. 4e, 
where the breathing frequency variation over time (around 45 bpm) is now evident. After the inverse STFT, the 
RBM filtered time signal is depicted in Fig. 4f. Finally, Fig. 4g shows the bandpass spectrum of both the original 
and the RBM filtered signals. The corresponding detected values are highlighted respectively with the blue and 
red markers. The dashed black line shows the reference value for the average breathing frequency associated with 
this processing window. Because of the strong RBM interference, the maximum value of the original spectrum 
would indicate an erroneous breathing frequency of 52.1 bpm, very distant from the true value of 42 bpm. After 
RBM filtering with the NMF, the modified spectrum indicates a closer value of 42.4 bpm, where the estimation 
error would be only 0.4 bpm.

Figure 4.  NMF for random body motion mitigation. (a) I and Q samples of the displacement signal x(t), 
corrupted by RBM. (b) Normalized spectrogram |X| . The RBM interference clearly dominates the spectrum 
and would jeopardize estimation. (c) NMF decomposition into the frequency basis components in W . (d) NMF 
decomposition into the time basis components in H . (e) RBM filtered spectrogram ˆ|X| . (f) I and Q samples of 
the RBM filtered time signal x̂(t) . (g) Bandpass spectrum of the original and RBM filtered signals.
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Breathing rate estimation. Different models have already been proposed for representing the back-
and-forth breathing movement d(t), from simple sinusoidal  approximations59,60, to more complicated patterns 
as described  in38,61. The breathing movement is a complex phenomenon which involves different patterns of 
motion, not only from the chest wall surface, but also from the belly, shoulders and  back62,63. Therefore, it is dif-
ficult to identify time-domain models that fully characterize it in a robust way, for every subject and monitoring 
scenario. However, due to the inherent periodic nature of breathing, any function representing this movement 
can eventually be decomposed into Fourier terms, containing the fundamental frequency and harmonics that 
correspond to the breathing rates we aim to estimate. Hence, the displacement signal can be modeled as a sum 
of harmonically related complex sinusoids, having frequencies that are integer multiples of the fundamental 
breathing frequency. To better exploit this harmonic structure, in this section we propose a simple and accurate 
Nonlinear Least Squares (NLS)  estimator64, which is asymptotically efficient for large processing windows, even 
in colored noise  scenarios65.

Initially, for removing any residual DC values, and possible high frequency noise components, the RBM-
filtered displacement signal x̂(t) is further filtered using a bandpass Kaiser window ( β = 6.5 ), from 0.3 Hz to 3 
Hz ( 18− 180 bpm). This corresponds to the physiological range of breathing frequencies, also including possible 
harmonics. The bandpass filtered signal d̂(t) will ideally be an accurate approximation of the true chest wall 
motion d(t) (Fig. 1), and can finally be used for breathing frequency estimation.

Before estimation, for improving the signal-to-noise ratio (SNR)66–68, we calculate the autocorrelation function 
r(t) of the bandpass filtered signal. The estimation is first performed in time domain, directly over the autocor-
related signal. An initial (coarse) estimation is obtained through a peak detection algorithm, where the time 
distance between peaks provides an estimation of the time between each breath. Eventually, detected peaks can 
be excluded if the distance to its neighbors correspond to a frequency outside the expected physiological range. 
The initial breathing frequency is thus calculated as the inverse of the time between selected peaks, averaged over 
the entire processing window. This initial estimation will be used to simplify the NLS algorithm.

The following step is to calculate the NLS frequency estimates ω̂ , which are obtained by maximizing the 
similarity between d̂(t) and the displacement signal model in (12). Under certain conditions (please refer to the 
Methods), the solution to this problem (the resulting cost function in (17)) can be efficiently implemented using 
a Fast Fourier Transform (FFT) and a linear grid search  algorithm69, where the estimator reduces to a summation 
of the breathing harmonics over the power spectral density of d̂(t) . The initial time domain estimation is used 
for limiting the search range, thus avoiding stronger low-frequency components which may still be present in 
real data. This strategy also reduces the computational effort to perform the grid search.

Experimental results
The initial measurements were used for setting up the ideal distance between radar and the monitored infant 
(Supplementary Fig. 1). From a total of 30 measurements at the adjusted position (around 45 cm), 3 were 
excluded due to recording issues with the devices. The remaining sequences were processed using sliding win-
dows of 30 s, with 28 s of overlap, leading to updated breathing rate estimates every 2 s. This resulted in approxi-
mately 20,250 estimates, from 675 minutes of analyzed data. The measurements proceeded irrespective of the 
amount of movement or external interference. The sequences include moments with hiccups, yawn, cry, grunt, 
periodic breathing, and also additional movements from the NICU room, e.g. medical interventions and visitors 
(Supplementary File 3). All the data processing was performed using  Matlab70.

Figure 5 shows examples of I and Q samples from the radar’s ADC, the estimated breathing frequency values, 
and the reference values from the cabled device. In Fig. 5a, the monitored infant was sleeping calmly, in supine 
position, and a nurse was present in the NICU room during the entire measurement, 2.5 meters away from the 
baby. These conditions resulted in good radar measurements with low level of interference. On the other hand, 
Fig. 5b shows one example where the infant was lying in prone position. In this case, several segments of strong 
interference can be visualized in the I/Q input data. Besides the infant moving freely and grunting, a nurse was 
also present during this measurement, from minute 9 and onwards. Figure 5c corresponds to one of the twin 
cases. A direct intervention over the monitored infant was registered around the third minute, for fastening the 
oxygen saturation sensor. The second twin was sleeping calmly during the entire measurement. The distance 
between them was around 20 cm. Figure 5d shows another example of a highly interfered sequence, where the 
monitored infant was constantly moving and accompanied by the mother, just 1 meter away. In this case, long 
segments of strong interference (and eventual ADC saturation) can be visualized.

Importantly, when the babies were moving, a high level of saturation was also observed in the reference device 
input data. During saturation, the ADC clips the input signal at the maximum allowed magnitude, generating 
segments of constant amplitude that increase the low-frequency content of the current processing window. 
This limitation results in a rapid decrease in the reference breathing frequency values (valleys), followed by an 
immediate recovery to the correct values just after saturation ends (these valleys are highlighted in Fig. 5b,d). 
This anomalous behavior is not related to any physiological pattern, and indicates that the reference device is 
not reliable in these moments. Consequently, for calculating the performance metrics, we have only considered 
the processing windows corresponding to non-saturated data segments of the reference device. This resulted 
in 18 valid measurements and approximately 4,964 valid breathing rate estimates. The measurements from the 
side position resulted in low SNR and unreliable estimates that were also discarded. On the other hand, radar 
saturation is being considered inherent to the measurement setup. Therefore, radar data segments with saturated 
I and/or Q samples are being considered valid and processed.

A summary of the obtained results is presented in Fig. 6. Figure 6a–d shows the final average (3, 6 and 10 
bpm) accuracy, in each of the investigated scenarios, namely: (a) supine position (11 measurements), (b) prone 
position (7 measurements), (c) single infant in the warming bed (14 measurements) and (d) twins sharing the 
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same bed (4 measurements). These scenarios are not exclusive. Supine and prone scenarios include single/twins 
cases and vice-versa. The bars compare the performance of three different algorithms: (1) conventional estimation 
using the Discrete Fourier Transform (DFT)71–73, representing the benchmark; (2) the proposed NLS estima-
tion (NLS); and (3) the complete proposed solution (NLS+NMF), including the NMF-based RBM mitigation 
algorithm. The same preprocessing steps (phase demodulation and bandpass filtering) were used in all cases. The 
accuracy is being calculated as the percentage of time (in terms of valid processed windows) during which the 
final estimation from the radar is within a predefined error interval. For each case, the 3, 6 and 10 bpm accuracy 
were considered. For instance, a 6 bpm accuracy of 80% means that the magnitude of the error between radar 
estimation and the reference device was smaller than 6 bpm for 80% of the time.

It can be seen that the proposed techniques provided substantial improvement in all cases, with up to 17% 
of enhancement, and reaching a maximum 6 and 10 bpm accuracy of 79.3% and 93.1% respectively, in prone 
position. Figure 6e directly compares the performance of the complete proposed solution in each scenario, also 
including the average result of all processed sequences. An interesting outcome is related to the fact that the 
prone position produced on average the best results, even though the displacements verified from the back were 
smaller than the ones from the chest/abdominal region. This could be a result of the more uniform breathing 
motion of the posterior chest wall, since the ossification of the ribs begins at the back. Due to the higher flex-
ibility of the anterior chest wall, abdominal and thoracic movements yield a more heterogeneous motion, thus 
making radar estimation more difficult. In addition, the prone position might lead to reduced body movements, 
thus reducing interference. Lastly, single and twin cases provided on average similar results, thus indicating that 
a second infant in the cot may not directly impact radar performance.

The root-mean squared error (RMSE) of each sequence was also calculated, and the average values for each 
scenario are presented in Fig. 6f, comparing the proposed techniques with the conventional DFT estimation. 
The RMSE is defined as

Figure 5.  Radar input data and estimated breathing rate. All sequences were processed with the complete 
proposed solution (NLS+NMF), and each one represents a different monitoring scenario. (a) Single infant in 
supine position (chest facing the radar). (b) Single infant in prone position (back facing the radar). (c) Twins in 
the same bed, spaced by 20 cm, with the monitored infant in prone position. (d) Highly interfered sequence.
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where Bn and B̂n represent, respectively, the reference and estimated breathing rates (in bpm), in the nth processing 
window. It can be seen how the proposed solution outperforms the standard approach, providing significant and 
robust improvement over the different scenarios, and reducing the RMSE in all cases. The overall RMSE consider-
ing all valid measurements was 6.38 bpm. The measurements in prone position resulted in the best performance, 
with an RMSE close to 5 bpm. Supplementary File 4 shows the Bland-Altman analysis considering all scenarios 
and also comparing the standard DFT estimation and the complete proposed solution.

The performance can also be analyzed considering only the moments without RBM or, at least, with reduced 
external interference. For identifying these moments we can use the RBM mitigation algorithm and look for 
the processing windows where no interfering components were captured by the time activation bases H . Given 
that spurious noise or additional frequency components may eventually be identified and filtered out as RBM, 
we accepted as “minimal movement windows” the ones in which a maximum of 2 bases were excluded by the 
algorithm. Figure 7 shows the obtained performance considering only these moments. The average 10 bpm 
accuracy for all measurements was higher than 97%, with the 6 bpm accuracy being higher than 80% in all 
scenarios. The average RMSE was 4.3 bpm, with the best result close to 4 bpm in prone position. In this case, all 
scenarios presented very similar performance, both in terms of accuracy and RMSE. The percentage of minimal 
movement windows in prone position was almost twice the number in supine position. This difference may 
confirm that the prone position leads to reduced random body movements and this is one of the reasons for the 
better results in this scenario.

(3)RMSE =

√

√

√

√

1

N

N−1
∑

n=0

(Bn − B̂n)2,

Figure 6.  Summary of results, considering all processed sequences for each scenario, and comparing different 
techniques: standard DFT estimation (DFT), the proposed NLS estimation (NLS), and the complete proposed 
solution, with RBM mitigation (NLS+NMF). Average accuracy for different techniques. (a) Supine position. 
(b) Prone position. (c) Single infant in the cot. (d) Twins sharing the cot. (e) Average accuracy for different 
scenarios, considering the complete proposed solution (NLS+NMF). (f) Average RMSE for different scenarios 
and different techniques.
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This remaining RMSE is expected and can be explained if we take into consideration the premature condi-
tions of the monitored infants (Supplementary Table 1), where the immaturity of their respiratory system and 
the diagnosed conditions may lead to irregular breathing patterns and thus hinder estimation. In addition, 
some transients may not be detected as RBM due to their specific characteristics, which may not agree with 
our assumption of strength and sparsity (for instance, hiccups which are periodic, or other continuous move-
ments). Finally, some inaccuracy is also expected from the reference device, as these sensors (please refer to the 
Methods) suffer from imprecision and cardiac interference, specially in neonates with higher breathing rates 
and limited lung  aeration34,74.

Conclusions
The proposed radar-based solution was able to precisely recover the chest wall motion, allowing clear identi-
fication of different breathing patterns. This capability is the first step toward breathing frequency estimation 
and early non-invasive diagnosis of neonatal respiratory problems. In addition, most of the time the proposed 
algorithms provided reliable breathing frequency estimates, effectively reducing the effects of the RBM inter-
ference. The best performance was achieved when the infants were in prone position, with the 6 and 10 bpm 
accuracy reaching almost 80% and 93%, respectively. The overall RMSE was smaller than 7 bpm, with the best 
result close to 5 bpm in prone position. During minimal movements, the overall 10 bpm accuracy was higher 
than 97%, with the 6 bpm accuracy being higher than 80% in all scenarios. The average RMSE was 4.3 bpm, with 
the best result close to 4 bpm in prone position. These results can be interpreted as a proof-of-principle that the 
proposed radar-based approach has the potential for contactless breathing monitoring in the NICU. However, 
more experiments are underway to further reduce the vulnerability to artifacts, e.g. by using optimized algorithms 
of data processing and redundant technologies.

Finer radar calibration and a more precise setup adjustment would improve raw data quality and reduce ADC 
saturation. Further improvement of radar’s input data can still be achieved by shifting from CW to multiple-
input multiple-output (MIMO) and frequency-modulated continuous-wave (FMCW) architectures. This change 
would allow not only range isolation from external interference, but also to steer the radar’s beam (field-of-view) 
directly to the monitored patient. The motion robustness can still be improved by tailoring the NMF algorithm 
according to the specific characteristics of the random body movement interfering signal. One particular case 
of interest would be the sparse NMF.

Finally, follow-up studies with more mature and healthy children of different ages would allow to identify 
pathologies, age-specific characteristics or confounding factors, and to adapt the experimental design accord-
ingly. The best average results obtained at prone position point to the necessity of additional investigation on 
different clinical setups, where the radar could be also positioned under the mattress. Furthermore, with the aim 
to develop a complete contactless solution, an investigation of the radar capabilities for heart rate monitoring in 
this challenging environment is necessary, as well as moving to real-time processing.

Methods
Notation. We are adopting the following notation: lower case boldface for vectors x , and upper case boldface 
for matrices X . The letter j represents the imaginary unit (i.e., j =

√
−1) , with the absolute value and angle 

operators given by the symbols |(·)| and ∠(·) . The transpose, conjugate, and conjugate transpose operators are 

Figure 7.  Average performance during minimal movement windows. (a) Accuracy for different scenarios. (b) 
Average RMSE for different scenarios.
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denoted respectively by the symbols (·)T , (·)∗ , and (·)H . The sets of N-dimensional vectors of complex and real 
numbers are represented by CN and RN . The Euclidean norm of the vector x is denoted by ||x|| . The Hadamard 
product is denoted by ⊙.

Ethics statement. The study was designed in accordance to the Declaration of Helsinki, and approved by the 
regional ethics committee of Saarland (Saarbrücken, Germany), with reference number 276/17. Written informed 
consent was obtained from the parents prior to the data collection, and all the documentation and collected data 
were pseudonymized.

Radar system. The CW radar device used in this study is a prototype variant of the IEE’s VitaSense ®   sensor75, 
operating in the 24-GHz ISM band, with an illumination area of 76.5◦ in azimuth, and 35.5◦ in elevation. At the 
monitored distances, the low transmitted power leads to energy absorption rates 20 times below that of a cell 
 phone76. The ADC sampling rate was 16 Hz, and the data acquisition was controlled by proprietary software on 
the external computer.

Reference cabled device. Throughout all measurements, the infants were connected to a reference moni-
tor commonly employed in the NICU. In addition, respiration, heart rate and oxygen saturation signals were 
recorded using the VitaGuard ®  3100  device77, cable-connected using 3 Kendall ®  neonatal 4203  electrodes78. 
This device measures the breathing movement through the electrodes attached to the infant’s chest (impedance 
pneumography), and provides the breathing rate with a resolution of 1 bpm, and an update rate of 1 s. The syn-
chronization between reference and estimated frequency values was performed offline, based on the correlation 
between these signals. After processing an entire measurement (25 minutes), the resulting array with radar esti-
mated frequency values is compared to the longer array with reference values, in a sliding window approach. The 
synchronization index was selected in order to maximize the correlation between these arrays. This procedure 
was performed automatically, using a Matlab routine.

CW radar operational principle. The transmitted CW signal can be written as

where AT and fc are, respectively, the transmitted signal power and operating frequency, and φ(t) is the transmit-
ter phase noise (local-oscillator). This signal is phase modulated by the target’s motion, and reflected to the radar 
for processing. The received signal from a target at nominal distance d0 can be written as

with AR being the received power, � the operating wavelength, and d(t) representing the target motion. After 
demodulation and analog-to-digital conversion, and assuming correct I/Q imbalance compensation, the base-
band I and Q signals can be represented  as79

where θ0 = 4πd0/� is the constant phase shift, and BI and BQ are DC offsets.
Under ideal conditions, the AD can be used for precise phase recovery. In this case, the displacement signal 

is reconstructed  as44

where the unwrap operation is necessary for removing possible phase discontinuities, caused by the restricted 
range of the arctangent function (wrapped phases around (−π ,π ] are expected when displacements are 
greater than �/4 ). Before extracting the desired phase information, the DC components ( BI and BQ ) must be 
 compensated73. Given that the ideal chest wall (back-and-forth) movement describes an arc in the I/Q plane, 
this compensation is usually accomplished using an ellipse fitting algorithm. However, small displacements 
(small arcs), noise and/or external interference, usually compromise the fitting process, and lead to inaccurate 
DC compensation. In addition, the unwrap operation is also very sensitive to noise and interference, and may 
eventually accumulate errors, resulting in large distortions on the recovered displacement signal.

Using the CSD, the displacement signal can be reconstructed  as45

where x = BI + jBQ represents the combined DC offset. However, in this case, this DC term does not affect the 
relevant components of the recovered signal, and, in practice, it can be easily extracted by subtracting the aver-
age of the time-domain processing window. Despite additional higher order harmonics, for small displacements 
(in relation to the operating wavelength), the recovered signal x(t) approximates the true chest wall movement 
d(t), and the relevant frequency content is preserved. Therefore, besides being more robust to the DC offsets and 

(4)xT(t) =
√

AT cos(2π fct + φ(t)),

(5)xR(t) =
√
AR cos

(

2π fct −
4πd0

�
− 4πd(t)

�

)

,

(6)bI(t) = cos

(

θ0 +
4πd(t)

�

)

+ BI,

(7)bQ(t) = sin

(

θ0 +
4πd(t)

�

)

+ BQ,

(8)x(t) = �

4π
· unwrap

(

arctan

[

bQ(t)

bI(t)

])

= θ0 + d(t),

(9)x(t) = bI(t)+ j · bQ(t) = x + exp

{

j

(

θ0 +
4πd(t)

�

)}

,
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external interference, the CSD simplifies the demodulation procedure. A detailed description of AD and CSD 
methods can be found  in44  and80.

Nonnegative matrix factorization. The magnitude spectrogram |X| ∈ R
F×T of the recovered displacement 

signal is obtained through the STFT of x(t), where F and T are, respectively, the number of frequency and time 
bins used in the STFT operation. Given that we aim to reconstruct the time version of the RBM-filtered signal, 
the STFT weighting window must comply with the constant overlap-add  property81.

The NMF is thus applied to the magnitude of X , and the factorization can be achieved through an optimiza-
tion problem given by

with H ∈ R
K×T and W ∈ R

F×K . The symbol “ � ” denotes entry-wise non-negativeness and L(·, ·) represents a 
generic similarity metric between |X| and WH . The Euclidean (Frobenius) distance is commonly used and, in 
doing so, simple gradient descent can be used for minimizing the objective  function58. The predefined number 
of basis components K should be selected considering the different frequency components that may be present 
in the calculated spectrogram, including the breathing frequency and eventual RBM interference. For the long-
term monitoring, we have empirically selected K = 11.

The identification of the time activation basis corresponding to the RBM is based on an adaptive amplitude 
threshold. The breathing pattern is affected by several factors (subject, gender, age, health condition, posture) 
and efficient interference detection requires an adaptive strategy. The RBM interference can be characterized by 
its distinct behavior which contrasts with the constant and periodic nature of breathing. Therefore, subsequent 
to NMF decomposition, we are looking for strong (stronger than average) and sparse (short duration in rela-
tion to the processing window) time activation basis hi in H . This can be accomplished simply by comparing 
the local energy in each time component of hi , with the average energy in H for the current processing window 
(under regular conditions, that would correspond to the average breathing energy). This average energy acts as 
the threshold and, by the nature of its computation, it changes for each window and reflects the signal strength 
therein. Therefore, the threshold will be automatically adjusted for each processing window accordingly. Addi-
tionally, the sparsity is verified by checking if the remaining components of the selected basis have negligible 
amplitude.

The magnitude of the RBM-filtered spectrogram can be reconstructed as

where si indicates whether the ith basis corresponds to RBM or not, i.e. si = 0 when RBM is present in basis hi , 
or si = 1 otherwise. In order to synthesize the time-domain filtered signal x̂(t) , it is first necessary to obtain 
the phase of the filtered spectrogram. A common practice is to use a Wiener-like filtering approach, which 
translates into reusing the phase of the original mixed spectrogram X82. The inverse STFT is finally applied to 
X̂ = |X̂| ⊙ ∠X , replicating the same window configuration (duration, weights and overlap) as in the initial STFT. 
In this work we are using standard rectangular windows with 3 s of duration, 2 s of overlap and zero-padding 
to 256 samples.

The RBM method is applied to every processing window. The method is capable of automatically detecting and 
removing the RBM interference, based on the adaptive amplitude threshold and the sparsity check. No manual 
annotation is needed. In the absence of RBM or other interfering effects, the recovered signal will contain only 
the constant and periodic chest wall movement, and the resulting time activation bases H will reflect that. In 
this case, the adaptive amplitude threshold will not identify any candidate basis containing RBM, and the filtered 
signal will be approximately the same as in the input of the RBM block.

NLS estimation. The breathing displacement signal d(t) can be modeled as a sum of Lk harmonically related 
complex sinusoids, having frequencies that are integer multiples of a fundamental frequency ωk > 0 . After 
sampling for n ∈ {0, · · · ,N − 1} , such a signal can be written  as65

where ak,l = Ak,le
jφk,l is the complex amplitude of the lth harmonic, Lk represents the number of harmonics (the 

model order), and K refers to the number of components (point scatters).
The NLS estimates are obtained by minimizing the Euclidean norm of the difference between the recovered 

and filtered displacement signal d̂(t) , and the displacement signal model in (12). First, let us consider a single 
source k, and define dk = [ dk(0) · · · dk(N − 1) ]T ∈ C

N , the vector consisting of N consecutive samples of 
dk(n) , which can be expressed as

with ak = [ Ak,1e
jφk,1 ... Ak,Lke

jφk,Lk ]T being the vector containing the complex amplitudes of the harmonics, 
and the matrix Zk ∈ C

N×Lk having a Vandermonde structure, being constructed from the Lk complex sinusoidal 
vectors as

(10)
minimize

W ,H
L(X , WH)

subject toW � 0, H � 0,

(11)|X̂| =
K
∑

i=1

siwih
T
i ,

(12)d(n) =
K
∑

k=1

dk(n) =
K
∑

k=1

Lk
∑

l=1

ak,le
jωkln,

(13)dk = Zkak ,
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with z(ω) = [ 1 ejω ... ejω(N−1) ]T . Writing d̂(t) as the vector d̂ = [ d̂(0) · · · d̂(N − 1) ]T ∈ C
N , the NLS esti-

mates ω̂k and âk are finally obtained by solving the  problem69

By first minimizing (15) with respect to the complex amplitudes ak we obtain the estimate âk = (ZH
k Zk)

−1
Z
H
k d̂ , 

which when plugged into (15) leads  to69

Assuming N ≫ 1 , then ZH
k Zk ≈ N · ILk . Thus, considering only a single dominant breathing scatter (i.e. K = 1 , 

so that we can drop the index k), we have

The matrix product ZH
d̂ can be efficiently implemented using an FFT algorithm and a linear grid search over 

the candidate frequencies 
{

0, 2πN , · · · , 2πN (N − 1)
}

 . The estimator thus reduces to a summation of the breathing 
harmonics over the power spectral density of the recovered displacement signal d̂(t) . Usually, a few harmonics 
may be present in d̂(t) . However, the small motion amplitudes of the monitored patients imply a reduced SNR, 
where higher-order harmonics will often be masked by noise. Therefore, in this work, we have adopted Lk = 2 . 
Additionally, the search interval was limited to ±5 bpm around the initial time domain estimation.

Data availability
The original dataset analyzed during the current study is available for download at https://radarmimo.com/.

Code availability
Matlab reading functions for both radar and reference device are available for download at https://radarmimo.
com/. Please refer to the Supplementary File 1 for a brief description of the codes.
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