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Stabilization of parameter 
estimates from multiexponential 
decay through extension 
into higher dimensions
Chuan Bi1, Kenneth Fishbein1, Mustapha Bouhrara2 & Richard G. Spencer1*

Analysis of multiexponential decay has remained a topic of active research for over 200 years. This 
attests to the widespread importance of this problem and to the profound difficulties in characterizing 
the underlying monoexponential decays. Here, we demonstrate the fundamental improvement in 
stability and conditioning of this classic problem through extension to a second dimension; we present 
statistical analysis, Monte-Carlo simulations, and experimental magnetic resonance relaxometry data 
to support this remarkable fact. Our results are readily generalizable to higher dimensions and provide 
a potential means of circumventing conventional limits on multiexponential parameter estimation.

Multiexponential analysis is a longstanding problem in mathematics and physics, with applications in 
biomedicine1–3, engineering4, food sciences5, the petrochemical industry6, and many other settings7,8. The goal 
of many of these analyses, and the problem we will address, is to extract parameter estimates from a real-valued 
multiexponential decay function of the form

where n is the number of underlying monoexponential components, and τi and ci the decay time constant and 
amplitude of the i-th component. This is a special case of the Laplace transform, itself a special case of the Fred-
holm equation of the first kind, in which the integrand is the product of an exponential kernel and a sum of delta 
functions, with all quantities real.

Fitting discrete decay data to Eq. (1), in principle, permits estimation of relative component sizes and decay 
constants for all components. It is well-known, however, that this process can be severely ill-posed8,9; for closely-
spaced exponential time constants {τi} , especially with disparate relative component sizes {ci} , there are many sets 
of distinct decay times and component amplitudes which closely fit the data. A consequence of this is instability 
in the values of the set of derived parameters in the presence of noise. This can be illustrated through a modifica-
tion of an example provided by Lanczos10.

In Fig. 1, we see that there is a near-perfect superposition of two biexponential functions with very different 
pairs of underlying monoexponentials. Clearly, it is impossible to claim that one of these is more suitable than the 
other to describe an underlying noisy data set. The ill-posedness of this special case of the inverse Laplace trans-
form (ILT)9,11–14 stands in stark contrast to the well-posed Fourier or, equivalently, inverse Fourier, transform.

Many methods8,15–19 have been developed for multiexponential analysis, and are effective in particular settings. 
However, they do not address the fundamental problem of ill-conditioning. In contrast, we show that we can 
markedly improve the conditioning through two- and higher-dimensional extension of multiexponential decay. 
We develop this in the context of magnetic resonance relaxometry (MRR), with which, perhaps uniquely among 
experimental methods, multiexponential data can be generated in one, two, or higher dimensions2,20–25. In fact, 
Celik, et al.26 performed a direct experimental confirmation of the increased stability of parameter estimation 
in 2D MRR, for both nonlinear least squares (NLLS) and non-negative least squares (NNLS) analyses, through 
a preliminary set of simulations and phantom experiments. However, no analysis was presented to support the 
empirical results.
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The higher-dimensional extensions of MRR are implemented by designing a radio-frequency pulse sequence 
that is sensitive to two or more intrinsic MR parameters. For example, an experiment that produces data follow-
ing a 1D biexponential model for transverse decay,

can be extended into two dimensions by adding sensitization to longitudinal relaxation time:

by incorporating an inversion-recovery pulse sequence module for T1 sensitization followed by a multi-echo 
acquisition scheme for T2 sensitization, and where the longitudinal relaxation time constants T1,1 and T1,2 have 
been introduced. The T1-sensitizing dimension is indirectly detected, meaning that the corresponding time vari-
able, TI, is a variable time period over which sensitization occurs, rather than a sampling time. This is in contrast 
to the sampling times TE for T2 sensitization. Likewise, diffusion-sensitizing pulses may be incorporated to obtain 
a signal model very similar to Eq. (3) but with the exponential T1 terms replaced by exponential ADC terms, 
where ADC indicates apparent diffusion coefficient. These various 2D experiments24 provide more comprehensive 
chemical characterization of an experimental sample than 1D experiments; here, we are focused on the additional 
mathematical property of increased stability of the corresponding signal models. These considerations can be 
generalized to three, and, in principle, higher dimensions. For example, a 2-component signal model incorporat-
ing T1 , T2 , and ADC appears as27,28:

Thus, the purpose of the present work is to extend the preliminary findings of Celik et al.26 by providing a sta-
tistical theory along with a much more comprehensive set of simulations and experimental data supporting the 
increased stability of multiexponential analysis in 2D as compared to in 1D. We focus on the archetypical case 
of the biexponential model, Eqs. (2) and (3). Our main result is that stability improves progressively and mark-
edly for an increasing ratio between the relaxation times, T1,1 and T1,2 , of the two components in the indirect 
dimension, providing increasing discriminatory information content.

Experimental results are obtained from MRR experiments on a two-component homogeneous gel. For all 
analyses, we incorporate the consideration that the 2D experiment is of longer duration and provides a greater 
number of data points than 1D, so that improved stability at a given signal-to-noise ratio (SNR) would be 
expected. We compensate for this by increasing the signal-to-noise ratio used for 1D Monte-Carlo (MC) simula-
tions and experiments by the square root of the number of indirect dimension measurement points used for the 
corresponding 2D analysis, √nindirect , as was also done in Celik et al.26. We also note that Kim et al.25, as part of 
a comprehensive work on applications, report an improved Cramer-Rao lower bound (CRLB) for the 2D inverse 
Laplace transform of decaying exponentials in a numerical example; without however exploration of parameter 
dependencies, and without simulation or experimental results addressing this concept.

For clarity, we note that in contrast to the problem outlined above, multi-dimensional Fourier transform 
magnetic resonance spectroscopy is a mature field29. A fundamental concept in this area is that spectral lines that 
overlap in a 1D spectrum may be resolved in two- or higher dimensional spectra. However, the Fourier trans-
form is a well-conditioned numerical problem, with condition number of one, so that this is quite distinct from 
the improvement in condition number from extension of the inverse Laplace transform into higher dimensions 
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Figure 1.   Plot of biexponential decaying signals generated by two different models. The governing equations 
for the models are S1(t) = 0.2e−
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which we explore herein. Thus, as a further check on our results, we empirically compare the stability of the 2D 
to the 1D Fourier transform, finding, as expected, no improvement.

Theory
In this section, we first work with general linear and nonlinear problems, defined by Gp and G(p) respectively. In 
the mathematical theory for MRR, G(p) corresponds to the biexponential model in Eq. (3). We will summarize 
standard results for the variance of parameter estimates determined by linear and nonlinear least squares and 
show how this formalism can be applied to 2D, and by extension, higher dimensional relaxometry. Linear least 
squares does not apply directly to parameter estimation from the nonlinear equations Eqs. (2), (3) or (4), but 
provides the appropriate background for the linearized nonlinear theory to follow.

Linear theory.  An estimate p∗ of a length-N parameter vector p as defined by a linear least squares criterion 
is:

where the notation indicates that p∗ is the value of p which minimizes the l2 (Euclidean) norm of the expression 
within the absolute value. The data vector d is an M dimensional vector of independent Gaussian random vari-
ables (RV) of equal variance σ 2 ; the M × N kernel matrix G is defined by the physical model of the experiment.

From standard statistical theory and the definition of the pseudoinverse, the covariance matrix of the Gauss-
ian RV, p∗, is an N-dimensional Gaussian RV with covariance matrix:

and

See the Linear theory section in the Supplemental Information.

Linearized nonlinear theory.  The nonlinear least squares problem corresponding to Eq. (5) is

where G : RN → R
M . We follow standard methods to derive a result corresponding to Eq. (7)30. We start with 

the first-order approximation of the j-th element of G(p) about a vector p0:

The indicated derivatives are the elements of the Jacobian matrix of G evaluated at p0 , which we will denote by 
B with elements

Eq. (8) becomes

which is of the form of Eq. (5), so that

G(p0) and Bp0 are constants, so Cov(G(p0)− Bp0 − d) = Cov(d) . Then as above,

with the diagonal elements again defining the variances of the derived parameters.
This indicates that the condition number for this analysis is defined by B . The complexities of finding a global 

rather than a local minimum solution to Eq. (8) is a substantial but separate topic; if the linearization is performed 
about a local minimum, the derived variances will be appropriate for the parameter estimates recovered at that 
local minimum.

Cramér-Rao lower bound (CRLB) theory is an alternative approach to obtaining these results31–33; it is also a 
local analysis. The matrices GTG and BTB in Eqs. (6) and (13) are Fisher information matrices.
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Methods
One‑dimensional analysis.  A spin-echo experiment with sampling at echo peaks1,34 for a two-com-
ponent system leads to the signal model of Eq. (2), with a signal vector S defined by Sj(p) = S(TEj , p) , and 
p = (c1, c2,T2,1,T2,2) , with least squares parameter estimation following from:

where the data vector d is defined according to dj = echo amplitude at time TEj . There is no requirement for 
sampling at equally spaced echo times, though this is conventional and convenient. The j-th row of the Jacobian 
of S , which we denote by B , corresponds to TEj , while column l corresponds to the derivatives of Sj(p) with respect 
to the l-th element of p : Bjl =

δSj(p)

δpl

∣

∣

∣

p0
.

A certain degree of prior knowledge of T2,1 and T2,2 is required to select the vector of measurement times to 
ensure that the short-time and long-time behavior of the signal is well-sampled; the details of this choice can 
have a significant effect on fit quality in the presence of noise35,36 but is not the subject of the present analysis. 
The derivatives Bjl appearing in the Jacobian are calculated analytically from Eq. (2); for more complicated signal 
models, they can be computed numerically. The calculation of Cov(p∗) for different assumed values of p follows 
from Eq. (13).

One-dimensional T1 relaxometry experiments may also be implemented; in brief, an initial inversion pulse 
is followed by a readout pulse after a variable inversion recovery time TI. A sequence of nTI inversion recovery 
times indexed by k, TIk , is used to obtain a full data set. The appropriate choice of {TIk} is dependent on the 
values of T1,1 and T1,2 . The corresponding signal model for a two component system is given by the terms in 
parentheses in Eq. (3), with the B matrix determined from this. Similar comments apply to one-dimensional 
diffusion experiments designed to obtain ADC values of underlying components.

Two‑ and higher‑dimensional analysis.  There are two independent measurement variables in 2D relax-
ometry and related experiments24. For the version of T1 − T2 experiments we have described, each inversion 
time TIk is followed by a number nTE of spin echoes indexed by j, denoted by TEj . Individual measurement points 
are now defined by a pair of times 

{

TEj ,TIk
}

 , with corresponding data points dj,k . For two components, this 
results in a signal described by the two-component model Eq. 3. A full dataset is obtained by stepping through a 
pre-defined number, nTI , of inversion recovery times, acquiring spin-echo data for each.

The least squares minimization problem is defined by the Frobenius norm:

a finite double sum over the two-dimensional array of these measurement points; this is obviously independent 
of the ordering of the measurement time pairs {TEj ,TIk} and their corresponding data points dj,k . The vector of 
model parameters is p = (c1, c2,T1,1,T1,2,T2,1,T2,2) , so that the B matrix has 6 columns. Each of these columns 
corresponds to a vectorization of the full 2D grid ρ of measurement points, where ρj,k = {TEj ,TIk} ; this is a 
convenient way to ensure that each column of B contains elements corresponding to each measurement point. 
Having defined B , the calculation of Cov(p∗) for different underlying parameter sets and measurement points 
follows as for the 1D case. Experiments comparable to the T1 − T2 experiment, such as ADC − T2 or ADC − T1, 
may be analyzed analogously.

Finally, three and higher-dimensional experiments may also be undertaken at the expense of additional 
acquisition time and more complex data analysis20.

Simulations.  For MC simulations, we in general fix all but one of the underlying parameters and show 
results for a range of this variable parameter. The smaller of the NLLS-derived time constants was assigned the 
label T2,1 and the larger assigned to T2,2 , with corresponding fractions c1 and c2 . In 2D, T1,1 and T1,2 were similarly 
assigned to these two components, respectively.

One‑dimensional simulations.  The standard deviations (SD’s) of the derived parameters, 
(
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(
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, SD
(

c∗2
)

, SD
(

T∗
2,1
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(
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 , for the biexponential model Eq. (2) were plotted as a function of T2,2 , 
based on Eqs. (8), (10) and (13). This linear treatment yields results that are simply proportional to the assigned 
SD of the noise, and hence essentially arbitrarily scaled. We expect a worsening of the condition number of B and 
a corresponding increase in the SD of parameter estimates as T2,2 approaches T2,1.

The linearized treatment outlined above, as well as the equivalent CRLB theory, are local theories and do 
not directly reflect the global properties of Eq. (8). One potential problem with this is that the evaluation of 
the Jacobian matrix is taken at the underlying parameter values, which may reflect MC simulations with finite 
SNR. MC results do not use linearization at the underlying parameter values, but are obtained iteratively from 
initial guesses near the ground truth, so that while they yield less direct theoretical insight, these results are, 
in that sense, considerably more general. These simulations are again displayed as a function of T2,2 . The MC 
simulations were performed by adding Nnoise noise realizations of Gaussian noise to each decay curve for a 
given set of parameters and performing an NLLS fit for each. SNR was defined as the ratio of the maximum 
signal amplitude to the noise SD. The mean and SD’s of recovered parameters were then calculated over the set 
of noise realizations. Quantitative agreement between the analytic linearized solution and the MC results is 
not expected due to the linearization used to derive Eq. (9), and the evaluation of the Jacobian matrix B at the 
true underlying model parameters rather than at the parameters recovered by NLLS, and dependence on the 
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details of the numerical NLLS algorithm. This effect can be minimized through use of very high SNR values in 
directly comparing the MC with the analytic results; we have selected SNR=10,000 which, in fact, is close to our 
experimental SNR (see below).

For both the analytic linearized covariance analysis and the MC analyses, we assumed evenly-spaced echo 
times 

{

TEj
}

 ranging from 8 ms to 512 ms in 8 ms increments; the number of echo times was therefore nTE = 64 . 
For all MC simulations, 1000 noise realizations were used. The initial guesses used for NLLS were random num-
bers within a specified range of the underlying parameter values. Parameter estimation was implemented using 
the MATLAB function lsqcurvefit , an unconstrained Levenberg-Marquardt algorithm.

Two‑dimensional simulations.  For the 2D simulations defined by Eq. (3), additional parameters 
(

T1,1,T1,2

)

 are 
introduced and need to be determined. The analytical and MC simulations were designed analogously to the 
1D versions described above. Results are presented by fixing T1,1 = 1000 ms and varying T1,2 . The parameter 
covariance matrix and the condition number of the Jacobian matrix for the linearized analytical calculations 
was determined from Eqs. (10) and (13). For MC simulations, the full set of 6 estimated parameters was again 
determined for Nnoise = 1000 realizations of noise-corrupted data for a given set of model parameters. The set of 
nTI = 25 inversion recovery times {TIk} ranged from 50 ms to 4850 ms in increments of 200 ms. The echo times 
{

TEj
}

 were the same as for the 1D simulations. The total number of measurements was nTI × nTE = 1600 . SNR 
was defined as for the 1D case.

1D versus 2D simulations.  The 2D experiment collects an nTI-fold greater number of data points than 1D, lead-
ing to increased acquisition time by approximately the same factor. In practice, an equal-time comparison is of 
greatest interest; an equal-time 1D experiment would exhibit SNR which is a factor ∼ √

nTI  greater than the cor-
responding 2D experiment. In other words, given the same experimental time, one can perform either a single 
2D acquisition or nTI 1D acquisitions, and we seek to compare the stability of these two approaches. This has 
been incorporated into all of our MC simulations and experimental analyses, as was also done in Celik et al.26.

Otherwise, our comparisons of 1D and 2D experiments used the same set of echo times 
{

TEj
}

 and underlying 
common parameter values. For the 2D simulations, the effect of the difference between or ratio of T1,1 and T1,2 
on the precision of parameter estimation was of greatest interest.

In contrast to the ILT, the inverse Fourier transform (FT) is analytically well-posed and, in the discrete form, 
well-conditioned9. It therefore serves as a type of negative control on our results for the ILT, to demonstrate the 
fact that the results we obtain in the latter case are due to improvement in conditioning rather than simply to 
expanding dimensionality. See SI (Supplementary Information), Fig. 5 for details of this analysis.

Three‑dimensional simulations.  The extension to higher dimensions is straightforward. For example, Eq. (4) 
represents a signal model incorporating T1 , T2 and diffusion effects. Each of the two components is now char-
acterized by a triplet {T1,i ,T2,i ,ADCi} , with i indexing the two components. The number of experimental data 
points is nTE × nTI × nb , where nb is the number of discrete diffusion-sensitizing measurements. The lineariza-
tion of this problem, following the formalism above for linearization of 1D and 2D models, is straightforward, 
including the construction of the Jacobian and the covariance matrix.

Experimental methods.  One-dimensional T2 and 2D T1 − T2 experiments were performed on a 5% 
agarose gel consisting of two cylindrical plugs doped respectively with 0.05% and 0.15% w/v CuSO4 . Each 
component was weighed to estimate expected relative signal fractions. To facilitate shimming, the plugs were 
immersed in perfluorocarbon liquid (3M Fluorinert FC-770, Sigma-Aldrich, St. Louis, MO) and positioned 
between two home-built polyetherimide (Ultem) plastic plugs. The plugs were separated by a 1mm thick 
poly(tetrafluoroethylene) spacer to prevent diffusion of copper ions between them. After insertion into a 10mm 
NMR tube, the two-component gel was placed in a 10mm transmit-receive SAW resonator (m2m Imaging, 
Australia) within the magnet and scanned using an Avance III 400MHz widebore microimaging spectrometer 
(Bruker Biospin, Rheinstetten, Germany). Sample temperature was maintained at 4.0 ±0.1 ◦ C using cold air 
from a vortex tube (Exair, Cincinnati, OH).

Non-localized spectroscopic data were acquired using a CPMG multi-spin echo sequence consisting 
of rectangular RF pulses of duration 20 µ s (90◦ ) and 40 µ s (180◦ ), yielding 2048 echo peak intensities at 
TE = 0.4, 0.8, · · · , 819.2 ms for each spin excitation, followed by a recovery delay of 2s. For two-dimensional 
T1 − T2 experiments, each CPMG pulse train was preceded by a 40 µ s rectangular inversion pulse and an inver-
sion recovery delay TI, which was incremented nonlinearly from 15ms to 2s in 24 steps. 1D T2 experiments, 
without the inversion recovery preparation module, were performed with 30 averages to yield similar total scan 
time to that of the 2D experiments. Each 1D or 2D experiment was repeated 100 times to produce data with 
different noise realizations. Total scan time for each experiment was 1 hour 38 minutes.

Spin-echo imaging experiments were performed to measure T1 and T2 relaxation times in each gel indepen-
dently. In each experiment, a 3 mm axial slice was positioned through a single gel, with in-plane field-of-view 
10 mm × 10 mm and matrix size 64 × 64. Excitation and refocusing were performed using 1ms hermite 90◦ and 
bandwidth-matched hermite 180◦ pulses, respectively. All imaging experiments were performed without signal 
averaging.

Monoexponential T2 ’s were measured using a CPMG sequence in which the read pre-phase gradient directly 
preceded the readout gradient to minimize diffusion effects. Sequence parameters included: acquisition band-
width = 81.5 kHz, interpulse delay TR = 2 s, and TE = 4.7, 9.4, · · · , 601.6 ms. Mean magnitude intensities for all 
gel pixels were fit to a three-parameter exponential decay function A+M0 ∗ exp(−TE/T2) in Bruker ParaVision 
5.1 software; the offset term was incorporated to account roughly for the Rician noise floor.
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Monoexponential T1 values were measured similarly, using a progressive saturation experiment in which 
TR was varied nonlinearly from 15 ms to 3 s in 8 steps. Acquisition bandwidth = 50 kHz and TE = 6.0 ms were 
employed. Data were fit to the function A+M0 ∗ (1− exp(−TR/T1)).

The relaxometry experiments were performed in spectroscopic mode, that is, with no spatial-encoding gradi-
ents. The acquired data was therefore of the form of a single complex value for each acquisition time. Each data 
point was phased individually along the real axis to maintain full amplitude without any magnitude operation, 
as is standard experimental practice in MR relaxometry. Thus, the noise in our experiments was Gaussian, as 
required for the strict validity of Eqs. (6) and (12).

Results
One‑dimensional analyses.  Analytic calculation.  Fig.  2 shows the linearized results for the standard 
deviation of T2,2 derived from the model described by Eq. (2), as a function of T2,2 , with c1 = 0.3 , c2 = 0.7 and 
T2,1 = 60 ms. SNR was set to 800, though this value appears only as a multiplicative constant and does not oth-
erwise enter the calculation.

We see that the variance increases greatly, and asymptotically approaches infinity, as T2,2 approaches T2,1 . 
Similar results are seen for the SD of all other derived parameters (See Figure 1 in the SI). Correspondingly, the 
condition number of the Jacobian matrix B approaches infinity as T2,2 approaches T2,1 , as shown in Fig. 2 of the 
SI. In fact it may readily be confirmed by inspection that B is singular in this limit; BTB is then also singular, so 
that the right-hand side of Eq. (13) is undefined.

This limit represents the coalescence of the two exponential terms in Eq. 2. The time constant of the resulting 
monoexponential expression follows easily from NLLS analysis, but of course it is impossible to separate the two 
underlying components. We also see that cond(B) becomes very large even before this limit is attained, so that 
the calculation of Cov(p∗) becomes effectively meaningless and is therefore excluded from Fig. 2.

The theoretical calculations in Eq. (13) in effect assume infinite SNR through the fact that the Jacobian is 
always calculated at the correct underlying values, with finite SNR incorporated into the formalism only through 
multiplication by the noise variance.

Monte‑Carlo simulations.  Fig. 3 shows MC results indicating the improvement in stability as T2 values become 
increasingly different. Results are shown for SNR= 10000 over 1000 noise realizations.

These results can be extended by plotting histograms of recovered parameter values for a range T2,2 values. 
Fig. 4 shows this for recovered T2,2 values over 1000 noise realizations with SNR = 10000 ; high SNR was selected 
in order to minimize the potential effect of local minima, so that the MC results could be more directly compared 
to the linearized treatment. Parameter SD’s were calculated for each value of T2,2 . Note that SD indicates the 
standard deviation of the distribution obtained from MC simulations and should be distinguished from the σ 
defining the standard deviation of a Gaussian distribution. As seen, accuracy increases and the SD of estimates 
decreases as the ratio of T2,1 to T2,2 increasingly differs from unity, in agreement with Fig. 3. Results for the other 
parameters are similar.

In this extremely high SNR case, the pattern of the calculated SD’s is very similar to that found from the lin-
earized theory. This is to be expected, since the latter in effect assumes infinite SNR in that the Jacobian is always 
calculated at the correct underlying values. In contrast, MC results are independent of linearization and are not 
reliant on a high-SNR approximation. The MC results we show in the remainder of this paper, for more realistic 
SNR, are expected to show the same trends as in the linearized theory, but not to agree in detail. In particular, for 
moderate SNR, we expect large parameter SD across a much larger range of the independent variable as compared 
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Figure 2.   Analytical calculation of the standard deviations for T2,2 recovery from the biexponential 1D model, 
as a function of T2,2 . T2,1 = 60 ms throughout. Values are obtained from the square root of the diagonal 
elements of the covariance matrix defined by Eq. (13).
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Figure 3.   Histograms of one-dimensional MC simulation results for parameter recovery from the 1D 
biexponential model Eq. 2. All rows share the same underlying values (c1, c2) = (0.7, 0.3) . Underlying T2 values 
are as indicated. The standard deviations, denoted SD, are calculated from the distributions obtained with MC 
simulations. For all MC simulations, the smaller value of the derived time constants is assigned to T2,1 and the 
larger to T2,2 , with their fractions c1 and c2 assigned correspondingly.
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to the linearized result. Nevertheless, for both linearized analytic and MC calculations, we expect maximal SD in 
the regime T2,1 ≈ T2,2 . A more exact correspondence between these methods is not to be expected.

Two‑dimensional analyses.  Analytic calculation.  Fig. 5 shows results based on Eq. (13) for the recovery 
of T2,2 from 2D T1 − T2 experiments. The SD’s of the derived values are shown as a function of T1,2 , varying from 800 
ms to 1200 ms with other parameters fixed at the values 

(

c1, c2,T2,1,T2,2,T1,1

)

= (0.3, 0.7, 60 ms, 45 ms, 1000 ms) . 
Similar results are obtained for the SD’s of all other parameters (See SI, Fig. 3). Additive Gaussian noise was again 
assumed and entered only as an overall multiplicative constant.

As expected, the SD for each parameter attains its maximum for T1,2 = T1,1 = 1000 ms, and decreases as T1,2 
deviates from this value. This result is the major finding of this work, indicating the statistical basis for our previ-
ous empirical results26. In particular, this supports the stabilization of parameter estimation for the biexponential 
model through introduction of a second dimension with disparate values for T1’s.

We expect that the behavior of the SD should correspond to the condition number of the Jacobian matrix B , 
and therefore of BTB for the linearized problem, as described in the theory section.

Fig. 6 shows that the condition number of the Jacobian matrix for 2D experiments with differing T1,1 and T1,2 is 
smaller than for corresponding 1D experiments. When T1,1 = T1,2 , the two condition numbers are approximately 
equal. This indicates that the stability of parameter estimation from 2D experiments is greater than for 1D except 
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2,2 , of T2,2 over 1000 noise realizations 

for each value of underlying T2,2 , with the remaining parameters fixed at 
(

c1, c2,T2,1

)

= (0.3, 0.7, 60 ms) . 
The smaller value of the derived time constants is assigned to T2,1 , and the larger to T2,2 . SNR = 10000. In the 
upper panel, correct underlying values of T2,2 are indicated with the red line, with corresponding values of the 
recovered T2,2 shown as asterisks. As T2,2 increasingly differs from T2,1 , accuracy and precision both improve 
greatly. The SD’s for the recovered values of T2,2 are shown in the lower panel and are seen to be largest in the 
regime T2,2 ≈ T2,1 , and to decrease as these values progressively differ.
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in the regime of this special case. The equivalence of the 1D experiment to the 2D experiment for equal T1 ’s can 
only be approximate, since the condition number of the latter has a dependence on the set of T1-sensitizing TI 
values; this variable does not exist in 1D. Fig. 8 in the SI is a threedimensional view corresponding to Fig. 5 above.

In comparing the results of Fig. 5 with Fig. 2, and from Fig. 6, we see that the T1,1 = T1,2 behavior in 2D 
mimics the T2,1 = T2,2 behavior in 1D. Stability improves in 1D as the ratio T2,1/T2,2 departs from unity, while it 
improves in 2D as the ratio T1,1/T1,2 similarly departs from unity. However, even with T11 = T12 , the condition 
number will remain finite as long as T21  = T22.

Monte‑Carlo simulation results.  Fig. 7 compares MC results for the stability of the 1D and 2D biexponential 
analyses. Parameter recovery was performed over 1000 noise realizations. Underlying parameter values were 
c1 = 0.3 , c2 = 0.7 , T2,1 = 45 ms, and T2,2 = 60 ms, with, in addition, T1,1 = 1000 ms. Results are shown for three 
values of T1,2 . SNR was set to SNR2D = 400 for the 2D analysis, and SNR1D = 400×√

nTI = 2000 in 1D. The 
histograms show recovered values of the indicated parameters.

As seen, the histograms for the 1D analysis and for the 2D analysis with equal T1 ’s are essentially indistin-
guishable. Precision increases in 2D as the T1 ’s progressively differ, demonstrating the potential for improved 
stability of 2D T1 − T2 experiments as compared to 1D, even on the equal-time basis in which the SNR of the 
1D experiment is, in this case, √nTI=5-fold greater than that of the 2D experiment.

The results of Fig. 7 can be extended as shown in Fig. 8. Variation in NLLS parameter estimation is shown 
for 2D analysis as a function of T1,2 . Recovered values are correctly obtained for T1,2 increasingly different from 
T1,1 . The SD’s were calculated over 1000 noise realizations for each parameter set. As seen, the SD of the estimates 
decrease as the ratio of T1,2 to T1,1 deviates from unity, in agreement with the results shown in Fig. 3 in the SI. In 
addition, the stability of the 2D experiment depends on the ratio of the T1 ’s rather than on their absolute separa-
tion; see Fig. 4 in the SI. A three-dimensional version of Fig. 8, showing a MC calculation of SD as a function of 
T1,1 and T2,1 , is provided in Fig. 9 in the SI.

Three‑dimensional analyses.  We provide a more condensed treatment of the further exten-
sion of the ILT of multiexponential decay to three dimensions (3D). As described in the three-dimen-
sional simulations section, expressions for the SD of parameter estimates can be derived through lineariza-
tion analogously to the 2D case. We illustrate this for the T1 − T2 − ADC signal model, with fixed values of 
(

c1, c2,T2,1,T2,2,T1,1,ADC1

)

=
(

0.7, 0.3, 45 ms, 60 ms, 1000 ms, 1.5 mm2/ms
)

 , and varying T1,2 and ADC2 . We 
used nine evenly-spaced diffusion sensitizing values {bl} , ranging from 0 ms/mm2 to 2 ms/mm2 in increments 
of 0.25 ms/mm2 . The dimensions of b are inverse to those of ADC. The values of 

{

TEj
}

 and {TIk} were taken 
to be the same as in the one and two-dimensional simulations sections. The number of measurement points is 
nTE × nTI × nb = 14, 400 . However, we reiterate that typically, the 64 values of TE that provide T2-sensitization 
are acquired at no additional time cost through a multi-echo acquisition, so that the duration of the experiment 
is largely proportional to nTI × nb . The standard deviation of T2,2 is illustrated in Fig. 9 as a function of the indi-
rect dimension values of T1,2 and ADC2 . Similar results are seen for the SD of all other derived parameters; see 
Fig. 6 in the SI.

Figure 9 shows that the maximum SD for T2,2 estimation, that is, greatest degree of instability, occurs for 
T1,2 = T1,1 and ADC2 = ADC1 . This is exactly analogous to the previous results in 1D and 2D. The basis for this 
can be seen from calculating the condition number of the Jacobian matrix. This is shown in Fig. 10, calculated 
using the same set of parameters as in Fig. 9.
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Figure 6.   Condition number of the Jacobian matrices for 1D and 2D models. Left: 
Results for p∗ =

(

c1, c2,T2,1,T2,2

)

= (0.3, 0.7, 60 ms, 45 ms) , with T1,1 = 1000 ms for the 
2D case and calculations performed across a range of T1,2 . Right: Analogous results for 
p∗ =

(

c1, c2,T2,1,T2,2

)

= (0.8, 0.2, 90 ms, 160 ms) . As seen, the condition number for the 2D case in which 
T1,1 = T1,2 is close to that of the 1D case.
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Figure 7.   Histograms of 1D and 2D MC simulations over 1000 noise realizations. Row 7a shows 1D results 
with underlying parameters as indicated. Panels 7b, 7c, and 7d show 2D results; all plots share the same 
underlying values with 

(

c1, c2,T2,1,T2,2

)

= (0.3, 0.7, 45 ms, 60 ms) , and with pairs of T1 values as indicated for 
the 2D simulation.
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Figure 8.   The uppermost and third rows show recovered values of the indicated 
parameter over 1000 noise realizations, with underlying parameter values fixed at 
(

c1, c2,T2,1,T2,2,T1,1

)

= (0.3, 0.7, 45 ms, 60 ms, 1000 ms) , and with T1,2 varying across the indicated range. The 
SD for each recovered parameter as a function of T1,2 is shown beneath its histogram. The SD’s are largest in the 
regime T1,2 ≈ T1,1 , and decrease as these values progressively differ.

Figure 9.   Results of linearized analytical calculation of the SD of recovered values for T2,2 in the biexponential 
3D model, as a function of indirect dimension parameters 

(

T1,2,ADC2

)

 , with other parameters fixed at c1 = 0.3 , 
c2 = 0.7 , T2,1 = 45 ms , T2,2 = 60 ms , T1,1 = 1000 ms , and ADC1 = 1.5 mm2/ms. The SD values are obtained 
from the square root of the corresponding diagonal elements of the covariance matrix defined by Eq. (13).
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The uppermost plot in Fig.10 shows that the condition numbers are largest in 1D and for the 2D and 3D 
analyses when the indirect dimension parameter values are equal. The condition number is then seen to decrease 
when the indirect dimension parameter values become disparate. Thus, for equal indirect dimension parameter 
values, no additional information is provided by that dimension, and the condition numbers become essentially 
equal to those for the next-lower dimension. The lower left plot shows the rough equality of condition numbers 
for all three dimensions when the indirect dimension parameter values are equal, with the condition number 
decreasing as ADC2 becomes increasingly different from ADC1 . The lower right plot shows the marked increase 
in condition number as T1,2 approaches T1,1 , and the decrease as these two values become increasingly disparate. 
For 1D, the condition number is plotted as a constant across the T1,2 and ADC2 axes, while the condition number 
for the two-dimensional problem is plotted as constant along the ADC2 axis. These results indicate that the con-
dition number for the 1D model is effectively an upper bound for the 2D model, which is itself an approximate 
upper bound for the 3D model.

Experimental results.  The results of the gel experiments are shown in Fig. 11. We note that the estimated T1 
and T2 values from the spin-echo imaging experiments are (c1, c2) = (0.47, 0.53) , 

(

T2,1,T2,2

)

= 36.3 ms, 45.9 ms , 
and 

(

T1,1,T1,2

)

= (157 ms, 405 ms) . SNR of the experimental data is ∼ 9000 for the 1D experiment and ∼ 2000 
for the 2D.
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Figure 10.   Top: Condition numbers for the Jacobian matrix for 1D, 2D, and 3D models evaluated over a 
range of T1,2 and ADC2 values. Bottom left: Perspective view of the slice through ADC1 = ADC2 for the case 
T1,1 = T1,2 . Bottom right: Perspective view of the slice through ADC1 = ADC2.
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Histograms displaying the fit values for c1 and c2 over 100 experimental data sets, each with an independent 
realization of experimental noise, are shown in the upper two panels; results for the estimates of T2,1 and T2,2 are 
shown in the middle panels, and histograms of estimated T1,1 and T1,2 values are shown in the bottom two panels.

The 1D NLLS analysis of the signal obtained from the double gel sample yields SD
(

c∗1
)

≈ 8× 10−3 , 
SD

(

c∗2
)

≈ 8× 10−3 , SD
(

T∗
2,1

)

≈ 1.37× 10−1 ms, and SD
(

T∗
2,2

)

≈ 1.34× 10−1 ms; the 2D T1 − T2 NLLS analysis 
with T1,2T1,1

≈ 2.9 yields substantially smaller standard deviations for all four parameters, with SD
(

c∗1
)

≈ 2.7× 10−3 , 
SD

(

c∗2
)

≈ 3.7× 10−3 , SD
(

T∗
2,1

)

≈ 3.4× 10−2 ms, and SD
(

T∗
2,2

)

≈ 3.5× 10−2 ms. Additional simulations con-
firm that the stability of the 2D reconstruction shows substantial improvement as compared to the 1D results, 
where the same TI, TE and SNR values as in the experiment are used. See Fig. 7 in the SI for more details.

Quite separately from stability issues, we note that there are unmodeled effects in these experimental data 
that likely contribute to the differences in derived mean values between the two methods, although such bias is 
not the topic of the current work. Among these effects are the non-i.i.d. Gaussian noise encountered in actual 
experimental practice, along with the fact that the effect of noise on the bias in 1D and 2D NLLS is a complicated 
function of noise characteristics and SNR. In addition, the underlying T2 values of the two components of the 
gel sample will not be delta-function monoexponentials, but rather distributions, albeit narrow. An analysis of 
the bias in noisy 2D NLLS would represent a significant undertaking beyond the scope of the present paper.

Discussion
Parameter estimation for multi-component exponential decay has been studied for over 200 years, dating back at 
least to Prony15, and has remained an active area of research through the present day7,8,18,37. Many algebraic and 
numerical approaches for this have been established and reviewed8,18, including Prony’s15,38,39 and the Laplace-
Padé methods40, several implementations of nonlinear least squares analysis (itself a topic of longstanding study, 
likely originating with Gauss41 )42–44, and others7,8,18,45. More recently, machine learning methods have been 
applied to this problem19,46.

Bromage38 made important comments regarding the conditioning of the 1D biexponential model as a func-
tion of the separation of the c and the T2 values. In the one-dimensional analyses section of the present work, we 
present comparable results, but also provide condition numbers derived from a linearized analytic treatment, 
and parameter variances for both the MC and analytic approaches. Varah14 analyzed the uniqueness and sta-
bility of the biexponential 1D problem in the context of both discrete (NLLS) and continuous ( L2 norm of the 
misfit) analyses. Least squares surfaces as defined by the objective function in Eq. (14) were presented for a range 
of parameters to illustrate the ill-conditioning of the biexponential problem. Shrager17 provided an extensive 

Figure 11.   Histograms of the fitted values for the indicated parameters derived using NLLS from 100 sets of 
experimental data. The comparisons in the upper two rows are for 1D versus 2D. Note that the mirror image 
appearance of c1 and c2 arises from the constraint that c1 + c2 = 1.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5773  | https://doi.org/10.1038/s41598-022-08638-7

www.nature.com/scientificreports/

perspective on the difficulties of multiexponential model fitting to experimental data, especially in the context 
of ill-conditioning. An alternative Bayesian approach to deriving parameter uncertainties in this setting has also 
been presented16,47 in terms of relaxation rates 1T2 . Nevertheless, in spite of the range of techniques presented in 
the literature, the fundamental difficulty in deriving the amplitudes and time constants for multiexponential, and 
even for biexponential, decay remains; it is intrinsic to the redundancy in the family of exponential functions, 
with the possibility that very different exponential models may provide nearly identical values8–10. Especially in 
the presence of unavoidable experimental noise, parameter extraction in such cases is an intractable problem. In 
practical terms, this means that derived parameters are extremely unstable with respect to noise48,49.

Previous analyses have been developed within established fundamental limitations50. However, perhaps 
uniquely among experimental sciences, magnetic resonance studies permit the experimental implementation 
of two- and higher-dimensional experiments yielding data exhibiting multiexponential decay. Evaluation of the 
increased stability of these models is the central idea of the present work. This is a fundamental departure from 
the vast body of previous work on 1D biexponential or multiexponential analysis. Celik et al.26 provided an initial 
report of this improved conditioning; however, they presented no underlying theory, and minimal simulation 
and experimental results. In the present manuscript, we provide a statistical foundation for this result, as well 
as a much more extensive theoretical and numerical analysis, along with substantially expanded experimental 
results. Overall, our results provide a potential means of circumventing conventional limits on multiexponential 
parameter estimation.

Although the approximate analytic and MC results presented here are fully supportive of each other, there 
are some obvious differences. First and foremost, the MC calculation is exact in the sense that it involves no 
explicit assumptions. In contrast, the analytic approach is a linearization. In addition, the results of the MC 
simulations depend to a certain extent on initial guesses and details of the implementation of the nonlinear 
optimization. We used a commercial, highly-developed, code for this, but these dependencies remain. Further, 
the computations involved in the approximate analytic analysis become less reliable as the condition number of 
the B matrix increases. Likewise, the calculation of variances is based on a first order Taylor expansion around 
the true parameter values, so that the minimizer p∗ must be near the defined underlying parameter values, that 
is, there is an implicit assumption of limited bias. Similarly, the Jacobian matrix in the linearized treatment is 
always evaluated at the correct underlying parameters, which does not realistically correspond to the MC results. 
Nevertheless, both approaches, linearized theoretical modelling and MC simulations, reflect the main result of 
this paper, which is the increased stability of parameter estimation for the ILT of biexponential decay in 2D with 
distinct indirect dimension parameters.

A significant issue is that the condition number of the Jacobian matrix in the linearization of Eq. (8) is unit-
dependent. This follows from the fact that the parameters to be estimated, component sizes and relaxation times, 
are of different dimensions. There appears to be no fully satisfactory resolution of this issue other than to choose 
reasonable and conventional units that are internally consistent within the given analysis.

Extensions of the present work would include dimensional considerations for stability as a function of 
discretization50,51, and within the framework of NNLS, for which the stabilizing effect of increased dimension-
ality was also demonstrated empirically by Celik et al.26. Such further analyses would be of particular interest 
given the recent advances in accelerating data acquisition for higher dimensional MRR6,28,52,53.

In conclusion, we have demonstrated a fundamental improvement in the stability of biexponential decay 
analysis through extension into higher dimensions.

Data Availability
All datasets generated and analysed are available in the following Zendo repository https://​doi.​org/​10.​5281/​
zenodo.​45585​64.
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