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Electrochemical properties 
of a lithium‑impregnated metal 
foam anode (LIMFA FeCrAl) 
for molten salt thermal batteries
Yusong Choi*, Tae‑Young Ahn, Sang‑Hyeon Ha, Jae‑In Lee & Jang‑Hyeon Cho

Although numerous cathode materials with excellent properties have been developed for use in 
molten salt thermal batteries, similar progress is yet to be made with anode materials. Herein, a high‑
performance lithium‑impregnated metal foam anode (LIMFA) is fabricated by impregnating molten 
lithium into a gold‑coated iron–chrome–aluminium (FeCrAl) foam at 400 °C. A test cell employing 
the LIMFA FeCrAl anode exhibited a specific capacity of 2627 As  g−1. For comparison, a cell with a 
conventional Li(Si) anode was also discharged, demonstrating a specific capacity of 982 As  g−1. This 
significant improvement in performance can be attributed to the large amount (18 wt%) of lithium 
incorporated into the FeCrAl foam and the ability of the FeCrAl foam to absorb and immobilize 
molten lithium without adopting a cup system. For thermal batteries without a cup, the LIMFA FeCrAl 
provides the highest‑reported specific capacity and a flat discharge voltage curve of molten lithium. 
After cell discharge, the FeCrAl foam exhibited no lithium leakage, surface damage, or structural 
collapse. Given these advantageous properties, in addition to its high specific capacity, LIMFA FeCrAl 
is expected to aid the development of thermal batteries with enhanced performance.

Owing to their excellent mechanical robustness, reliability, and long shelf life, molten salt thermal batteries have 
been widely used as the primary power sources for guided weapon  systems1–7. Thermal batteries are activated 
by the melting of a solid eutectic electrolyte into a molten salt at high temperature (500 °C)1,2. Typically, Li(Si) 
(alloy) and  FeS2 (pyrite) are used as anode and cathode materials, respectively, in thermal  batteries3–5. There are 
many reports describing thermal battery cathodes with high specific energies and high power densities using 
Ni-Mo-S8 as well as cathode materials  (CoS2,  NiS2,  MnO2, etc.)1,5,6. However, to date, there has been limited 
progress on thermal battery anodes relative to that of  cathodes3–8. The best way to enhance the performance of a 
thermal battery anode is to use pure lithium, which has the highest theoretical specific capacity (13,900 As  g−1, 
3862 mAh  g−1) among anode  materials9. However, pure lithium melts at ~ 180 °C, which is below the operating 
temperature of thermal batteries (500 °C). To date, Li(Si) is the best known and most widely used anode mate-
rial for thermal  batteries3. The Li(Si) anode was first developed as an anode for rechargeable high-temperature 
batteries at Sandia National Laboratory (SNL) in the United States during the 1980s as a substitute for the Li(Al) 
anode. Li(Si) has many advantages over Li(Al), including a higher discharge rate and a higher open circuit 
 voltage3. In the 1980s, the Catalytic Research Laboratory (CRC) in the United States developed a new anode 
material known as LAN (Lithium Anode). LAN uses pure lithium and fine iron powder to immobilize molten 
lithium using capillary effects at the thermal battery operating temperature (500 °C)10. However, the high fine iron 
powder content (~ 80 wt% of LAN) causes the specific capacity to be lower than the theoretical capacity. Despite 
iron powder being adopted in LAN to prevent molten lithium leakage during high-temperature discharge, a 
catastrophic lithium leakage is sometimes inevitable. As soon as cell discharge begins, the solid lithium (LAN) 
and the solid electrolyte (eutectic salt in MgO) melt simultaneously, and the liquid lithium and electrolyte leak 
out of the cell due to the applied stacking pressure (4  kgf  cm−2). Here, the stacking pressure refers to the pressure 
applied to the cell during final assembly. Therefore, the practical application of LAN as a thermal battery anode 
requires that it is wrapped in a stainless steel cup, which prevents molten lithium from leaking, which remains 
the best technology in the thermal battery field  today11. According to our estimation, the stainless steel cup 
accounts for approximately 30% of the anode electrode weight, thus reducing the real specific capacity of LAN 
(80 wt% of Fe) is from 2781 As  g−1 to approximately 1946 As  g−1. In another approach, Choi et al. reported a 
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lithium-impregnated metal foam anode (LIMFA) using a salt-coated Ni  foam12. Although this material showed 
the highest specific capacity of 3009 As  g−1 among reported thermal battery anodes, Choi et al. still applied a 
cup to prevent molten lithium leakage during discharge and to sustain the applied pressure under  discharge13. 
Moreover, as shown in Figure S1, an abrupt voltage collapse is observed at 60 s during discharge when lithium is 
impregnated into the pure nickel mesh. The mesh is easily attacked by molten lithium at 500 °C, and it is known 
that pure nickel has extremely low poor resistance to molten lithium above 310 °C14.

In this study, iron–chrome–aluminium (FeCrAl) foam was used as a substrate in place of nickel foam for 
LIMFA production. The aim of this work was to develop a higher-energy–density lithium anode for thermal 
batteries and enhance the metal foam stability during high-temperature discharge in aggressive molten lithium. 
The fabrication process and the discharge properties of the LIMFA FeCrAl are reported below.

Experimental
LIMFA FeCrAl anode manufacturing (lithium impregnation into the metal foam). FeCrAl 
foams (porosity: 90%, pore size: 800 µm, thickness: 1.8 mm; Alantum Corporation, South Korea) were used. The 
scanning electron microscopy (SEM) images and alloy composition of the as-received FeCrAl foam are shown 
in Figure S2 and Table S1, respectively. The as-received FeCrAl foam, which contained Fe, Cr, and Al compo-
nents, appeared to have an embossed surface with convex features. The FeCrAl foam was cut into 40 × 40 mm 
pieces and then pressed (MH4389, Dong Jin Instrument, South Korea) at 1000  kgf   cm−2, which resulted in a 
FeCrAl foam thickness of 1.0 mm. The pressed FeCrAl foam samples were ultrasonicated in ethanol (anhydrous, 
99.9% purity, Daejung, South Korea) and acetone (99.8% purity, Daejung, South Korea) for 30 min each. Then 
the pressed FeCrAl foam samples were plasma coated with gold (Cressington Supper Coater Q108, Cressing-
ton, UK) to modify the surface tension. The gold-coated pressed FeCrAl foam samples were impregnated with 
lithium in an Ar-filled glove box (KK-021AD, Korea Kiyon, South Korea) containing less than 1 ppm of  H2O 
and  O2. In a mantle furnace purged with argon (Ar, 99.999% purity, 50 sccm), lithium (50 g, 99.9% purity) was 
melted in a 200-mL stainless steel crucible at 400 °C15,16. The foam samples were immersed in the molten lithium 
for 1 min at 400 °C and then removed to cool to room temperature in the glove box. For comparison, as-received 
FeCrAl foam without gold plasma coating was also impregnated with lithium after ultrasonication in ethanol 
and acetone for 30 min each. Figure 1a shows a schematic view of the gold sputtering process on FeCrAl foam 
and Fig. 1b shows photographs of the as-received (left) and gold-coated FeCrAl foam (right). The weight of the 
foam was measured before and after lithium impregnation to determine the lithium content.

Li(Si) anode manufacturing. The Li(Si) anode was prepared by mixing a Li(Si) alloy (Li content: 44 wt%, 
EGTECH, South Korea) with a LiCl–KCl eutectic salt (Vitzro Miltech, South Korea) in a ratio of 75:25 (w/w). 
After the mixture was melted at 550 °C, it was cooled to room temperature and then ground. The Li(Si) alloy/
eutectic salt powder was moulded and pressed to prepare a disk-like anode pellet (outer diameter: 30 mm, inner 
diameter: 8 mm, pressure: 25,000  kgf).

FeS2 cathode manufacturing. The  FeS2 cathode was prepared by mixing  FeS2 (> 99%, average size: 
98 µm, LinYi, China), a LiCl–KCl eutectic salt (Vitzro Miltech, South Korea), and  Li2O (> 97%, Aldrich) in a 
73.5:25:1.5 (w/w/w) ratio. The addition of  Li2O prevents the formation of a peak voltage during the initial stage 
of discharge. Subsequently, the mixture was moulded and pressed to produce a disk-like cathode pellet (outer 
diameter: 30 mm, inner diameter: 8 mm, pressure: 25,000  kgf) with a density of 3 g∙cm−3.

Electrolyte manufacturing. The solid electrolyte was produced by melting, grinding, and pressing a LiF–
LiCl–LiBr (all-Li) eutectic salt (Vitzro Miltech, South Korea) and a MgO binder (> 99%, Scora, France) in a 55:45 
(w/w)  ratio17.

Preparation of cells. The cells (outer diameter: 30 mm, inner diameter: 8 mm) were prepared as shown 
in Fig. 2. The cell assembly was performed at 25 °C in a dry room with a dew point of less than − 52 °C (relative 
humidity < 2%). For a comparative cell discharge test with the Li(Si) anode, a cell was prepared in which the 

Figure 1.  (a) Schematic view of Au sputtering on FeCrAl foam and (b) photographs of as-received and gold-
coated FeCrAl foam samples.
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Li(Si) anode was substituted for the LIMFA anode without changing the other components. Two types of current 
collectors were used (steel and copper) for the electrodes and to connect the wire with electric load, respectively.

Discharge test. The assembled cell was placed in a specially designed thermal battery cell discharge tester, 
which could apply heat and pressure simultaneously, similar to thermal battery operating conditions. Before 
introducing the assembled unit cell, the temperature of the tester was preset to 500 °C. The cells were discharged 
after resting for 2 min on the heated plates in the tester at 500 °C and a pressure of 4  kgf  cm−2 while applying a 
consecutive pulse current profile (4 A, 1 s → 2 A, 4 s → 0 A, 1 s). The cell discharge process was terminated when 
the voltage dropped to 0 V.

Results and discussion
The effect of gold plasma coating on the impregnation of molten lithium in the FeCrAl foam is presented in 
Fig. 3. As shown in Fig. 3a, lithium was insufficiently impregnated into the as-received FeCrAl foam, which is 
ascribed to its lithiophobic properties. In addition, even when the as-received FeCrAl foam without a gold coating 
was dipped into molten lithium for 40 min at 350 °C, no lithium impregnation was observed owing to the poor 
wettability of FeCrAl foam to molten lithium. In contrast, the gold-coated FeCrAl foam (Fig. 3b) shows good 
lithium impregnation, with a shiny lithium surface on the foam becoming visible within 1 min. The gold coating 
enhances the impregnation of molten lithium into the porous medium by modifying the surface of the FeCrAl 
metal foam. As shown by the cross-sectional SEM image of the gold-coated FeCrAl after lithium impregnation 
in Fig. 3c, Fig. S3, the impregnated lithium is evenly distributed inside the foam. Hence, the application of a gold 
coating on the FeCrAl foam is a useful method for improving the interfacial affinity between molten lithium and 
the surface of the lithiophobic FeCrAl foam. The lithium content in LIMFA FeCrAl, determined by measuring 
the mass of the sample before and after lithium impregnation, was 18 wt%, which is 2 wt% lower than that in the 
LAN (20 wt%). A major advantage is that no cup, as reported in previous  research12, is required with the LIMFA 
FeCrAl to prevent molten lithium leakage during discharge. Thus, the practical specific capacity of LIMFA FeCrAl 
is expected to be higher than that of LAN.

The discharge performance of Li(Si) and LIMFA FeCrAl cells are depicted in Fig. 4a. The open circuit voltage 
of the LIMFA FeCrAl unit cell (2.06 V) was substantially higher than that of the Li(Si) unit cell (1.95 V), which 
is in accordance with a previous  report9. These plots present the change in voltage according to the applied pulse 
current profile (4 A, 1 s → 2 A, 4 s → 0 A, 1 s). As a reference electrode for the anode, a  FeS2 cathode with an 
almost three-fold excess electrochemical equivalent mass was intended to be used against Li(Si), as described 
in a previous  report10. The fabrication of such an electrode, however, resulted in cracking during pressing. Thus, 
the voltage of the LIMFA FeCrAl unit cell does not present the typical cell voltage variation curve resulting from 
the electromotive force (emf) changes of the cathode and anode. Instead, the cell pulse discharge results exhibit 
three voltage plateaus that originate from the phase changes of Li(Si)3,4:

The voltage change of the LIMFA FeCrAl cell is solely due to lithium depletion in the FeCrAl foam. There-
fore, the voltage decreases dramatically at the end of the discharge. After the full discharge of LIMFA FeCrAl, 
the cathode  (FeS2) was disassembled and an SEM analysis was conducted. Interestingly, as shown in Figure S4, 
the cathode  (FeS2) of the LIMFA FeCrAl cell was completely changed to Fe and  Li2S (sulfur (S) rich area), cor-
responding to the end of  FeS2 discharge in the third plateau (Fig. 4). In addition, SEM observations of the LIMFA 
FeCrAl after the discharge test showed that lithium was almost completely extracted and therefore is involved 
in the discharge reaction, as observed previously for LIMFA Ni  foam16. After the discharge test, the appearance 

Li13Si4(Li3.25Si) → Li7Si3(Li2.33Si) → Li12Si7(Li1.71Si)

Figure 2.  Components of a LIMFA FeCrAl unit cell. For evaluating Li(Si) unit cell discharge, LIMFA (FeCrAl) 
is replaced with a Li(Si) anode.
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of the foam was similar to that before lithium impregnation. This LIMFA FeCrAl discharge behaviour needs 
further research. However, the third step in the voltage change of the Li(Si) cell is in accordance with the phase 
change of Li(Si) and  FeS2 during discharge reported by Guidotti et al.3,5. As shown in Fig. 4, the LIMFA FeCrAl 
has a specific capacity of 2627 As  g−1, whereas the Li(Si) anode shows a relatively lower specific capacity of 982 
As  g−1. The specific capacity of Li(Si) observed in this study is similar to that reported previously (1050 As  g−1)16. 
In practice, thermal batteries commonly only use the first plateau for safety reasons, as well as strict voltage range 
regulations for such  devices1,2. Consequently, the specific capacity of the LIMFA FeCrAl cell is 2.67 times higher 
than that of the Li(Si) cell.

The specific capacity of the LIMFA FeCrAl was compared with those of various state-of-the-art lithium 
anodes, as shown in Fig. 5. When considering that a cup was applied, the practical specific capacity of LAN 
is 1946 As  g−1 and that of the LIMFA Ni foam is 2106 As  g−1. However, the performance of LIMFA FeCrAl is 
superior, with a specific capacity of 2627 As  g−1, which, to the best of our knowledge, is the highest value that has 
been achieved without applying a cup. This improvement was attributed to the excellent impregnation of lithium 
into the high-porosity FeCrAl foam, which greatly increased the lithium content, as well as the high mechanical 
stability and robustness of the FeCrAl foam.

The total polarization was calculated according to the method of Fujiwara et al.17,18.
The FeCrAl foam has good mechanical robustness as well as a highly electroconductive 3D structure that 

can enhance ion conductivity and reduce contact resistance inside the anode. Therefore, as shown in Fig. 6, the 
total polarization of the LIMFA FeCrAl is reduced owing to the highly electroconductive FeCrAl foam substrate 
as well as the gold coating on the surface of the FeCrAl foam. The total polarization of the LIMFA FeCrAl is 

Figure 3.  Lithium impregnation of (a) as-received FeCrAl foam  (b) gold-coated FeCrAl foam, and (c) 
schematic of lithium impregnation after gold coating onto the FeCrAl foam.
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Figure 4.  (a) Cell discharge performance of Li(Si) and LIMFA FeCrAl, and (b) image of the LIMFA FeCrAl cell 
after discharge.
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Figure 5.  Comparison of the practical specific capacities of cells with various state-of-the-art lithium anodes 
with that of LIMFA FeCrAl in this study.

Figure 6.  Total polarization curves of Li(Si) and LIMFA FeCrAl obtained from the cell discharge test results.
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lower than that of Li(Si). Specifically, the total polarization of the LIMFA FeCrAl is significantly lower than 
Li(Si) below 1500 As  g−1. As shown in Fig. 4, Li(Si) vs.  FeS2 typically shows three discharge steps, but the first 
plateau can become dominant, as shown in Figure S5. Bernardi and Newman reported that when the lithium 
ratio (β) is increased to 2.51 (β = molar ratio of Li(Si)/FeS2) from 1.08, the % utilization of  FeS2 in the first plateau 
is extended from 22.1 to 37.5% (Figure S5)19. In addition, Masset et al. reported that the conductivity of  FeS2 
decreases drastically from 80 to 100 S  cm−1 to ~ 6.3 S  cm−1 according to the phase change from  Li3Fe2S4 (Z-phase) 
to  Li2FeS2 (X-phase)5. The decrease in the total polarization of the LIMFA FeCrAl is attributed to the unique 
phase change of the extended first plateau of the LIMFA FeCrAl due to its high lithium ratio, which exceeds 2.0 
(Li/FeS2 = 0.63 g/0.076 g). Therefore, the LIMFA FeCrAl shows higher conductivity owing to the extended first 
plateau of  FeS2 and the delayed X-phase transformation of  FeS2 in addition to the high electric conductivity of 
the 3D FeCrAl foam skeleton.

Without a cup on the LIMFA FeCrAl, no lithium leakage was observed and the foam frame was maintained 
following discharge. Therefore, the LIMFA FeCrAl developed in this study represents a significant advance for 
thermal battery technology.

Conclusions
This study investigated an alternative to the conventional Li(Si) anode used in thermal batteries. The newly 
developed LIMFA based on a gold-coated FeCrAl foam has a higher specific capacity than the conventional Li(Si) 
anode. Moreover, as the FeCrAl foam has high stability and mechanical robustness in aggressive molten lithium 
environments, a cup for preventing lithium leakage is unnecessary. For real-world applications, the LIMFA 
FeCrAl has improved processability and exhibits superior performance (2627 As  g−1) compared with Li(Si) (982 
As  g−1 at the first discharge plateau) and the iron powder method (LAN, 1946 As  g−1). This is the first example of a 
thermal battery employing pure lithium without a cup. The electrochemical performance of LIMFA FeCrAl with 
 FeS2 as well as the performance of this anode in a prototype stacked thermal battery need to be studied further.
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