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Comparing 
protein–protein interaction 
networks of SARS‑CoV‑2 
and (H1N1) influenza using 
topological features
Hakimeh Khojasteh1, Alireza Khanteymoori1* & Mohammad Hossein Olyaee2

SARS‑CoV‑2 pandemic first emerged in late 2019 in China. It has since infected more than 298 million 
individuals and caused over 5 million deaths globally. The identification of essential proteins in a 
protein–protein interaction network (PPIN) is not only crucial in understanding the process of cellular 
life but also useful in drug discovery. There are many centrality measures to detect influential nodes 
in complex networks. Since SARS‑CoV‑2 and (H1N1) influenza PPINs pose 553 common human 
proteins. Analyzing influential proteins and comparing these networks together can be an effective 
step in helping biologists for drug‑target prediction. We used 21 centrality measures on SARS‑CoV‑2 
and (H1N1) influenza PPINs to identify essential proteins. We applied principal component analysis 
and unsupervised machine learning methods to reveal the most informative measures. Appealingly, 
some measures had a high level of contribution in comparison to others in both PPINs, namely Decay, 
Residual closeness, Markov, Degree, closeness (Latora), Barycenter, Closeness (Freeman), and Lin 
centralities. We also investigated some graph theory‑based properties like the power law, exponential 
distribution, and robustness. Both PPINs tended to properties of scale‑free networks that expose 
their nature of heterogeneity. Dimensionality reduction and unsupervised learning methods were so 
effective to uncover appropriate centrality measures.

SARS-CoV-2, a novel coronavirus mostly known as Covid-19, has become a matter of critical concern for every 
country around the world. It was first identified in December 2019 in Wuhan, China. The coronavirus Covid-19 
has been affecting 220 countries and territories around the world. As of 7 January 2022, over 298 million cases 
have been confirmed cases and more than 5 million confirmed deaths attributed to the COVID-19  virus1.

Considering the high complexity of biological systems, one of the most challenging problems in experimen-
tal biology is designing a reliable experimental  paradigm2. On the other hand, the aim of systems biology is to 
provide appropriate models with computational approaches using observational biological data, deposited in 
bioinformatics databases. These models are used for predicting purposes which in turn are useful for further 
experimental  design3.

In the past several years, extensive experiments and data evolution have provided a good opportunity for 
systematic analysis and a comprehensive understanding of the topology of biological networks and biochemi-
cal processes in the  cell4. In other words, we need to choose the right essential proteins to be targeted by new 
 drugs5. However, identifying appropriate target proteins through experimental methods is time-consuming 
and  expensive5–7. Both SARS-CoV-2 and (H1N1) influenza viruses have similar clinical  symptoms8. Essential 
proteins play a vital role in the survival and development of the cell. They are also the most important materials 
in a variety of life processes. In cellular life, proteins are the chief actors that carry out the duties specified by the 
information encoded in  genes9. The identification of essential proteins is decisive to understanding the mini-
mal requirements for cellular life and practical purposes, such as a better understanding of diseases, and drug 
 discovery10. Studying SARS-CoV-2 and (H1N1) influenza PPINs can be helpful to investigate similarities and 
differences between them. Studies have shown that protein–human protein interactions are biologically involved 
in multiple heterogeneous processes, including protein trafficking, translation, transcription, and regulation of 
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 ubiquitination5,11. For a more accurate understanding of their importance in cell life, it has to identify various 
interactions and determine the consequences of the  interactions12. Moreover, this can use to empirically inves-
tigate complex network properties such as degree  distribution13, power-law14, and other topological features.

Hahn et al.15 examined essential proteins in PPINs of eukaryotes: yeast, worm, and fly through three centrality 
measures. The results showed that there is a clear relationship between central proteins and survival. To detect 
which centrality measure is more suitable for choosing essential proteins in PPINs,  Ernesto16 investigated the 
relationships between several centrality measures and subgraph centrality with essential proteins in the yeast 
PPIN. His study indicates that protein essentiality appears to be related to how much a protein is involved in 
clusters of proteins. As a result, subgraph centrality outperformed better than other measures for detecting 
essential proteins. Ashtiani et al.17 surveyed 27 centrality measures on yeast protein–protein interaction net-
works for ranking the nodes in all PPINs. They examined the correlation between centrality measures through 
unsupervised machine learning methods.

Although, in the context of analyzing PPINs, the comparison of different networks is challenging. There are 
various gene profiling for SARS-CoV-2 and (H1N1) influenza in the GenBank  database18,19. Unfortunately, it has 
not been done APMS (affinity purification coupled to mass spectrometry) for building corresponding PPINs for 
most of them. These experimental procedures require considerable time and resources. In this work, we adopt 
the human protein–protein interaction (PPI) data set  from20,21 database to compare SARS-CoV-2 and (H1N1) 
influenza PPINs. Using these networks, we then analyze the topological features, focusing on the properties of 
the graphs which represent these networks. We consider some specific measures, such as graph density, degree 
distribution, and 21 different centrality measures. We fit power law and exponential distributions on these net-
works and calculate alpha power and R-squared values.

Materials and methods
Materials. There are four different types of Coronaviruses (CoVs) includes Alphacoronoavirus, Betacoro-
navirus, Deltacoronavirus, and  Gammacoronavirus20. Betacoronavirus includes five subtypes among Embeco-
virus, Sarbecovirus, Merbecovirus, Nobecovirus, and Hibecovirus. SARS-CoV and SARS-CoV-2 are from Sar-
becovirus (SV) subgenus. Khorsand et al.20 created a Sarbecovirus-human protein–protein interaction network. 
We have derived SARS-CoV-2 PPINs from this dataset. For (H1N1) influenza PPIN, Khorsand et al.21 made 
Comprehensive PPINs for all genres of Alphainfluenza viruses (IAV). The main human influenza pathogens are 
Alphainfluenza viruses (IAV) that include subtypes of combining one of the 16 hemagglutinin (HA: H1–H16) 
with one of the 9 neuraminidase (NA: N1–N9) surface antigens. We have downloaded the whole network and 
separated (H1N1) influenza PPIN from the Alphainfluenza protein–protein interaction network. SARS-CoV-2 
PPIN contains 1922 interactions between 14 SARS-CoV-2 proteins and 1395 human proteins and (H1N1) influ-
enza PPIN contains 9174 interactions between 46 (H1N1) influenza proteins and 2751 human proteins.

Methods. We propose a useful analysis approach to compare SARS-CoV-2 and (H1N1) influenza PPINs. 
At first, we need to select a valid dataset and so, investigate and select suitable features that are meaningful in a 
biological system. Next, we develop our approach to make comparisons and the results are analyzed. In the fol-
lowing, we describe how to deal with these phases, respectively. The process starts by computing global network 
properties. In the next phase, 21 different centrality measures are applied to both networks, standard normaliza-
tion and PCA are used on centrality values, respectively. Using some machine learning methods, the centrality 
measures are compared and analyzed.

Network Global properties. In this study, we have considered some of the network properties such as 
graph density, graph diameter, and centralization. In the following, we review these network concepts. All these 
properties are calculated and analyzed in both networks using  igraph22 R package. Then, the power-law distribu-
tion is checked out by computing α and R-squared values. R-squared is the percentage of the response variable 
variation that is described by a linear  model23.

Although, PPINs are directed but most of analyzing methods consider PPINs as  undirected24,25. For this 
research study, we considered PPINs as undirected and loop-free connected graphs. So, let G = (V ,E) be an 
undirected graph. This graph consists of nodes represented by V = {v1, v2, . . .} and edges E = {e1, e2, . . .} such 
that any edge eij ∈ E represents the connection between nodes vi and vj ∈ V .

Graph density. The density of a graph is the fraction of the number of edges to the number of possible 
 edges26. Density is equal to 2 ∗ |E| divided by | V | ∗ (|V | − 1) . A complete graph has density 1; the minimal den-
sity of any graph is 0. There are some features for identifying biological networks. Often, biological networks are 
incomplete or heterogeneous which means very low  density27.

Graph diameter. In a network, diameter is the longest shortest path between any two vertices (u, v) , where 
d (u, v) is a graph  distance28.

Heterogeneity. The network heterogeneity is defined as the coefficient of variation of the connectivity dis-
tribution:

(1)Heterogeneity =
√
variance(k)

mean(k)



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5867  | https://doi.org/10.1038/s41598-022-08574-6

www.nature.com/scientificreports/

In PPINs, the connectivity ki  of node i equals the number of directly linked neighbors. PPINs tend to be very 
heterogeneous. Highly connected ’hub’ nodes in PPINs have an important role in the network. A hub protein is 
essential and contains many distinct binding sites to accommodate non-hub  proteins29.

Centralization. Centralization is a method that gives information about the topology of a network. Cen-
tralization is measured from the centrality scores of the vertices. The centralization that closes to 1, illustrates 
that probably the network has a star-like topology. If it is closer to 0, the more likely topology of the network is 
like square whereas every node of the network has at least 2 neighbors)28. This metric is calculated as  follows30:

where Cx

(

pi
)

  is any centrality measure of point i and Cx

(

pi∗
)

 is the largest such measure in the network. Each 
centrality measure can be used (betweenness centrality, closeness centrality and etc.).

Centrality analysis. In this work, the following 21 centrality measures are selected: Average  Distance31, 
 Barycenter32, Closeness (Freeman)30, Closeness (Latora)33, Residual  closeness34,  Decay35, Diffusion  degree36, 
Geodesic K-Path37,38,  Laplacian39,  Leverage40,  Lin41,  Lobby42,  Markov43,  Radiality44,  Eigenvector45, Subgraph 
 scores16, Shortest-Paths  betweenness30,  Eccentricity46,  Degree28, Kleinberg’s authority  scores47, and Kleinberg’s 
hub  scores47. These measures are calculated using the  centiserve48 and  igraph22 R packages. We have classified 
the centrality measures into five distinct classes including Distance-, Degree-, Eigen-, Neighborhood-based and 

(2)Cx =
∑N

i=1[Cx

(

p∗
)

− Cx

(

pi
)

]
max

∑N
i=1[Cx

(

p∗
)

− Cx

(

pi
)

]

Table 1.  Centrality measures. The centrality measures are classified in five groups depending on their logic 
and formula.

Distance based Degree based Eigen based Neighborhood based Miscellaneous

Average Distance Kleinberg’s authority 
centrality scores

Eigenvector Centrality 
Scores Subgraph centrality scores Geodesic K-Path Central-

ity

Barycenter Degree Centrality Laplacian Centrality Markov Centrality

Closeness Centrality 
(Freeman) Diffusion Degree Shortest-Paths Between-

ness Centrality

Closeness Centrality 
(Latora)

Kleinberg’s hub centrality 
scores

Decay Centrality Leverage Centrality

Eccentricity Lobby Index (Centrality)

Lin Centrality

Radiality Centrality

Residual Closeness 
centrality

Table 2.  Definitions for distance based centrality measures.

Centrality Formula Description References

Distance based

Average Distance Cu =
∑

w∈V dist(u,w)
n−1

Average distance of node u to the rest of nodes in the net 28,31

Barycenter Cu = 1
∑

w∈V dist(u,w)
Inverse of total distance from u to all other vertices 32

Closeness Centrality (Freeman) Cu = 1
∑

w∈V\{u} dist(u,w)
Inverse of average distance 30

Closeness Centrality (Latora) Or Harmonic centrality Cu =
∑

u �=w∈V

1
dist(u,w)

The sum of inverse of the distance from u to all other vertices 33

Decay Centrality
∑

w∈V
δdist(u,w)

Where dist(u,w) denotes the distance between u and w and δ ∈ (0, 1) is a 
parameter

35

Eccentricity Cu = max{dist(u,w) : w ∈ V} The distance between node u and the most distant node in the net 46

Lin Centrality Cu = |{w|dist(w,u)<∞}|2
∑

dist(w,u)<∞ dist(w,u)

41

Radiality Centrality Cu =
∑

w∈V (diamG+1−dist(u,w))
n−1

The easiness of reaching any node from node u 44

Residual Closeness centrality Cu =
∑

w

∑

t �=w

1

2du (w,t)

Let du(w, t) be the distance between vertices w and t  in the graph, received 
from the original graph where all links of vertex u are deleted

34
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Miscellaneous groups depend on their logic and formulas (Table 1). Tables 2 and 3 show the definitions for 21 
different centrality measures based on their group.

Unsupervised machine learning analysis. principal component analysis (PCA) is a dimensionality-
reduction method that is often used to reduce the dimensionality of large data sets, by linear transforming a large 
set of variables into smaller  ones50. PCA aims to remove correlated centralities, reduce overfitting, and better 
visualization. Since the values of centrality measures are in different scales and PCA is affected by scale, Stand-
ard normalization has been undertaken on centrality measures before applying PCA. This phase is significant 
because it helps to recognize which centrality measures can determine influence nodes within a network. Then, 
PCA is used on normalized computed centrality measures. In the next phase, it is assessed that whether it is fea-
sible to cluster the centrality measures in both networks according to clustering tendency. Before applying any 
clustering method to the dataset, it is important to evaluate whether the data sets contain meaningful clusters 
or not. For assessment of the feasibility of the clustering analysis, the Hopkins’ statistic values and visualizing 
VAT (Visual Assessment of Cluster Tendency) plots are calculated by factoextra R  package51. Some validation 
measures are used to select the most suitable clustering method among hierarchical, k-means, and PAM (Parti-
tioning Around Medoids) methods using the clValid  package52. In this study, we apply Silhouette scores to select 
the appropriate method. After the choice of the clustering method, factoextra package is employed to find the 

Table 3.  Definitions for Degree based, Eigen based, Neighborhood based, and Miscellaneous centrality 
measures.

Centrality Formula Description References

Degree based

Degree Centrality Cu = k(u) Degree of node u 28

Diffusion Degree CD(v) =
n
∑

i=1

σ(ui , v)
Where function σ(ui , v) defined as, σ(ui , v) = 1 if and only if ui and v  are con-
nected and σ(ui , v) = 0 otherwise

36

Kleinberg’s authority centrality scores auth
(

p
)

=
∑

q∈Pto
hub

(

q
) Where Pto is all pages which link to page p . That is, a page’s authority score is the 

sum of all the hub scores of pages that point to it
47

Kleinberg’s hub centrality scores hub
(

p
)

=
∑

q∈Pfrom
auth

(

q
) Where Pfrom is all pages which page p links to. That is, a page’s hub score is the sum 

of all the authority scores of pages it points to
47

Leverage Centrality li = 1
ki

∑

Ni

ki−kj
ki+kj

Leverage centrality is a measure of the relationship between the degree of a given 
node ( ki ) and the degree of each of its neighbors ( kj ), averaged over all neighbors 
( Ni)

40

Lobby Index (Centrality) The lobby index of a node x is the largest integer k such that x has at least k neigh-
bors with a degree of at least k

42

Eigen based

Eigenvector Centrality Scores Cu = 1
�

∑

t∈V
av,tCt Let av,t be the adjacency matrix 45

Laplacian Centrality CL
v = d2G(v)+ dG(v)+ 2

∑

vi∈N(v)

dG(vi)
Where G is a graph of n vertices, N(v) is the set of neighbors of v  in G and dG(vi) is 
the degree of vi in G

39

Neighborhood based

Subgraph centrality scores SC(v) =
∞
∑

k=0

µk(v)
k!

The number of closed walks of length k starting and ending node v  in the network 
is given by the local spectral moments µk(v).

49

Miscellaneous

Geodesic K-Path Centrality Ck(v) =
∑

s∈V

σ k
s (v)

σ k
s

Where s are all the possible source nodes, σ k
s (v) is the number of κ-paths originat-

ing from s and passing through v  and σ k
s  is the overall number of κ-paths originat-

ing from s
37,38

Markov Centrality CM (v) = n
∑

s∈V msv

The Markov centrality index CM (v) uses the inverse of the average MFPTs to define 
the importance of node v  where n = |R| , R is a given root set, and mst is the MFPT 
from s to t

43

Betweenness Centrality CB(v) =
∑

s �=v �=t

σst (v)
σst

Where σst is the total number of shortest paths from node  s to node  t  and σst (v)  
is the number of those paths that pass through v

30

Table 4.  Network global properties of SARS-CoV-2 and (H1N1) influenza PPINs.

Networks 
Properties Nodes Edges Density Diameter

α value (Power 
Law)

R-squared 
(Power Law) Heterogeneity

Network 
Centralization

SARS-CoV-2 1409 1922 0.0019 6 0.805 0.54 7.3628 0.3089

(H1N1) influenza 2797 9174 0.0023 6 1.009 0.717 5.3197 0.2392
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optimal number of  clusters51. In the clustering procedure, Ward’s  Method53 is used as a dissimilarity measure. 
Ward’s minimum variance method creates groups such that variance is minimized within clusters.

Results and discussions
Evaluation of network properties. In this study, both networks were examined to compare global prop-
erties. The network global properties were computed for both networks (Table 4). Firstly, we compared the net-
works based on their nodes. We realized that SARS-CoV-2 and (H1N1) influenza PPINs include 553 common 
human proteins. The list of these proteins is available and provided as supplementary material (Supplementary 
File 1). The densities of SARS-CoV-2 and (H1N1) influenza PPINs were computed at 0.0019 and 0.0023 that was 
expected because biological networks are usually sparse. The network diameters were equal in both networks. 
SARS-CoV-2 and (H1N1) influenza PPINs were correlated to the power-law distribution with high alpha power 
and R-squared values. In terms of comparison of heterogeneity values, SARS-CoV-2 PPIN achieved a higher 
value. But, both networks are relatively heterogeneous. The heterogeneous network exhibits many unique prop-
erties of scale-free  networks54. Values of network centralization were very close together. Figure 1 demonstrates 
power law (red curve) and exponential (blue curve) distributions in SARS-CoV-2 and (H1N1) influenza PPINs. 
Both the degree distributions were left-skewed analogous to scale-free networks.

Figure 1.  Fitting both SARS-CoV-2 and (H1N1) influenza PPINs on power-law distribution.

Figure 2.  r Pearson correlation coefficients between centralities in the group of Distance based and pairwise 
scatter plots of centrality measures.
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Centrality analysis. In the next phase, the 21 centrality measures of nodes were calculated in both net-
works. The centrality measures were divided into two groups according to Table 2: (1) Distance based and (2) 
Degree based, Eigen based, and Neighborhood based. The top 10 essential proteins identified by 21 centrality 
measures in PPINs are given in as supplementary material (Supplementary File 2) for experimental validation. 
The r Pearson correlation coefficients between centralities in two groups and pairwise scatter plots of centrality 
measures were also shown in Figs. 2 and 3. These plots illustrate that there is a clear correlation in some of the 
centrality measures. For a better comparison, we also provided the dissimilarity matrix based on the Pearson 
correlation coefficient for all centrality measures in both networks (Fig. 4). The Pearson correlation coefficient 
puts within the range [− 1,1]. In some applications, such as clustering, it can be reasonable to transform the 
correlation coefficient to a dissimilarity  measure52. In this way, the Pearson distance lies in the interval [0,2]. A 
value of 0 indicates that would not be a correlation between the two centrality measures. The higher value dem-
onstrates the more correlation between them. In both networks, the matrixes indicate a high positive association 
between Average Distance and Radiality centrality measures are highly associated together. Furthermore, in 
(H1N1) influenza, these correlations are more clear between Average Distance and Lin, Barycenter, Closeness 
(Freeman), Radiality, Closeness (Latora), Residual closeness, and Decay measures.

Figure 3.  r Pearson correlation coefficients between centralities in the group of Degree based, Eigen based, and 
Neighborhood based and pairwise scatter plots of centrality measures.

Figure 4.  The dissimilarity matrix based on the Pearson correlation coefficient for all centrality measures in 
both networks.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5867  | https://doi.org/10.1038/s41598-022-08574-6

www.nature.com/scientificreports/

Dimensionality reduction and clustering analysis. In the next phase, PCA-based dimensionality 
reduction was applied to centrality measures to show a visual representation of the dominant centrality measures 
in the data set. The profile of the distance to the center of the plots and their directions were mostly harmonic for 
both networks as illustrated in Fig. 5. The contribution of each centrality measure for two dimensions is given as 
supplementary material (Supplementary File 3). The percentage of contribution of variables (i.e. centrality meas-
ures) in a given PC was computed as (variable. Cos2*100)/(total Cos2 of the component)). Figure 6 illustrates the 
first ten contributing centrality measures to PCA for two dimensions. In both networks, the contribution percent 
for the first ten contributors is too close for the first dimension. For the second dimension, degree centrality is 
the major contributor for both PPINs. Eigenvector and Eccentricity revealed a low contribution value in both 
PPINs. In contrast, Closeness (Latora) displayed high levels of contribution in both networks whilst it was the 
first rank of SARS-CoV-2 PPIN contributors and second rank of (H1N1) influenza PPIN contributors. Also, we 
have acquired the contribution of each centrality measure for two dimensions sorted by the p-value of the cor-
relation (Supplementary File 4 and 5). The significance level in this study was considered equal to 0.05. A lower 
p-value in the results exhibits a strong relationship between centrality measures in both networks.

Ultimately, we performed unsupervised classification to cluster centrality values computed in PPINs. First, 
we executed a clustering tendency procedure. For clustering centrality values in each network, we considered 
Hopkins statistics were more than the threshold. The threshold value was 0.0517. The results are provided in 
the first column of Table 5 and supplementary material (Supplementary File 6). Then, silhouette scores were 
calculated in three methods (i.e. hierarchical, k-means, and PAM) and average Silhouette width were evaluated 
in clustering the data sets. These scores are available and provided as supplementary material (Supplementary 
File 7). Finally, based on average Silhouette width, the k-means method was selected for clustering centrality 
values in both PPINs (Fig. 7). The outputs of the clustering method and the corresponding number of clusters 
were also shown in Table 5. The optimal number of clusters was also determined by k-means and PAM clustering 
algorithms. These results are given as supplementary material (Supplementary File 8). The centrality measures 
were clustered in each PPINs using the hierarchical algorithm based on Ward’s  method50 that was shown in Fig. 8.

Discussion
At the validation step, we encountered remarkable results. Silhouette scores of centrality measures illustrated the 
centrality measures in the same clusters had very close contribution values for these measures (Fig. 7). In SARS-
CoV-2 PPIN, Barycenter, Decay, Diffusion degree, Closeness (Freeman), Geodesic K-Path, Closeness (Latora), 
Lin, Radiality, and Residual closeness measures were in the same cluster. Also, in (H1N1) influenza, Barycenter, 
Decay, Closeness (Freeman), Closeness (Latora), Lin, Radiality, and Residual closeness were measures were in 
the same cluster. The average silhouette scores were 0.55 and 0.71 in these clusters for SARS-CoV-2 and (H1N1) 
influenza PPINs, respectively. The centrality measures namely Shortest-Paths betweenness, Laplacian, Degree, 
and Markov measures were in a cluster for SARS-CoV-2 PPIN where the mean of their silhouette scores (i.e. 
0.48) was higher than the overall average, and in the same way, their corresponding contribution values were 
high, too. Kleinberg’s hub and Kleinberg’s authority scores are grouped in a cluster in both PPINs and their cor-
responding contribution values were equal.

Our results demonstrated that an exclusive profile of centrality measures including Barycenter, Decay, 
Closeness (Freeman), Closeness (Latora), Lin, Radiality, and Residual closeness was the most significant index 
to determine essential nodes. We inferred that both PPINs have close results in centrality analysis. Also, our 
research confirmed an analogous  study17 about the relationship between contribution value derived from PCA 

Figure 5.  Biplot representation of the centrality measures in SARS-CoV-2 and (H1N1) influenza PPINs. In 
each plot, nodes were shown as points and centrality measures as vectors.
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and silhouette width as a cluster validation. Furthermore, our centrality analysis resulted in many equal values 
in all centrality measures that imply dynamic robustness in PPINs. Also, it reveals that PPINs due to sparsity and 
tree-like topology are more explorable than random networks with higher  connectivity55.

Conclusion
SARS-CoV-2, a novel coronavirus mostly known as COVID-19, has become a matter of critical concern around 
the world. Besides, network-based methods have emerged to analyze, and understand complex behavior in 
biological systems with a focus on topological features. In recent decades, network-based ranking methods 
have provided systematic analysis for predicting influence proteins and proposing drug target candidates in 
the treatment of types of cancer and biomarker discovery. SARS-CoV-2 and (H1N1) influenza PPINs have 553 
common human proteins. Studying and comparing these networks can be an effective step to identify new drug 
compounds for biological targets.

In this study, we have analyzed SARS-CoV-2 and (H1N1) influenza PPINs topologically. We employed het-
erogeneity measure to PPINs. The heterogeneity results and fitting distributions demonstrated the properties of 
scale-free networks in both networks. Subsequently, 21 centrality measures were utilized to prioritize the pro-
teins in both networks. We illustrated that dimensionality reduction methods like PCA can help to extract more 

Figure 6.  The top 10 centrality measures contributing to PCA for two dimensions.

Table 5.  Clustering information values for PPINs.

Network Hopkins Statistic Number of Clusters Average Silhouette width

SARS-CoV-2 0.75 9 0.42

(H1N1) influenza 0.77 10 0.36
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relevant features (i.e. centrality measures) and corresponding relationships in unsupervised machine learning 
methods. Thus, to detect influential nodes in biological networks, PCA can help to select suitable measures. In 
other words, dimensionality reduction methods can illuminate which measures have the highest contribution 
values, i.e., which measures contain much more useful information about centrality.

Figure 7.  (A) Clustering silhouette plot of the combined-score PPIN. The colors represented the nine clusters 
of the centrality measures in SARS-CoV-2 PPIN. The average silhouette width was 0.42. (B) Contribution 
values of centrality measures according to their corresponding principal components in SARS-CoV-2 PPIN. (C) 
Clustering silhouette plot of the combined-score PPIN. The colors represented the ten clusters of the centrality 
measures in (H1N1) influenza. The average silhouette width was 0.36. (D) Contribution values of centrality 
measures according to their corresponding principal components in (H1N1) influenza PPIN.
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