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A cyclical wildfire pattern 
as the outcome of a coupled human 
natural system
Farshad Farkhondehmaal* & Navid Ghaffarzadegan

Over the past decades, wildfire has imposed a considerable cost on natural resources and human lives. 
In many regions, annual wildfire trends show puzzling oscillatory patterns with increasing amplitudes 
for burned areas over time. This paper aims to examine the potential causes of such patterns by 
developing and examining a dynamic simulation model that represents interconnected social and 
natural dynamics in a coupled system. We develop a generic dynamic model and, based on simulation 
results, postulate that the interconnection between human and natural subsystems is a source of the 
observed cyclical patterns in wildfires in which risk perception regulates activities that can result in 
more fire and development of vulnerable properties. Our simulation-based policy analysis points to a 
non-linear characteristic of the system, which rises due to the interconnections between the human 
side and the natural side of the system. This has a major policy implication: in contrast to studies that 
look for the most effective policy to contain wildfires, we show that a long-term solution is not a single 
action but is a combination of multiple actions that simultaneously target both human and natural 
sides of the system.

Wildfire is endangering human life, natural resources, forest conservation, and  wildlife1–4. According to the 
National Interagency Fire Center, in 2020, more than 52,000 wildfire incidents in the United States burned about 
3.64 million  hectares5. In California alone, it was estimated that about 30 people died due to wildfires during the 
first 9 months of  20206. In addition, the tragic 2018 Camp Fire incident of Paradise, California, arguably the most 
destructive and deadliest wildfire in California’s history, resulted in at least 85 civilian fatalities and burned over 
60,702 hectares, destroying more than 18,000  structures7. Furthermore, the problem is not limited to the United 
States: Wildfire is a global challenge affecting different regions worldwide, with recent catastrophic events in 
countries such as Australia, Brazil, Greece, Algeria, France, Turkey, and Indonesia. Given the trends, the problem 
of wildfires and their increasing catastrophic consequences are of immense policy relevance.

Understanding and predicting the occurrence of wildfires is vital for taking proper policy actions to mitigate 
the risks and minimize associated  consequences8–11. An examination of historical trends of wildfires reveals 
puzzling cyclical patterns in fire incidences, with increasing amplitude for the consequences of fire in many 
areas around the globe, including the U.S. As Fig. 1 shows, in the U.S., we have experienced an overall increasing 
trend of the burn rate due to wildfire, with periodic fluctuations. Interestingly, although the overall pattern of 
the number of fires does not follow the burn rate trend, it does show periodic oscillations. Finding the drivers of 
such patterns is an area of concern for natural scientists, policy researchers, and policymakers.

Wildfires start with initial fire ignitions, which can be caused by nature through lightning or reckless human 
behavior. The occurrence of natural fires through lightning depends on weather conditions and shows a seasonal 
 pattern12. Human-caused ignition, on the other hand, can also cause large-scale fires. In fact, in the U.S., human-
ignited wildfires account for approximately 84% of wildfires  nationwide13. In addition, factors such as abandoned 
campfires, arson, and fireworks can lead to human-ignited  fires14,15. Humans also indirectly contribute to wildfire 
through activities that worsen climate  change16. The release of greenhouse gases into the atmosphere, including 
carbon dioxide and methane, contributes to higher  temperatures17. A warmer climate leads to drier vegetation 
in forests and increases the risk of massive  wildfires18. Furthermore, deforestation for land development reduces 
the ability of the forest to absorb greenhouse gases, which ultimately causes a further increase in  temperature19,20.

Despite the importance of direct human and natural contributions to wildfire, the focus of most past modeling 
studies has been solely on one of these two categories of causation. Touboul and colleagues developed simulation 
models of dynamic interactions among different kinds of vegetation such as grass and forest trees. They showed 
that for a wide range of scenarios, the composition of vegetation can oscillate over  time21. Such models focusing 
on natural-system dynamics can explain long-term oscillatory patterns that emerge from forest recovery delays 
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after a wildfire. On human contributions, several statistical models have pointed to a correlation between human 
settlement in the wildland-urban interface (WUI) and fire  activity22–24. In these models, human-risk perception 
is often an exogenous factor that affects fire. We understand that both natural and human sides of the problem 
are important. In fact, it has been argued for a long time that accounting for dynamic connections between social 
and ecological systems is essential in developing sustainable environmental  policies25. Therefore, we hypothesize 
that the interaction between natural and human systems contributes to wildfire dynamics, increasing their com-
plexity and mitigation challenges. To develop proper policies, attention should be paid to both sides of the larger 
system and the interactions between the two. Our primary objective in this paper is to explore potential causes 
of such patterns by developing and examining a feedback-rich dynamic simulation model that represents both 
social and natural dynamics in a coupled system.

Figure 2 presents our study framework, which is in line with a body of the ecological literature that examines a 
family of phenomena referred to as coupled human-natural systems (This area has been a major area of investiga-
tion at the U.S. National Science Foundation). The framework includes dynamics specific to vegetation (natural 
systems) and human systems (behavioral dynamics). In interaction, the two pieces are connected through the 
human sector that receives information regarding recent fire cases and influences the human risk perception, as 
the perceived information influences the fire  risk26. Humans contribute to fire through human-caused ignition 
or the development of vulnerable properties based on their risk perception.

(a) Burned areas due to wildfires (b) Wildfire frequency  
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Figure 1.  Wildfire in the U.S.1983–2018 (data from www. nifc. gov).
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Figure 2.  Our study framework of wildfire as an outcome of a coupled human-natural system (adapted from 
https:// www. nsf. gov/ pubs/ 2018/ nsf18 503/ nsf18 503. htm and adjusted for the case of wildfires).
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Background: models of disasters
While our focus is on the specific problem of wildfire, it is important to pause and offer a quick review of vari-
ous modeling approaches of similar natural disasters, mainly from a methodological standpoint. There is a wide 
range of modeling approaches applied to natural-disaster studies in general and wildfires in particular. Such 
modeling can be differentiated based on their unit of analyses, time frames, mathematical modeling techniques, 
boundaries, and specific application cases.

A large body of natural disaster models has been devoted to spatial  modeling27–29. In a typical spatial wild-
fire model, the goal is to replicate fire progression throughout different regions. Such models are powerful in 
showing how, in what sequence, and the timing of different areas may become fire susceptible. Spatial models 
can also take different forms depending on the geographical units of analysis (e.g., state, county). Connection 
networks between different units can affect fire progress, and such models become more useful as they move 
toward modeling network structures.

The second group of models of natural disasters includes agent-based individual-level models. Models of 
evacuation often take such levels of analysis and explore the flows of individuals after a  disaster30,31. In the wild-
fire context, with a focus on fire progression, agent-based models may consider vegetation units as agents. Such 
models would lead to a spatial model of interacting elements that depict endogenous fire propagation from one 
unit of vegetation to another. Rahmandad and  Sterman32 stressed that in many contexts, detailed agent-based 
models may not go beyond what one could learn from an aggregate differential-equation model, especially when 
the heterogeneities across the agents are limited and connection networks are symmetrical and almost complete.

On the other side, aggregate natural disaster models exist in which vegetation is often modeled with a few 
major variables but no regional  details33,34. As compartmental models, these often include differential equations 
and formulate vegetation flows and aging of trees in a dynamic  framework35. Within aggregate models, the extent 
to which variables are treated as endogenous variables (that is, they respond to changes in state variables) is a 
significant factor for differentiating. Simon Levin and  colleagues21,36,37 offered different variations of aggregate, 
differential-equation models of vegetation. An interesting outcome of such models from a complex-systems 
point of view is the depiction of bifurcation that the model’s outcomes substantially change from a steady-state 
to a goal-seeking or s-shaped behavior or even long-term oscillations for different ranges of parameter values.

Within the system dynamics community, there is also a rich body of literature on modeling environmental 
 problems25,38,39.  Deegan40 has conducted methodologically relevant work in a slightly different natural-disaster 
setting. He modeled flood-damage dynamics in a typical flood-prone community, considering long-term com-
munity reactions to recent floods and related damages. Deegan focused on hypothetical flood cases, intending 
to show how seemingly similar external events (here, major rain) can cause different damage levels depending 
on the community’s reactions and investment in vulnerable properties. What differentiates his work from others 
is that Deegan’s model is feedback-rich, and dynamic outcomes are created within the model rather than by an 
external time  series41. In some respects, our approach to modeling wildfires resonates with Deegan’s flood mitiga-
tion work by looking at vulnerability as an endogenous property of the system affected by human risk perception.

What makes these aggregate models powerful is that they are relatively small (have fewer equations), and 
when the details are removed, they turn the focus on system responses and feedback loops without losing many 
systems-level  insights32. Modelers can also better communicate insights from small models with  stakeholders42. 
It is important to note that small, powerful models are not easy to build, and they are often the result of many 
rounds of complex and detailed  modeling43, which has also been the case in our study. Given our problem scope, 
we follow the same modeling approach.

Model structure and key formulations
Different models use varying terms to represent vegetation heterogeneities in a forest area. For the purposes of 
parsimony, our model represents the entire forest area by two simple stock variables of areas occupied by strong 
vegetation (S) and occupied by flammable vegetation (F) all of which are shown as stock variables in Fig. 3 
(variables in boxes). Strong vegetation is often resistant to fire, and only large-scale fires can burn them. Highly 
flammable vegetation includes damaged or any vegetation that can burn fast (including grass). This type of veg-
etation can burn quickly, and lightning or human ignition often affects flammable vegetation first. Burning can 
cause fire propagation to strong vegetation. While our figure is a simple representation of forest areas, the logic 
is consistent with studies that have offered more detail on vegetation types.

In this model, loops B1 and B2 represent the deterioration of strong and flammable vegetation through fire. 
As stated, fire can increase the vulnerability of strong vegetation by burning the surrounding area and making 
it more susceptible to fire. This mechanism is shown by loops R1 (burning of flammable vegetation further 
increases flammable vegetation) and B3 (burning of strong vegetation makes other strong vegetation vulner-
able to fire). In this study we assume both areas occupied by strong and flammable vegetation are homogenous. 
By taking this simplistic assumption, we believe that the model’s behavior is independent from spatial details 
of the vegetations. This assumption, which is called universality, have been previously considered in different 
compartmental modeling  studies37.

We base our model for the unit of forest area, which leads to the fact that the empty area (E) of the forest can 
be determined by the following equation:

We then can represent the relation between the stock variables by the following differential equations.

(1)E = 1− F − S

(2)
dS

dt
=

F

τ1
− (α + γS)S
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where γS and γF are the fractional burning rate of strong and flammable vegetation, respectively; α is the rate of 
making strong vegetation to flammable; τ1 is the average time for flammable vegetation to become strong; and 
τ2 is the average time for the empty space to grow flammable vegetation, where often τ2 << τ1 . Thus, the total 
burn rate from both types of vegetation (B) is

In this equation, γF , the rate at which flammable vegetation is burned, is a function of the total of human and 
natural ignitions. However, γS , the fractional burning rate of strong vegetation depends on the burning rate of 
flammable vegetation and happens when fire propagates in the forest—i.e., γS = f (γFF) . We formulate f using a 
sigmoid function (Table 1). Furthermore, α , the rate of becoming flammable for strong vegetation as a result of 
fire is α = σB where σ is the burning effect on vulnerability.

Generally, the public attitude towards making risky decisions is influenced by their level of risk perception. 
In the case of wildfire, there is a wide range of evidence that people’s attention to the problem and possibly the 
associated risk perception has changed over time. Figure 4 depicts the frequency of Google searches for the word 
"wildfire" in the U.S. The trends are oscillatory, and there is a 0.4 correlation between search and area burned 
from 2004 to 2018.

There is a body of research focused on how the perception of wildfire risk is associated with mitigation 
 actions45–48. A study of a fire-prone area in Colorado revealed that a single extreme wildfire does not significantly 
impact risk  perception47. Furthermore, evidence on people’s fire-risk perception shows that any change in fire 
risk perception does not last more than a couple of  years48. We construct the effect of risk perception on human 
actions based on the abovementioned research with two important characteristics. First, the overall wildfire 
activity in recent years shapes people’s fire risk perception; second, the effect of wildfire on people’s perception 
vanishes as time pass.

We include two major mechanisms to depict the effects of change in risk perception, as shown in Fig. 5. The 
loop B4, complacency, represents the human contribution to fire through reckless behaviors, which can cause fire 
ignition. Loop B5, vulnerable properties, represents property building in forest areas. Such properties increase 
human interaction with the natural environment and the likelihood of human-made ignition. We also consider 
the fact that such properties might be targets of fire themselves, loop B6.

In this model risk perception, B is formulated as a δ1-year lagged variable of burn rate ( B ), assuming there is 
no systematic bias in risk perception. Total ignition of I includes human-caused ignition ( IH ) and natural ignition 

(3)
dF

dt
=

E

τ2
+ αS −

(

1

τ1
+ γF

)

F

(4)B = γFF + γSS.
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Figure 3.  A stock-flow diagram of vegetation. Note: Sock variables represent the state of the system and are 
shown in boxes (strong vegetation, flammable vegetation, and empty area), and flows, representing change in 
state variables are depicted by valve signs. Causal influences are shown with blue links, where a plus sign in 
X →  + Y indicates that X and Y move in the same direction ( X → +Y ⇔ ∂Y

/

∂X > 0 ). A minus sign on a 
causal arrow indicates that the variables move in the opposite direction ( X → −Y ⇔ ∂Y

/

∂X < 0 ). For detailed 
information on causal loop diagrams, see  Sterman44.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5280  | https://doi.org/10.1038/s41598-022-08730-y

www.nature.com/scientificreports/

due to lightening ( IN ), with the latter, assumed as constant in our model. Several studies in different regions of 
the world (Spain, Canada, and the United States) suggest Human-caused ignition increases by human settlements 
in the  area49–51. We also consider the number of human ignitions is inversely related to their risk perception. 
Assuming human settlements are represented by vulnerable properties, V, we formulate IH as IH

(

V ,B
)

 where 
∂IH
∂V

> 0 and ∂IH
∂B

< 0 . For the purposes of parsimony, we formulate effect of B on IH using a linear function (see 
the Appendix).

Although Martin et al. 43 discussed how different stakeholders (including insurance companies and federal 
agencies) could increase the sensitivity of humans to risk perception, they did not provide any quantitative 
estimation of this value.

Finally, vulnerable properties, V, which can change over time is formulated as

The term, θEbt represents property development and is assumed to be proportional to the current properties 
and negatively affected by risk perception. The inverse relationship between perceived risk and vulnerable prop-
erty expansion is a proxy for external conditions like zoning since building policy decisions is too complex to be 
modeled directly as they are very context-specific and involve political  decisions52. While some studies suggest 
no relationship between natural disaster occurrence and community development programs, others consider 
economic intensive (such as insurance policy) to cause reduction in development pace as disasters  increase53,54. 
Here we acknowledge that there is no general agreement on the effect of natural disaster and development pro-
grams and build the model for areas where such a relationship is proved to exist. The term ρV  represents the 
demolition of properties. Demolition in our model is mainly due to the fire, that is, ρ = ρ(B).

Parameter values
The introduced model is generic and can be simulated for a wide range of parameter values. Table 1 reports 
parameter values used for base run simulations. Some of the values are consistent with the literature, while others 
are selected to examine variation of conditions in different forestry settings. To make sure the modeling result 

(5)
dV

dt
= V(θEbt − ρ)

Table 1.  Parameter values for a base run simulation.

Parameter Value Unit

τ1 2 Year

τ2 10 Year

δ1 0.5 Year

S Initial value: 0.5 Million hectares

F Initial value: 0.4 Million hectares

γS 0.8 ∗

(

1+ e
−5∗

(

γF F

n
−1

)
)−1

1/year

n 0.1 Million hectares

IN 0.5 Scalar

IH Initial value: 0.3 Scalar

V Initial value: 0.4 Million hectares

σ 0.05 1/Million hectares
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Figure 4.  Google search trend for "wildfire" in the U.S. and its correlation with the annual burned area.
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is robust, we perform sensitivity analysis for a wide range of variables. The sensitivity result suggests the model 
outcome is consistent with the base run (See Appendix 2).

Our simulation experiments include a base run simulation and a range of policy and scenario tests as listed 
in Table 2. The table also provides details on how each test is implemented in our analysis. Specifically, we ana-
lyze the linkage between natural dynamics and human perception and its consequences on fire development by 
changing the sensitivity of risk perception to the burn rate (Test T2). We then examine the effects of four different 
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Figure 5.  The human subsystem as connected to the natural subsystem (grey).

Table 2.  Simulation experiments.

Simulation tests Operationalization

T1: Base run Parameter values in Table 1 are used for this scenario

T2: Coupling effect

Sensitivity of risk perception to burn rate is changed by changing risk perception delay from 1 year (base run) to

0.5 year (T2a: higher sensitivity),

2 years (T2b: lower sensitivity), and

100 years (T2c: least sensitivity—almost disjointed systems)

T3: Policy tests

Three policies are tested

P1: Limit vulnerable property development

P2: Prescribed burning

P3: Effective firefighting

P4: Clear cutting

P1 is implemented by making vulnerable property development equal to 1%. P2 is implemented by adding outflow 
from flammable vegetation to an empty area with the value of ωF , where ω is the percent of prescribed burning set 
at 0.2/year. P3 is implemented by changing γS to 10% of its current value. Finally, P4 implemented by adding outflow 
from strong vegetation to the flammable vegetation with the value of ϑS where ϑ is the percent of clear cutting set to 
0.2/year (see Appendix 3 for detail)
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policies: limiting the development of vulnerable properties (P1), prescribed and controlled burning of flammable 
vegetation (P2), effective firefighting that limits penetration of fire from flammable vegetation to strong vegeta-
tion (P3), and clear cutting (P4) which remove part of strong vegetation trees and change it to the empty  area55.

Simulation results
Base run simulation. Figure 6 shows the results of the base run simulation. In this scenario, strong vegeta-
tion declines over time, while the empty area and flammable vegetation have increasing trends. As such, more 
fuel would be available for burning, and the wildfire can burn broader areas. Panel (a) shows an oscillatory trend 
for the burn rate with an average upward trend (To make sure the oscillatory behavior of the model does not 
fade, Appendix 4 shows the simulation result for 100 years). The observed pattern in the burn rate can be traced 
back to the patterns of human ignition (Panel b), and the growing trend of vulnerable properties (Panel c). In 
addition, the results show the long-term declining trend of strong vegetation in our base line simulation (Panel 
d); over time, stronger vegetation is replaced by flammable vegetation which can lead to more fire. This change in 
vegetation composition effectively increases the average burn rate. Over time, with more flammable vegetation 
and with the expansion of vulnerable properties, the likelihood of human-made ignition increases.

Coupling effects. Figure 7 shows how the relation between perceived fire risk and the burn rate influences 
the system. The black line is the base run simulation for comparison. The blue dashed line depicts the condition 
in which risk perception changes extremely slowly, and the human system is almost disconnected from the natu-
ral system. In this situation, if humans underestimate the fire potential, the system burns down nature, resulting 
in a catastrophic environmental outcome as depicted in panel (a). Panel (a) shows that the burn rate overshoots 
in the short term but relatively declines due to less remaining natural resources to burn.

0.08

0.12

0.16

0 5 10 15 20
Time(year)

(a): Burn rate 

0

1

0.05

0.1

0.15

0 5 10 15 20
Time(year)

(b): Perceived risk vs human 
ignition

Human perception

Human ignition

0.4

0.8

1.2

0 5 10 15 20
Time(year)

(c): Vulnerable property

0%

35%

70%

0 5 10 15 20
Time(year)

(d): Vegetation dynamic

Strong 
Vegetation

Flammable
Vegetation

Empty
Area

Figure 6.  Base run simulation for a 20-year run of the model.
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Panel (b) displays the total burn rate throughout the study time to cast further insight into the burn rate sen-
sitivity to perceived risk. The overall burn rate does not significantly change when the risk perception changes 
from 0.5 to 2, indicating the difference among burn rates in panel (a) is more about the fluctuation timing, but not 
the size. However, an additional rise in the sense of risk greatly raises the overall burn rate, as seen in panel (a).

In the case of prolonged change in risk perception, human ignition continues to increase (panel c) as the 
perceived risk changes slowly. Furthermore, vulnerable properties are being built faster than their demolition 
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(panel d). A slighter delay in perception leads to a higher frequency of oscillation as depicted in the graphs by 
the red dashed lines and a longer delay in a lower frequency oscillation, as shown by the purple graphs. Overall, 
the results are not much different from the base run. We are losing forests (panel e) and have periodic burn rates 
of increasing magnitude over time.

Policy experiments. Here we examine the impact of implementing four proposed policies introduced in 
Table 2. To prevent the initial condition and transition periods affecting our comparison of proposed policies, we 
imposed each policy at the fifth year and compared the total burn rates between 10 and 20 years. Figure 8 shows 
the effect of these policies on different variables. 

Panels (a) and (b) show the burn rate over time and cumulative, respectively. All four policies reduce the 
burn-rate magnitude compared to the base run. P3 is more effective in early burning-rate reduction compared 
to other policies, but they ultimately result in similar behavior. It is worth noticing that P1 has the most effect on 
long-run fluctuation reduction, although its total effect in the time span is less than P3. It seems that firefighting 
is more effective in the short run, but it fails to dampen the fluctuation and instead limits its growth. This is partly 
because of the increase in human ignition and settlement due to the success of firefighting in the short run. As a 
result, people perceive less fire danger and continue to engage in high-risk activities and expand housing in the 
WUI. The result is further fluctuation in the burn rate even when P3 is implemented. On the other hand, the WUI 
expansion limitation policy can effectively reduce the burn-rate fluctuation in a timely manner. Implementing P4 
causes a reduction in strong vegetation, which leads to flammable vegetation increase. As flammable vegetation 
is the main fuel for wildfire, this policy cause increase in fuel availability and an increase in the burning rate.

Change in human ignition is provided in panel (c). Different levels of human-made ignition are observable, 
and the reason is that people adjust their high-risk behavior with burn rate, and not with the number of fires. In 
the firefighting policy, as for a given level of ignition, the burn rate declines, we observe more risky behavior and 
more human-made ignition. It is interesting to note that, as panel (c) shows, we end up with more WUI under 
policies 2, 3, and 4. In fact, the reason is that the firefighting, prescribed burning and clear cutting only affect 
natural sector of the model, decrease burn rate, which decreases risk perception and in turn result in more WUI 
development. On the other hand, P1 directly targets WUIs.

Panel (e) displays the change in strong vegetation, which shows that P4 causes the most reduction in forest 
tree cover as it directly removes strong vegetation. P2 also causes a decrease in strong vegetation compared to 
the base run. The reason is that burning flammable vegetation damages young trees and prevents them from 
developing into solid vegetation. On the other hand, P3 has the least effect on strong vegetation by slowing the 
damage to young trees and confining the fire. Panel (f) shows the flammable vegetation dynamic after imposing 
each policy. P3 and P2 reduce flammable vegetation more than P1. However, there is an important difference 
in how these policies cause the reduction in flammable vegetation. In comparing panels (a) and (b), we see that 
while P3 causes further increases in the strong vegetation, P2 causes an increase in the empty area. P4 is the only 
policy that increases flammable vegetation by removing the strong vegetation and providing an empty area to 
be filled with young vegetation.

Overall, it looks like each policy has some marginal effect on containing wildfire, though the magnitudes of 
effect are not considerable.

Replication of United States data. For model validation, we investigate its ability to fit a single case, 
United States’ wildfires from 1996 to 2015. We utilize the United States Department of Agriculture’s wildfire 
database for the conterminous United States (Short, 2017). The results are shown in Fig. 9. In this figure, simula-
tion of burning rate and human ignition (continuous lines, in black) closely follows the real-world data (dotted 
lines, in red), and the model fairly replicates the historical trends.

Combination policy implementation analysis. To better understand the impacts of our policies, we 
run different pairs of policies simultaneously. The results illustrate the nonlinear incremental impacts between 
policies. Simply put, it appears that the impact of several policies is enforced when combined synergistically. 
In other words, applying several policies might have a greater overall impact than the sum of the policies’ indi-
vidual effects and suggests that policymakers should avoid searching for a panacea and adopt a broad range of 
approaches thoughtfully.

The results of multiple policy implementations along with single ones are presented in Fig. 10. For example, 
P1 and P2 each reduce the total burn rate by 4.9% and 4.5%, respectively. While the summation of these effects is 
9.4%, simultaneously implementing P1 and P2 lead to a 13.6% burn-rate reduction—P1 controls the human igni-
tion, and P2 reduces the flammable vegetation stock—together, the burn rate is more affected than if implemented 
separately. The case is more interesting when P1 and P3 are imposed together. The result is a 38% burn-rate 
reduction compared to 13.9%, which is the sum of solely implementing each policy. The synergic effect happens 
because P3 lets the flammable vegetation (mainly young trees) age and become strong vegetation. Furthermore, 
the P1 also prevents human ignition from growing as fast as a single P3 implementation.

An interesting case happens when P2 and P3 are implemented together. The synergic effect is less than the 
sum of separate implementation, mainly because both policies affect the vegetation dynamic and not the human 
factor in the wildfire. P2 and P3 both cause a lower initial burn rate, but due to the reduction in perceived risk 
of wildfire and expansion of WUI, this effect quickly disappears. This is another evidence for the importance 
of considering the problem as an interconnected natural and human system, where effective policies should 
address both sides.

Finally, an interesting result emerges when all policies impose together. Surprisingly, imposing all policies 
together does not have the most impact on the total burn rate (32.5%), which is less than the P1 and P3 effect 



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5280  | https://doi.org/10.1038/s41598-022-08730-y

www.nature.com/scientificreports/

(38.0%). The reason relates mainly to the fact P2 and P4 both cause increase in flammable vegetation after empty 
area filled, which lead to more burning rate after a delay.

Sensitivity analysis. We conducted a series of sensitivity analysis to check the model’s robustness to our 
assumptions. Specifically, we conducted a Monte-Carlo analysis and changed several parameter values to deter-
mine the range of outcomes. The results are reported in Appendix 2. In summary, the focus was on parameters 
that can take on substantially different values from those assumed in the model, including parameters used 
for risk perception formulation, its effect on human behavior, such as time to perceive risk and time to change 
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behavior, in addition to fractional burning rate per ignition, average s burning, initial flammable vegetation, ini-
tial strong vegetation, human ignition multiplier, and initial vulnerable property. As described in the Appendix, 
for most of these variables, we changed the corresponding variable up to double its base run value. Moreover, we 
test different values for initial strong vegetation and initial flammable vegetation changing them between zero 
and their base run values. Each sensitivity test is the outcome of 2000 simulation runs using a uniformly distrib-
uted random distribution of the parameters within the specified intervals. The results are qualitatively robust, 
and their variability is within reasonable limits (See Figure A1).

Discussions and conclusion
Wildfire remains one of the major global challenges affecting different regions around the world in all continents. 
While countries are implementing different policy actions to ameliorate catastrophic outcomes of wildfires, it 
appears that (a) we are far from addressing this issue on a global scale, and (b) overall, the trends are in the 
wrong direction, pointing to an increasing magnitude of fires and burned areas. This paper is a response to this 
challenge. We developed a system dynamics model of wildfire spread in a hypothetical scenario and simulated 
the effects of several important mechanisms in determining the burn rate, fire frequency, and public risk percep-
tion of wildfire. The model included two major sectors of the natural and human subsystem that were connected 
through the human contribution to ignition and the human risk perception of fire. We simulated the model 
for a wide range of scenarios that represent different levels of human sensitivity to evolving fires and a range of 
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policy containment measures. Our results show how humans and vegetation determine wildfire activity, defin-
ing wildfire as a human-natural coupled system. The findings are important in their relative changes, not their 
absolute values, because of the model’s hypothetical assumption.

We conducted several simulation experiments with the model. The results show a wide range of oscillatory 
patterns in different scenarios and policy conditions. The base run depicted the possibility of an oscillatory 
outcome in human-caused ignition and an oscillatory pattern in the burn rate with an overall increasing trend. 
The decrease in strong vegetation and the increase in vulnerable properties cause an increasing trend in burn 
rate while dynamics of human perception affect the oscillatory pattern.

Our study contributes to the literature of modeling natural disasters and specifically wildfire studies. We 
offer the first model of the coupled human-natural system of wildfire. Our study builds on several past models 
of ecological  dynamics21, particularly in wildfire  dynamics37, and extends them to include human interaction 
with natural systems. The model is generic with the objective of providing insights into human-nature intenden-
cies as related to the problem of wildfire. Our work is different from past spatial models of wildfires. In spatial 
modeling of wildfires, the human effect is spatially static. Here we show that the same population could ignite 
a different number of fires and affect the wildfire behavior. Our different approach from past studies results in 
different outcomes as well. For example, we point to the sources of policy resistance in containing wildfire in 
terms of how risks are perceived and how properties are built adjacent to natural resources.

Our study resonates with some of the past system dynamics models of other natural  disasters36,37. We take 
an endogenous approach to the concept of system vulnerability by considering the human element as a part 
of the system which both reacts to the problem and contributes to problem. The importance of feedback-rich 
modeling has previously shown its value in sustainable environmental management, including water quality, 
waste management, and water  supply25. Here we propose a similar approach for wildfire management and aim 
to understand important mechanisms shaping wildfire behavior.

The study has several policy implications. We compared four policies: prescribed burning, vulnerable prop-
erty control, firefighting effectiveness enhancement and clear cutting. We showed that firefighting effectiveness 
is more effective in reducing the total burn rate than other proposed policies. More importantly, we showed 
that simultaneously implementing policies can lead to a synergic effect that can surpass the sum of the effect of 
solely implementing the same policies. For example, while controlling development of vulnerable properties and 
effective firefighting each reduce the burn rate 4.9% and 9%, respectively, performing both policies results in a 
38% burn rate reduction. Such a synergic effect points to the absence of a silver bullet in controlling wildfires, 
suggesting that effective policies should target both human- and natural-sectors of the system to maximize their 
effectiveness. In other words, since wildfire is an outcome of a coupled system that includes highly interdependent 
human and nature sectors, one cannot solve it by solely focusing on one sector.

This study has several limitations which lead to future avenues for further explorations. We purposefully 
kept the model simple with a focus on the interdependencies between the human and natural sectors of the 
model. For example, a detailed examination of spatial dynamics in this context, which will require a larger scale 
model, will be potentially insightful and have policy implications. With a spatial model, policy analysis can be 
expanded to include effects of a wide range of silvicultural policies (such as thinning), and with more detailed 
behavioral models that capture human heterogeneities one may offer behavioral policy insights. A full calibra-
tion of the model on a global scale and inclusion of fire penetration across different regions are other potential 
avenues of expansion.
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