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Integrative analysis reveals 
the functional implications 
and clinical relevance of pyroptosis 
in low‑grade glioma
Lin Shen1, Yanyan Li2, Na Li1, Yajie Zhao3, Qin Zhou1, Liangfang Shen1 & Zhanzhan Li1,4*

Using the Chinese Glioma Genome Atlas (training dataset) and The Cancer Genome Atlas (validation 
dataset), we found that low‑grade gliomas can be divided into two molecular subclasses based on 
30 pyroptosis genes. Cluster 1 presented higher immune cell and immune function scores and poorer 
prognosis than Cluster 2. We established a prognostic model based on 10 pyroptosis genes; the model 
could predict overall survival in glioma and was well validated in an independent dataset. The high‑
risk group had relatively higher immune cell and immune function scores and lower DNA methylation 
levels in pyroptosis genes than the low‑risk group. There were no marked differences in pyroptosis 
gene alterations between the high‑ and low‑risk groups. The competing endogenous RNA (ceRNA) 
regulatory network uncovered the lncRNA–miRNA–mRNA regulation patterns of the different risk 
groups in low‑grade glioma. Five pairs of target genes and drugs were identified. In vitro, CASP8 
silencing inhibited the migration and invasion of glioma cells. The expression of pyroptosis genes can 
reflect the molecular biological and clinical features of low‑grade glioma subclasses. The developed 
prognostic model can predict overall survival and distinguish molecular alterations in patients. Our 
integrated analyses could provide valuable guidelines for improving risk management and therapy for 
low‑grade glioma patients.

Gliomas are the most common type of primary tumour in the central nervous system and one of the most 
devastating  tumours1. According to the World Health Organization, glioma can be divided into low-grade and 
high-grade glioma. Low-grade glioma (LGG) is a more common primary neuroepithelial intracranial tumour; 
it includes WHO grade II–III gliomas and has a high  incidence2. Although its pathological grade is lower, recur-
rence and malignant conversion still occur after standardized treatment, and the survival prognosis is  poor3,4. 
Factors that influence survival in LGG may include phenotypes and administration of appropriate  treatment5. The 
primary reason for the poor survival prognosis may be that the molecular mechanism is still not fully understood. 
Therefore, it is of great theoretical and practical significance to explore and study the underlying mechanisms of 
glioma, identify potential therapeutic targets, and apply them to clinical practice.

Modes of programmed cell death include apoptosis, ferroptosis, necroptosis, pyroptosis, and  autophagy6. 
Pyroptosis was first described as caspase-dependent cell death in macrophages by  Cookson7. Pyroptosis is mainly 
mediated by the activation of various caspases, including caspase-1, through the inflammasome; these caspases 
cleave the amino- and carboxy-terminal linkers of gasdermin D (GSDMS), resulting in perforation of the cell 
membrane and causing cell  death8. Pyroptosis is an important response of the innate immune system to patho-
gens, which is closely related to the inflammasome, and inflammasome activation can promote  pyroptosis9.

In the present study, we first outlined the molecular subtypes of low-grade glioma based on pyroptosis genes 
and described the clinical and molecular characteristics and immune status of each subclass. Then, we established 
a prognostic model of pyroptosis genes in the CGGA training cohort and validated this model in the TCGA 
validation cohort. Furthermore, we explored immune infiltration, somatic copy number alteration, and DNA 
methylation and constructed a lncRNA–miRNA–mRNA regulatory network. Finally, we explored the correlations 
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of small molecule drugs with the identified prognostic genes. Our integrated analyses uncovered the biological 
mechanisms and function of pyroptosis in the occurrence and progression of low-grade glioma.

Materials and methods
Data source. The data used in this study consisted of two public datasets. The 630 low-grade glioma sam-
ples with transcriptional data and clinical data of the corresponding patients were obtained from the CGGA 
(http:// www. cgga. org. cn/). The validation cohort containing 529 samples was obtained from the TCGA database 
(https:// portal. gdc. cancer. gov/) and included gene expression profile, copy number alteration, methylation, and 
clinical data. Immune cell and immunophenoscore data were accessed from the TCIA database (https:// tcia. at/ 
home). Drug response data for 1000 cancer cell lines were downloaded from the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) database (https:// www. cance rrxge ne. org/ downl oads). Thirty-three pyroptosis genes were 
obtained from previous reviews and studies, and these genes and their Entrez IDs are listed in Table S110–13.

Identification of molecular subclasses and gene set variation analysis. We identified the molecu-
lar subclasses using the consensus clustering method, which can determine the optimal cluster number via a 
cumulative distribution function. We also used a t-distributed stochastic neighbour embedding-based approach 
to validate the clustering consensus. We used the GSVA R package to determine the potential pathway enrich-
ment by calculating the enrichment scores of each sample.

Development and validation of the prognostic model. We established a prognostic model of overall 
survival in the CGGA training dataset using pyroptosis genes. LASSO regression was performed to identify the 
potential genes in the prognostic signature, and a Cox regression model was developed. Then, we calculated 
the risk score of each sample using the following equation: risk score = coef1*gene1 expression +  coef2*  gene2 
expression + …coefn*genen expression. The patients in the training and validation cohorts were classified into 
the high-risk (risk score > median risk score) and low-risk (risk score ≤ median risk score) groups. We calculated 
the 1-year, 2-year, and 3-year areas under the curves (AUCs) to evaluate the predictive ability of the prognostic 
model. Finally, we developed a quantized assignment operator to calculate the 1-year, 3-year, and 5-year survival 
probabilities of individual patients based on the prognostic model, which were evaluated by consensus calibra-
tion analysis.

Functional enrichment analysis and estimation of tumour stem cell‑like properties and 
immune infiltration. Gene Ontology and KEGG pathway analyses were carried out using the TCGA 
and CGGA datasets  separately14,15. To calculate the enrichment scores of stem cell-like properties (RNAss and 
DNAss) and the TME (stromal score, immune score, and ESTIMATE score), we carried out single-sample gene 
set enrichment analysis in the TCGA dataset. In addition, the immune-related cell and function scores were 
calculated for each sample (downloaded from https:// www. gsea- msigdb. org/).

Somatic copy number alteration, mutation, and DNA methylation analysis. We further com-
pared the copy number alteration frequencies and DNA methylation levels between the high- and low-risk 
groups using the “limma” R package.

Construction of the ceRNA network and analysis of drug sensitivity. To investigate the potential 
lncRNA–miRNA–mRNA regulatory network, we identified the differentially expressed lncRNAs, miRNAs, and 
mRNAs between the high- and low-risk groups. Then, we constructed the lncRNA–miRNA–mRNA regulatory 
network using Cytoscape (version 3.8.2). Based on the correlation coefficient (|R| > 0.25, P < 0.05), we identified 
the potential small molecule compounds related to the pyroptosis genes included in the prognostic model.

In vitro experimental verification. We further performed quantitative polymerase chain reaction, West-
ern blot analysis, migration assays, invasion assays, and clonogenic assays to explore the effects of silencing 
CASP3 on cell phenotypes. The descriptions of the in vitro experimental processes are provided in Supplemen-
tary material 1.

Statistical analysis. We adopted the log-rank test to compare the overall survival curves for the two groups.
Univariate and multivariate Cox regression analysis was conducted to assess the correlation of the risk score 

with prognosis in low-grade glioma, and hazard ratios (HRs) and confidence intervals (CIs) were calculated. 
We performed all statistical analyses using R software (version 4.0). A P value < 0.05 was considered significant 
unless specifically defined otherwise.

Results
Identification of molecular subclasses of low‑grade glioma. The flow diagram of the integrated 
analysis in the study is shown in Fig. 1A. We obtained 630 samples with mRNA expression data from the CGGA 
dataset, and 30 pyroptosis genes were extracted (MAD > 0.5). Supplementary material 2 shows the gene symbols 
and Entrez IDs of the pyroptosis genes used in this study. Using the STRING database, we constructed a protein–
protein interaction (PPI) network of all pyroptosis genes, and the PPI network showed that several pyroptosis 
genes, including CASP1, CASP3, CASP4, CASP8, NLRP1, NLRP3, and NLRC4, were connected to more nodes 
than were other genes (Fig. 1B).

http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://tcia.at/home
https://tcia.at/home
https://www.cancerrxgene.org/downloads
https://www.gsea-msigdb.org/
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Figure 1.  Consensus clustering identifies the molecular subtype of low-grade glioma using CGGA dataset. 
(A) Flow diagram of integrated analysis in the study. (B) Protein–protein interaction network of identified 
pyroptosis in the STRING. (C) The positive (red) and negative (green) correlations of pyroptosis genes using 
Spearman method. (D) Consensus clustering identified optimal number of molecular subtypes for low-grade 
glioma (k = 2). (E) The tSEN2 analysis revealed the marked two subclasses in low-grade glioma. (F) Kaplan–
Meier survival curves of two subclasses (blue: cluster 1; red: cluster 2).
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The expression correlations among these pyroptosis genes are presented in Fig. 1C (red: positive correlations; 
dark colour: negative correlations). The consensus clustering analysis indicated that all samples of low-grade 
glioma could be divided into two subclasses. The consensus matrix exhibited a relatively sharp and clear bound-
ary, which indicated stable and robust clustering (Fig. 1D). We further found a two-dimensional t-sensitivity 
distribution that supported the subtype clustering (Fig. 1E). The specific subclass information of each sample 
is provided in Supplementary material 2: Table S2. Finally, we compared the overall survival curves for the two 
subclasses using Kaplan–Meier analysis. Our results indicated that the median overall survival time was sig-
nificantly longer in Cluster 2 than in Cluster 1. Kaplan–Meier analysis indicated that the median survival time 
was significantly shorter in Cluster 2 than in Cluster 1 (MST: 9.62 vs. 4.35 years, P < 0.001; Fig. 1F). This result 
showed that the two subclasses had markedly different prognostic patterns.

Correlations of the molecular subclasses with pyroptosis genes. To explore the signalling pathway 
enrichment in the two subclasses, we performed gene set variation analysis (GSVA) by transforming the expres-
sion data from a gene-by-sample matrix to a gene set by subclass matrix for both subclasses. The results indicated 
that the two subclasses had different pathway enrichment profiles. Unlike Cluster 2, Cluster 1 had 78 kinds 
of significantly different signalling pathways (Supplementary material 2: Table S3). The upregulated pathways 
mainly included type 1 diabetes mellitus, intestinal immune network for IGA production, asthma, autoimmune 
thyroid disease, graft versus host disease, allograft rejection, and ribosome. In addition, the DNA replication, 
mismatch repair, ECM receptor interaction, cell cycle, and p53 signalling pathways, and some metabolic path-
ways were significantly enriched (Fig. 2A).

Clinical characteristics and pyroptosis gene expression patterns of the molecular sub‑
classes. We investigated the correlations of the two subclasses with clinical parameters (Fig. 2B). Compared 
with patients in Cluster 1, who had poor prognoses, patients from Cluster 2 tended to have a lower WHO stage 
(P < 0.001), lower rate of chemotherapy (P < 0.05), 1p19q non-codeletion status (P < 0.001), and IDH mutation 
status (P < 0.001). No significant differences were observed in PRS type, sex, age, or radiotherapy status (P > 0.05). 
Regarding the expression levels of pyroptosis genes, significant differential expression was observed between the 
two subclasses for all genes except AIM2 and TIRAP. All of these differentially expressed genes were upregu-
lated in Cluster 2 (Fig. 2B). We also compared the differences in pyroptosis gene expression by WHO stage, 
IDH mutation status, 1p19q status, and chemotherapy history. Compared with the WHO II group, the WHO 
III group had sixteen upregulated genes (CASP1, CASP3, CASP4, CASP5, CASP6, CASP8, GSDMB, GSDMD, 
IL18, IL6, NLRC4, NOD1, NOD2, PLCG1, PRKACA, PYCARD) (Supplementary material 3: Fig. S1A). For IDH 
mutation status, 21 differentially expressed genes (DEGs) were found (Supplementary material 3: Fig. S1B). A 
total of 27 pyroptosis DEGs were found for 1p191 status (Supplementary material 3: Fig. S1C). Thirteen DEGs 
were found for chemotherapy history (Supplementary material 3: Fig. S1D).

We further performed differential expression analysis between Cluster 1 and Cluster 2. A total of 1053 DEGs 
were found; 67 genes were upregulated and 986 were downregulated in Cluster 2 (Supplementary material 2: 
Table S4). We performed GO and KEGG enrichment analyses using these DEGs (Supplementary material 2: 
Table S5 and Table S6). A total of 1033 differential functional terms were enriched, namely, 856 biological process, 
116 cellular component and 61 molecular function terms. The top 30 enriched terms are presented in Supple-
mentary material 3: Fig. S2. Most of these functions were associated with immunity. In addition, we identified 
56 significant pathways by KEGG analysis (Supplementary material 3: Fig. S3), and the top five were phagosome, 
Staphylococcus aureus infection, coronavirus disease, antigen processing and presentation, and tuberculosis.

Correlation of glioma subclass with immune status. To explore tumour heterogeneity between the 
two subclasses, we compared immune cell and immune function differences. Compared with Cluster 2, Cluster 
1 had higher aDC, B cell, CD8+ T cell, DC, iDC, macrophage, mast cell, neutrophil, NK cell, pDC, T helper cell, 
Tfh cell, Th2 cell, Tfh cell, TIL, and Treg cell levels (all P < 0.001, Supplementary material 3: Fig. S4A). Similarly, 
Cluster 1 had higher immune function scores, including APC coinhibition, APC costimulation, CCR, check-
point, cytolytic activity, HLA, inflammation promotion, MHC class I, parainflammation, T cell coinhibition, 
type I IFN response and type II IFN response scores, than Cluster 2 (all P < 0.001, Supplementary material 3: 
Fig. S4B).

Establishment of the pyroptosis‑related prognostic model. Initially, we performed univariate Cox 
regression analysis to identify prognosis-related pyroptosis genes in the CGGA cohort (Supplementary mate-
rial 3: Fig. S5A). In total, 21 pyroptosis genes were found to be associated with the overall survival of low-grade 
glioma patients. Kaplan–Meier analysis indicated that high expression of all 21 genes (CASP1, CASP3, CASP4, 
CASP5, CASP6, CASP8, GSDMA, GSDMB, GSDMC, GSDMD, IL18, IL1B, IL6, NLRC4, NLRP3, NOD1, NOD2, 
PLCG1, PRKACA, PYCARD, SCAF11) was associated with poor OS in low-grade glioma. Furthermore, using 
LASSO regression in the CGGA training cohort, we identified 10 pyroptosis genes (CASP5, CASP6, CASP8, 
GSDMC, IL1B, IL6, NLRP3, NOD2, PLCG1, SCAF11) to establish the prognostic model (Supplementary mate-
rial 3: Fig. S5B,C). We calculated the risk score for each sample using the regression coefficients of the 10 genes 
(Supplementary material 2: Table S7). Patients with risk scores higher than the median value were classified into 
the high-risk group, and the other patients were classified into the low-risk group. Compared with the patients 
in the low-risk group, the patients in the high-risk group tended to have advanced WHO stage (P < 0.001), recur-
rence (P < 0.001), a history of chemotherapy (P < 0.001), IDH mutation status (P < 0.001), and 1p19q codeletion 
status (P < 0.001) (Supplementary material 3: Fig. S5D). Finally, we found that glioma patients in Cluster 1, with 
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WHO III disease, with IDH wild-type status, with 1p19q non-codeletion status, with recurrence or with a his-
tory of chemotherapy had higher risk scores (all P < 0.01, Supplementary material 3: Fig. S6).

Figure 2.  Different pathway enrichment and clinical relevance of two subclasses based on CGGA dataset. (A) 
Gene set variation analysis of two subclasses. (B) Expression levels of pyroptosis genes between two subclasses 
and its correlations with clinical parameters.
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Kaplan–Meier analysis indicated that the high-risk group had a significantly worse OS than the low-risk group 
(Fig. 3A,B). Univariate Cox regression analysis indicated that the risk score was positively associated with poor 
OS (HR = 3. 878, 95% CI: 3.012–4.992, P < 0.001; Fig. 3C). Multivariate Cox regression analysis showed that an 
elevated risk score was an independent predictor of unfavourable prognosis in low-grade glioma (HR = 2.419, 
95% CI: 1.823–3.211, P < 0.001; Fig. 3D). In addition, PRS type (recurrence: HR = 1.901, 95% CI: 1.419–2.546, 
P < 0.001) and WHO III grade (HR = 2.188, 95% CI: 1.581–3.028, P < 0.001) were positively associated with poor 
OS, and 1p19q non-co-deletion status (HR = 0.450, 95% CI: 0.295–0.686, P < 0.001) was negatively associated 
with OS. PCA also indicated that the high- and low-risk groups showed two markedly different distributions 
(Fig. 3E). Time-dependent receiver operating characteristic analysis was performed to evaluate the predictive 
ability of the prognostic model. Our results showed that the AUCs at 1 year, 2 years, and 3 years were 0.670, 
0.734 and 0.723 (Fig. 3F), respectively. We further compared the OS status among the WHO stage, sex, age, IDH 
status, 1p19q codeletion status, radiotherapy history, and chemotherapy history subgroups. All results indicated 
that the OS in the high-risk group was still poorer than that in the low-risk group (Supplementary material 3: 
Fig. S7, all P < 0.001).

Validation of the prognostic model. To further validate the pyroptosis gene model, we also calculated 
the risk scores of low-grade glioma patients in the TCGA cohort. Kaplan–Meier analysis indicated a significant 
correlation with poor OS in the high-risk group (Fig. 4A,B). Univariate Cox regression analysis showed that an 
increased risk score was significantly associated with poor OS in the TCGA cohort (HR = 2.011, 95% CI: 1.714–
2.360, P < 0.001; Fig. 4C). An elevated risk score was also an independent prognostic indicator in multivariate 
Cox regression analysis (HR = 1.837, 95% CI: 1.538–2.193, P < 0.001; Fig. 4D). PCA also validated the high- and 
low-risk distribution patterns of all patients (Fig. 4E). Furthermore, the AUCs of the risk score were 0.832 at 
1 year, 0.793 at 2 years, and 0.804 at 3 years (Fig. 4F).

Clinical application of the prognostic model. To further evaluate the clinical predictive value of the 
prognostic model, we developed a nomogram based on multivariate Cox regression analysis that included signif-
icant clinical parameters in the CGGA dataset (Fig. 5A). The calibration curves indicated that the clinical nomo-
gram could precisely predict the 1-year, 3-year and 5-year OS of glioma patients (C-index = 0.799, Fig. 5B–D). 
The predictive accuracy of this nomogram was well validated in the TCGA dataset (C-index = 0.841, Fig. 5E–G).

Functional enrichment and immune infiltration analyses. To explore the potential biological func-
tions that affect the overall survival of low-grade glioma patients, we performed GO term and KEGG pathway 
enrichment analyses. We first identified DEGs between the high- and low-risk groups and then annotated the 
functions of the DEGs in terms of biological processes, cellular components, and molecular functions. We found 
1571 DEGs in the CGGA cohort (Supplementary material 2: Table  S8) and 609 DEGs in the TCGA cohort 
(Supplementary material 2: Table S9). The GO term and KEGG pathway enrichment analyses indicated that the 
CGGA and TCGA cohorts shared some enriched terms and pathways, such as extracellular matrix organiza-
tion, extracellular structure organization, immune response, ECM-receptor interaction, cell adhesion molecules, 
PI3K-Akt signalling pathway, and Epstein–Barr virus infection (Fig. 6A–D).

We further compared the differences in immune cells and immune functions between the high- and low-risk 
groups in the CGGA cohort (Fig. 6E,G) and TCGA cohort (Fig. 6F,H). As shown in the box plots, the immune 
cell score showed a similar trend in the CGGA and TCGA cohorts. Most immune cell scores showed a tendency 
to be increased in the high-risk group. The differences in immune function between the different risk groups 
were similar in the two datasets (all P < 0.001). All immune function scores were significantly increased in 
the high-risk group. The 10 pyroptosis genes included in the prognostic model showed significant differences 
among the four immune subtypes (C3, C4, C5, C6) (Supplementary material 3: Fig. S8). We finally investigated 
the correlations of the signature genes with cancer stem cell-like properties (RNAss and DNAss) and the TME 
(stromal score, immune score, and ESTIMATE score). We found that all ten genes were negatively associated 
with the RNAss and the expression of CASP5, CASP6, CASP8, GSDMC, IL18, IL6m, NLRP3, and NOD2 and 
that all genes except PLCG1 and SCAF11 showed positive associations with the DNAss, stromal score, immune 
score, and ESTIMATE score. PLCGa and SCAF11 were negatively associated with the stromal score, immune 
score, and ESTIMATE score. SCAF11 was the only gene that was negatively associated with the DNAss (Sup-
plementary material 3: Fig. S9).

Profiling of pyroptosis gene alterations. Molecular alterations in pyroptosis-related genes were also 
evaluated based on the high- and low-risk groups in the TCGA dataset. PLCG1 was the only gene with alteration 
in the low-risk group, and NLRP2, GSDMC and NLRP3 were the genes with alterations in the high-risk group. 
All altered genes had an alteration frequency of less than or equal to 2% (Fig. 7A,B). Somatic copy number altera-
tion analysis indicated significant differences among the pyroptosis genes. Among these genes, the copy number 
variation in IL18, NLRP6, IL6, CASP5, CASP4, CASP1, and NOD1 was significantly increased and that of TNF, 
NLRP2, NLRP7, CASP3, and CASP6 was significantly decreased in the high-risk group (Fig. 7C). In addition, 
differences in the DNA methylation levels of the pyroptosis genes between the high- and low-risk groups were 
assessed. The results showed that the overall DNA methylation levels of all pyroptosis genes were significantly 
higher in the high-risk group than in the low-risk group (Fig. 7D).

Construction of a ceRNA network based on the prognostic signature. To explore differences in the 
lncRNA–miRNA–mRNA regulatory network between the high- and low-risk groups, we constructed a ceRNA 
network based on the differentially expressed mRNAs, lncRNAs and miRNAs between the high- and low-risk 



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4527  | https://doi.org/10.1038/s41598-022-08619-w

www.nature.com/scientificreports/

Figure 3.  Developing a pyroptosis genes signature can predict overall survival in CGGA cohort. (A) Kaplan–
Meier survival curves of high- and low-risk groups divided by risk score. (B) Distributions of risk score and 
survival time in different risk groups. (C) Univariate cox analysis identified the correlation of risk score and 
overall survival in low-grade glioma. (D) Multivariate cox analysis identified the correlation of risk score and 
overall survival in low-grade glioma. (E) Principal component analysis showed two markedly distributions for 
high- and low-risk groups. (F) The predict ability of risk score for 1-year, 2-year, and 3-year overall survival.
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groups. We identified 217 downregulated mRNAs, 493 upregulated mRNAs, 71 downregulated lncRNAs, 110 
upregulated lncRNAs (Supplementary material 2: Table S10), 77 downregulated miRNAs and 94 upregulated 

Figure 4.  Validation of prognostic model based pyroptosis genes in TCGA cohort. (A) Kaplan–Meier survival 
curves of high- and low-risk groups divided by risk score. (B) Distributions of risk score and survival time in 
different risk groups. (C) Univariate cox analysis identified the correlation of risk score and overall survival in 
low-grade glioma. (D) Multivariate cox analysis identified the correlation of risk score and overall survival in 
low-grade glioma. (E) Principal component analysis showed two markedly distributions for high- and low-risk 
groups. (F) The predict ability of risk score for 1-year, 2-year, and 3-year overall survival.
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miRNAs (Supplementary material 2: Table  S11). Finally, 23 mRNAs (17 upregulated and 6 downregulated), 
17 lncRNAs (11 upregulated and 6 downregulated) and 17 miRNAs (15 upregulated and 2 downregulated) 
were included in the ceRNA network (Fig. 8). The Kaplan–Meier curves suggested that 15 lncRNAs (positive 
correlation: AC016773.1, ALDH1L1-AS2, CRNDE, LINC00519, GCP5, HOTAIRM1, LINC00174, LINC00265, 
NEAT1, SNHG9, SNHG12; negative correlation: EPB41L4A-AS1, HAR1A, LINC00320, MIR7-3HG, OIP5-AS1; 
Supplementary material 3: Fig. S10), 23 mRNAs (Supplementary material 2: Table S12 and Supplementary mate-
rial 3: Fig.  S11) and 11 miRNAs (miR-21, miR-137, miR-141, miR-155, miR-200a, miR-204, miR-214, miR-
215, miR-216a, miR-217, and miR-429; Supplementary material 3: Fig. S12) were associated with OS in glioma 
patients.

Figure 5.  Clinical application and assessment of nomogram model based on pyroptosis genes signature. (A) 
Nomogram plot using CGGA dataset. (B–D) The 1-year, 3-year, and 5-year calibration curves in the CGGA 
cohort. (E–G) The 1-year, 3-year, and 5-year calibration curves in the TCGA cohort.
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Figure 6.  Function enrichment and immune status analyses between high- and low-risk groups (Permission 
for KEGG has been obtained from Kanehisa laboratories). (A) GO enrichment and (B) KEGG pathway 
analyses based on differentially expressed genes between high- and low- risk groups in CGGA cohort. (C) GO 
enrichment and (D) KEGG pathway analyses based on differentially expressed genes between high- and low- 
risk groups in TCGA cohort. (E) Comparisons of immune cells and (F) immune-related pathways between 
high- and low-risk groups in CGGA cohort. (G) Comparisons of immune cells and (H) immune-related 
pathways between high- and low-risk groups in TCGA cohort.
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Figure 7.  Molecular alterations of pyroptosis genes in TCGA dataset. (A) The mutations frequencies in low-
risk group and (B) in high-risk group. (C) Somatic copy number differences between high- and low-risk groups. 
(D) The differential expression levels of DNA methylation between high- and low-risk groups.
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Drug sensitivity analysis. To identify potential target molecular compounds, we performed drug sensitiv-
ity analysis. We identified 155 pairs of significant gene-drug correlations (Supplementary material 2: Table S13). 
There were 5 pairs with a correlation coefficient > 0.5 or < − 0.5.

The NOD2-isotretinoin, IL1B-rebimastat, NLRP3-rebimastat, and NOD2-elesclomol pairs showed drug sen-
sitivity. The GSDMC–ixazomib citrate pair showed drug resistance (Fig. 9).

CASP8 silencing inhibited the malignant progression of glioma cells. We used the following cri-
teria to select the validated genes: (1) genes differentially expressed between tumour and normal tissue; (2) genes 
included in the prognostic model; and (3) genes that were rarely reported previously (Supplementary material 3: 
Fig. S13). We first detected the expression of CASP8 in glioma cell lines using Western blot analysis (Fig. 10A,B) 
and found that CASP8 expression was highest in LN299 cells. We generated CASP8-si LN229, H4 and U87 
glioma cells. qPCR analysis indicated that the mRNA expression of CASP8 was significantly downregulated in 
CASP8-si H4 and LN229 cells (Fig. 10C). Furthermore, silencing CASP8 inhibited the migration and invasion 
of glioma cells (Fig.  10D–G). The clonogenic assay showed that CASP8 silencing also inhibited cell growth 
(Fig. 10F–G). These results suggested that CASP8 silencing suppressed the malignant progression of glioma cells.

Discussion
In the present study, we found that low-grade glioma can be categorized into two molecular subtypes based on 
the expression levels of 30 pyroptosis genes, and markedly different survival outcomes were observed between 
the two subclasses. The traditional classification system based on clinical parameters have been updated sev-
eral times. However, the traditional classification based on histology also has some limitations. The primary 
limitation is mainly due to interobserver  heterogeneity2. It was previously reported that there was only approxi-
mately 50% agreement between different neuropathologists in reviewing cases, specifically astrocytoma and 

Figure 8.  The ceRNA regulation network based on differentially expressed mRNA, lncRNA, and miRNA 
between high- and low-risk groups in TCGA dataset (red: up-regulation. blue: down-regulation; circle: mRNA, 
rhombus: lncRNA, rectangle: mirRNA).
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oligodendroglioma  cases16. Genetic studies and the associated findings enable us to better understand how 
tumours differ in clinical outcomes and molecular patterns and to facilitate the effective treatment of tumour 
subtypes based on gene expression features.

We also found that some immune-related pathways were enriched in the poor prognosis group. Furthermore, 
the poor prognosis group showed elevated immune cell levels and immune-related functions, such as immune 
checkpoint activity, inflammation promotion, and parainflammation. It has been reported that pyroptosis rep-
resents an antitumour immune function in cancers, which means that pyroptosis can induce inflammation, trig-
gering robust antitumour immunity and synergizing with immune checkpoint  blockade17. Moreover, some key 
pathways, such as oxidative phosphorylation, PPAR signalling pathway, primary immunodeficiency, and citrate 
cycle (TCA cycle), which have been reported to be involved in glioma progression, were highly enriched in the 
poor prognosis  group18–21. These results suggested that pyroptosis genes can accurately differentiate low-grade 
glioma patients into two-dimensional distributions.

We developed a prognostic model based on 10 pyroptosis genes (CASP5, CASP6, CASP8, GSDMC, IL1B, 
IL6, NLRP3, NOD2, PLCG1, SCAF11). This prognostic model was well validated in an independent cohort, and 

Figure 9.  Top 16 potential compounds related with pyroptosis genes. (A) NOD2 and isotretinoin. (B) GSDMC 
and Ixazomib. (C) IL1B and Rebimastat. (D) NLRP3 and Rebimastat. (E) NOD2 and Imuiquimod. (F) NOD2 
and Elesclomol. (G) IL6 and Geldanamycin analog. (H) IL6 and Lenvatinib. (I) GSDMC and Midostaurin. (J) 
IL6 and Tamoxifen. (K) GSDMC and Bortezomib. (L) NOD2 and Fulvestrant. (M) CASP6 and Nelarabine. (N) 
NOD2 and Fulvestrant. (O) NLRP3 and Kahalide. (P) GSDMC and Pralatrexate.
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Figure 10.  CASP8 promotes progression of glioma cells. (A) Expression levels of CASP8 in glioma cell lines. 
(B) The western blot of CASP2 in U87, LN229, H4 cell lines after siRNA. (C) The mRNA expression level of 
CSAP8 in H4 and LN229 after siRNA. (D,E) CASP8 silencing inhibited migration of glioma cells. (F,G) CASP8 
silencing inhibited invasion of glioma cells. (H,I) CASP8 silencing inhibited growth of glioma cells.
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the 1-year, 2-year, and 3-year AUCs were 0.670, 0.734 and 0.723, respectively. This predictive ability showed the 
moderate discernibility of the model. Furthermore, using the clinical parameters and risk scores obtained from 
the 10 genes included in the model, we developed a nomogram for estimating an individual’s overall survival 
probability. The results from the training dataset and validation dataset showed high consistency. Our results 
suggested that the established prognostic model has clinical value.

The cell death via pyroptosis involves two biological mechanisms. The classical pyroptosis mechanism involves 
the assembly of inflammasomes. Inflammasomes are macromolecular protein complexes that are necessary for 
inflammation in the cytoplasm and recognize danger signal molecules such as those released by bacteria and 
 viruses22. Inflammasomes are mainly composed of pattern recognition receptors (PRRs), apoptosis-associated 
speck-like protein (ASC) and pro-caspase-1  precursors23. PRRs are receptor proteins responsible for recogniz-
ing different signal stimuli in cells. They are mainly composed of nucleotide-binding oligomerization domain-
like receptor protein (NLRP) 1, NLRP3, nucleotide-binding oligomerization domain-like receptor protein C4 
(NLRC4), absent in melanoma 2 (AIM2) and other  components24. ASC is an adaptor protein that is mainly 
composed of an N-terminal pyrin domain (PYD) and a C-terminal caspase activation and recruitment domain 
(CARD)25. Procaspase-1 is an effector molecule that can specifically cleave GSDMD after activation. After the 
danger signal sensor NLR1, NLRP3 or AIM2 recognizes a danger signal molecule, the N-terminal PYD inter-
acts with the N-terminal PYD of the adaptor protein. ASC then recruits Caspase-1 through interaction with 
the CARD domain to complete the assembly of the  inflammasome26. This method of cell death mediated by 
Caspase-1 is called the classical pathway of  pyroptosis27. The nonclassical pyroptosis pathway is mainly medi-
ated by Caspases-4, -5, and -11. After cells are stimulated by bacterial LPS, Caspases-4, -5, and -11 directly bind 
to bacterial LPS and are  activated28. Activated Caspases-4, -5, and -11 specifically cleave GSDMD and alleviate 
the intramolecular  inhibition29. The interaction of the GSDMD-N-terminus with cell membrane phospholipids 
causes pore formation in the cell membrane, cell swelling and cell rupture and induces pyroptosis; the GSDMD-
N-terminus can also activate Caspase-1 by activating the NLRP3  inflammasome30. Activated Caspase-1 stimulates 
the maturation of the IL-18 and IL-1β precursors, and IL-18 and IL-1β are secreted into the extracellular space 
and amplify the inflammatory response. Yang et al. found that in the nonclassical Caspase-11-dependent pathway, 
gap junction protein-1 (Pannexin-1) can be cleaved and that cleavage of Pannexin-1 can activate its own channel 
and release ATP, which induces  pyroptosis31. Lamkanfi et al. found that in the nonclassical Caspase-11-dependent 
pathway, Pannexin-1 cleavage can also activate the NLRP3 inflammasome, which in turn activates Caspase-1 
and induces  pyroptosis32. In our study, we found that the prognostic model included CASP5, CASP6, and CASP8 
along with IL18, NLRP3, and GSDMC.

These results indicated that two biological mechanisms are involved in the development and progression of 
low-grade glioma. Further research is required to illustrate the specific molecular mechanisms.

We divided low-grade glioma patients into high- and low-risk groups using the estimated risk score and 
investigated the differences in genomic patterns and clinical features between the two risk groups. Our results 
indicated that the enriched functions and pathways were markedly different between the high- and low-risk 
groups. However, the results in two independents datasets showed that these risk groups shared some similar 
functional enrichment and signalling pathways, such as extracellular matrix organization, focal adhesion, ECM-
receptor interaction, and GABAergic synapse. Immune infiltration is very closely associated with the progression 
of  tumours33. Our results showed that the immune cell and immune function scores were significantly elevated 
in the high-risk group and that the poor prognosis group also had a higher risk score than the favourable prog-
nosis group. These results showed that the molecular subtypes and risk classifications were stable and robust. 
Subsequently, we explored the differences in alterations, CNVs, and DNA methylation levels of pyroptosis genes 
between the high- and low-risk groups. We found that these genomic patterns were significantly different between 
the two risk groups, providing some molecular basis for the changes corresponding to poor clinical outcomes. 
Finally, we constructed a ceRNA regulatory network that identified several key lncRNA–miRNA–mRNA regula-
tory axes. The ceRNA network identified several key lncRNA–miRNA–mRNA regulatory axes: FAM181A-AS1-
miR-21-(MAP2K3, JAG1, TGFBI, and FAM24A), CRNDE-miR-155-(DPYA1L1, NAMPT, TRIP13, IKBIP, SPL1, 
EGFR, WEE1), NEAT1-miR-200a-(EPHA2, DPY19L1, PTPRD, LATS2, and ELAVL2). Survival analysis further 
suggested regulatory correlations: elevated expression of FAM18A-AS1 and miR-21 was associated with poor 
prognosis in low-grade glioma, and high expression of EGFR, WEE1, MAP2K3, JA1, and EPHA2 was associ-
ated with poor prognosis. Previous experiments have reported the promoting role of miR-21 in  glioma34,35, and 
upregulation of EGFR and EPHA2 is associated with the development and progression of  glioma36–39. Drug 
sensitivity analysis indicated that NOD2, ELANE, NLRP3, CASP3, and PRKACA showed sensitivity to small 
molecule drugs, and that PRKACA and IL6 showed resistance to some compounds. A previous study reported 
that the migration ability of glioma cells was reduced after inhibition of the NLRP3 inflammasome by beta-
hydroxybutyrate40. These results may provide some guidelines for clinical therapy.

In conclusion, our results indicate that pyroptosis genes can be used to classify low-grade glioma patients into 
two subgroups. The established prognostic model based on 10 pyroptosis genes can not only predict the prognosis 
of low-grade glioma patients but also reflect the molecular alterations, immune status, and stem cell-like proper-
ties of the high- and low-risk groups. Classification based on the risk score of the prognostic signature revealed 
a lncRNA–miRNA–mRNA regulatory network. The correlations of the signature genes with drug sensitivity 
may provide a rationale for clinical treatment. Finally, our study uncovers the biological function and clinical 
relevance of pyroptosis in the occurrence and progression of low-grade glioma and may offer some risk manage-
ment and treatment strategies. Future research should focus on molecular mechanisms and therapeutic targets.
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