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A hybrid feature extraction scheme 
for efficient malonylation site 
prediction
Ali Ghanbari Sorkhi1, Jamshid Pirgazi1* & Vahid Ghasemi2

Lysine malonylation is one of the most important post-translational modifications (PTMs). It affects 
the functionality of cells. Malonylation site prediction in proteins can unfold the mechanisms of 
cellular functionalities. Experimental methods are one of the due prediction approaches. But they are 
typically costly and time-consuming to implement. Recently, methods based on machine-learning 
solutions have been proposed to tackle this problem. Such practices have been shown to reduce 
costs and time complexities and increase accuracy. However, these approaches also have specific 
shortcomings, including inappropriate feature extraction out of protein sequences, high-dimensional 
features, and inefficient underlying classifiers. A machine learning-based method is proposed in this 
paper to cope with these problems. In the proposed approach, seven different features are extracted. 
Then, the extracted features are combined, ranked based on the Fisher’s score (F-score), and the 
most efficient ones are selected. Afterward, malonylation sites are predicted using various classifiers. 
Simulation results show that the proposed method has acceptable performance compared with some 
state-of-the-art approaches. In addition, the XGBOOST classifier, founded on extracted features such 
as TFCRF, has a higher prediction rate than the other methods. The codes are publicly available at: 
https:// github. com/ jimy2 020/ Malon ylati on- site- predi ction

Post-translational modification (PTM) is one of the fundamental mechanisms to regulate many biological pro-
cesses. Today, more than 620 types of PTMs are discovered, including a wide range of chemical groups to a small 
protein. Malonylation is a recently identified PTM, wherein positively charged lysine amino-acids of a protein 
are chemically reformed by adding a negatively charged malonyl group, playing a crucial role in various cellular 
operations, biological processes, and regulating the dynamicity of a  cell1–4. In 2011, lysine malonylation substrates 
were identified through proteomic analysis, demonstrating their prominent effects on eukaryote and prokaryote 
 cells1. Proteins continuously interact, and incorrect identification of a PTM may result in disease. Therefore, their 
vigorous and precise scrutiny is needed, through which some daily life mechanisms and conditions, including 
cancer, diabetes, and auto-immunization, could be  identified5–7. Regarding the crucial importance of malonyla-
tion, precise identification of protein malonylation sites is the primary concern, leading to useful biomedical 
information and in-depth molecular function perceptions. Thus far, many computational and experimental 
methods have been proposed for detecting malonylation  sites8. However, experimental methods suffer from 
temporal and financial limitations, and their implementations are cumbersome. Hence, an efficient computational 
method is required to identify the malonylation sites accurately. Some recent works have employed machine 
learning and deep learning methods to predict malonylation  sites9. The main contributions of such methods 
include feature extraction and selection for efficient classification or model representation such as hybrid or 
deep learning models.

In10, the “Mal-Lys” method is presented to predict K-mal sites. In this approach, residue sequence order infor-
mation, position-specific amino acid propensity, and physicochemical properties are extracted as features. Then, 
the significant features are identified by the “minimum redundancy maximum replication” (mRMR) approach. 
Eventually, the existence of a malonylation site is predicted via a support vector machine (SVM). Wang et al.11 
proposed a novel method for malonylation site recognition based on unique sequences, evolutionary profiles of 
sequences, and amino-acid attributes.  In12, sequence orders, gene ontologies, and their composition have been 
used as features, and an SVM is used for classification. The result has shown that feature combination yields 
more efficient results. In the “SPRINT Mal”  method13, some ordinal and structural features are extracted out 
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of the protein sequences. It is the first online prediction scheme that has pondered the structural attributes of 
proteins. The prediction is carried out by an SVM too.

In14, a variety of 11 features is extracted out of protein sequences. Regarding the high-dimensionality of the 
feature vectors, the features are further processed by their gain ratio, and the significant features are selected. 
Then, several classifiers are employed, such as a decision tree, support vector machine, K-nearest neighbors, 
logistic regression, and light gradient boosting machine.  In15, the features are extracted regarding the neighbor-
ing amino-acid interactions using a B-peptide-based scheme. Then, the light gradient boosting classification is 
incorporated to identify the malonylation sites.

In16, pseudo-amino acids have been used as features to train an SVM classifier to identify malonylation sites. 
 In17, a novel approach, called CKSAAP_FormSite, is proposed. In this method, an efficient feature extraction 
scheme based on the composition of k-spaced acid pairs is used for encrypting malonylation sites. Then, malo-
nylation sites are detected using SVM.  In18, a 3-phase approach is presented. Features are extracted based on 
sequence orders in the first stage. Then, the data of both classes are balanced using random sampling. Eventually, 
malonylation sites are predicted by a random forest classifier.

In19, a machine learning-based scheme is proposed for predicting malonylation sites. In this approach, phys-
icochemical attributes, sequential, structural, and functional information of proteins are used as features. Then, 
mRMR and symmetrical uncertainty methods were used for efficient feature selection. The classification model 
is SVM. Feature composition is considered  in20. In this scheme, one-hot coding, physicochemical attributes, and 
composition of k-spaced acid pairs are considered for feature extraction. Then, principal component analysis 
(PCA) is used to extract efficient features, and an SVM is used to predict malonylation sites.  In21, amino acid’s 
predicted secondary structure is used to extract two types of structural features out of neighboring amino acids 
on protein sequences. The results show that the proposed method has a promising performance.

Recently, deep learning-based approaches have gained ground for predicting malonylation sites. However, 
these methods are not end-to-end and need to extract features from the input data. The extracted features are 
fed into the deep networks. Moreover, a great deal of training data is required to tune the parameters of the deep 
networks, while a short amount of data is confronted yet.  In22, a hybrid model, including a convolutional neural 
network (CNN) and the composition of physicochemical attributes, evolutional information, and sequential 
features, is used to identify mammals’ protein malonylation sites.

In23, a deep learning (DL) model is proposed based on long-short term memory (LSTM) together with word 
embedding for malonylation sites prediction. The proposed method outperforms the traditional approaches 
using various extracted features and LSTM-based DL classification with a one-hot vector. This method suffers 
from being sensitive to the size of the training set; however, a concoction with traditional machine learning may 
overcome the weakness.  In24, conditional general adversarial networks (CGAN) have been used to identify seven 
different types of malonylation sites. Primarily, the features are extracted via eight different sequential and four 
structural feature extraction schemes. Then, the number of features is augmented to 1479 using Pearson cor-
relation. Afterward, both classes’ instances are balanced by a CGAN and a Conditional Wasserstein Generative 
Adversarial Network (CWGAN). A random forest classifier is incorporated to predict malonylation sites.

In25, a multi-layer perceptron (MLP) is presented. In this approach, six different features are extracted from 
protein sequences, and an MLP is hired for malonylation site prediction. A DL-based method is presented  in26 to 
increase the prediction rate. For this purpose, some features such as position-specific amino acid composition, the 
composition of k-spaced acid pairs, and position-specific scoring matrix are extracted from protein sequences. 
Then, maximal dependence decomposition is hired to extract efficient features. Eventually, a multi-layered DL 
network carries out the classification. Transfer learning approaches have been incorporated to achieve prediction 
on large scales  in27. In this work, a recurrent neural network-based deep learning model is primarily trained 
and then tuned using propionylation. The trained model is used for feature extraction, such that it is fed with 
a protein sequence and yields the due feature vector as output. An SVM is used for the final classification.  In28, 
five different feature types are extracted from protein sequences. A feature vector of length 1431 ensues. The 
resulted features are fed into a CNN. The classification is carried out in the last layers, which are fully connected.

In29, DeePPSite is presented for phosphorylation site prediction based on LSTM neural networks. In this 
method, various features, including PSSM, IPC, and EGBW, are extracted. The prediction is then carried out 
via LSTM.  In30, the site prediction is conducted by hot-encoder feature extraction and CNN classifiers. In this 
approach, the features are extracted via the hot-encoder method. The extracted features are then fed into a 
one-dimensional CNN classifier.  In31, various feature sequences are used for malonylation site prediction. The 
prediction is carried out based on DNNs. A method called NearMiss-2 is used in this approach to cope with 
imbalanced data.  In32, eight different feature extraction schemes and three structural features have been stud-
ied. In this approach, various features are combined, and the performance is higher tone-dimensional features.

The primary focus of the present work is on delivering a novel feature extraction strategy to predict the 
malonylation sites efficiently. For this purpose, primarily, various features are extracted out of protein sequences. 
The primary features are combined, each combination is assessed, then weighed, and the best one is selected. 
Features are selected based on the Fisher’s score (F-score) to select efficient features and avoid model over-fitting. 
Eventually, the classification is carried out via various classifiers, including random forest (RF), extreme gradient 
boosting (XGBoost), SVM, and DNN. Totally, a five-stage approach is proposed in the present work, in which 
the feature extraction is carried out in the first stage. A preprocessing of the extracted features is conducted in 
the second stage. The third stage is dedicated to selecting features out of various combinations. Eventually, a 
classification is achieved in the fourth stage to predict malonylation sites. The model assessment is carried out 
at stage five. Specific contributions and novelties of this paper can be summarized as follows:
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– The term frequency and category relevancy factor (TFCRF) method for weighting features is investigated. Some 
weighting schemes inspired by document analysis have already been used for malonylation site prediction; 
however, to the best of our knowledge, TFRCF has not been explored yet. In this method, the distribution of 
features within various classes is considered along with their distribution in entire sequences of all classes. 
The results show the efficiency of TFCRF.

– The proposed feature combination scheme provides a feature-level diversity, improving amino-acid sequence 
classification. That is, each combined feature includes a specific piece of information. TFCRF feature includes 
binary classification distribution information, position-specific scoring matrix (PSSM) contains genomic 
sequence information and other features envelope frequency information. This strategy has been seldom 
investigated in the related works thus far.

– Selecting relevant features and omitting redundant ones is another novelty of the proposed method, which 
has rarely been considered in previous works. For this purpose, the best feature combination is selected based 
on Fisher’s score.

The remaining sections of the paper are as follows. Section “Feature extraction” describes various feature 
extraction schemes for malonylation site identification. Section “The proposed method” elaborates the five stages 
of the proposed method, including feature extraction, preprocessing, feature selection, classification, and model 
assessment. Section “Experimental results” describes the experimental results for the proposed approach, and the 
outcomes are compared with several other common methods. Finally, Section “Conclusion” concludes the paper.

Feature extraction
One of the most important phases in malonylation site prediction is feature extraction. A primary approach is 
to extract various pre-known features out of protein sequences, and then, a classification process is devised. A 
secondary approach is to design an end-to-end deep neural network model, through which significant features 
can be extracted systematically, and the classification could be conducted upon the basis of such features. No 
end-to-end model has been proposed for the secondary approach thus far. In most of the presented works, the 
features are extracted using known feature extraction methods, and then classical machine learning or deep 
learning models are incorporated for classification. Typically, end-to-end models are not recommended due to 
the lack and insufficient data for training plenty of parameters in deep neural networks. So, we opt to extract 
significant pre-known features out of protein sequences in the proposed method. The sequential nominal char-
acter information can be converted to a numerical vector using several feature extraction algorithms. Extracting 
efficient features will enhance the performance of the classification. To extract features out of protein sequences 
the following algorithms are incorporated: the enhanced amino acid composition (EAAC)33 the enhanced grouped 
amino acid composition (EGAAC)33, dipeptide deviation from expected mean (DDE)34, PKA35, term frequency-
inverse document frequency (TFIDF)36, TF_CRF37, and position-specific scoring matrix (PSSM)38. These methods 
are elaborated in the following subsections.

Enhanced amino acid composition (EAAC). This method is presented by Chen et al.33. In this algo-
rithm, sequential protein information is extracted, and accordingly, amino-acid frequency information is cal-
culated  as33:

where H(m, n) is the number of amino-acid type m , and H(n) is the length of the n’th window length.

Enhanced grouped amino acid composition (EGAAC). In this method, protein sequences are con-
verted to numerical feature vectors based on their attributes. It is a compelling feature extraction algorithm in 
bioinformatics research fields such as malonylation site prediction.

EGAAC is computed based on amino-acid categorization.  In39, amino acids are categorized based on five 
physicochemical characteristics: aliphatic (including GAVLMI amino-acids), aromatic (including GFYW amino-
acids), positively charged (including KRH amino-acids), negatively charged (including DE amino-acids), and 
neutral or uncharged (including STCPNQ amino-acids). Accordingly, EGAAC is calculated based on the fol-
lowing equation:

where g is one of the five categories, H(g , n) is the number of amino acids in group g , and H(n) is the length of 
n’th  window33. A window size of length five is considered in this paper.

Dipeptide deviation from expected mean. Dipeptide deviation from the expected mean (DDE) is pro-
posed and developed  in34, wherein feature extraction based on amino-acid combination is studied to discrimi-
nate a cell’s epitopes and non-epitopes. For this purpose, the dipeptide combination (DC) of a protein sequence 
is primarily calculated as:

(1)g(m, n) =
H(m, n)

H(n)
,m ∈ {A,C,D, · · · ,Y}, n ∈ {W1,W2, · · ·WL}

(2)G
(

g , n
)

=
H
(

g , n
)

H(n)
, g ∈

{

g1, g2, g3, g4, g5
}

, n ∈ {W1,W2, · · ·WL}

(3)DC(m, n) =
Hmn

H − 1
,m, n ∈ {A,C,D, · · · ,Y}
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where Hmn is the number of paired mn amino-acids, and H is the size of the protein sequence. Next, a protein’s 
theoretical mean (TM) and theoretical variance (TV) are computed as:

where Cm and Cn are the number of codons encrypting the first and the second amino-acids, respectively, and 
CH is the total number of codons. Finally, DDE is calculated based on TV, TM, and DC as:

PKA. This feature is the negative logarithm of the isolation constant for every group in the molecule 35.

Term frequency: inverse document frequency. TF_IDF feature extraction is composed of two terms, 
TF and IDF, which stand for the term frequency and inverse document frequency, respectively. Both terms should 
be calculated separately and multiplied to yield the TF_IDF  coefficient36. Each term is defined as follows:

TF(t, d) : the number of amino-acid t  in a protein sequence, divided by the size of the protein, namely d.
IDF(t) : the logarithm of the total number of proteins (namely |D| ) divided by the number of contents which 

include amino-acid t  (namely DF(t) ). It is calculated as:

Having calculated TF and IDF, TF-IDF is calculated as:

Term frequency and category relevancy factor (TF-CRF). In this method, two factors, namely posi-
tiveRF (positive relation frequency) and negativeRF (negative relation frequency), are defined as  follows37:

PositiveRF. This factor is the ratio of the number of amino acids in a protein sequence ci , having a common 
characteristic tk , to the total number of amino acids in the protein sequence. It is calculated as:

NegativeRF. This factor is the ratio of the total number of amino acids in protein sequences except for ci , having 
a common characteristic tk , to the total number of amino acids in protein sequences except for ci . It is calculated 
as:

where 
∣

∣D(cj)
∣

∣ is the number of amino acids in protein sequence cj , and 
∣

∣D(tk , cj)
∣

∣ is the number of amino acids in 
the set D and protein cj with common characteristic tk.

Category relevancy factor value (crfValue) is defined as follows, considering the equations mentioned above:

The relevance factor of each category has a direct relation with positiveRF and a reverse relationship with 
negativeRF. Accordingly, the proposed weighting for feature tk in protein sequence di is:

where cdi is the category of protein sequence di . Normalization is used to mitigate the effect of the length of 
the sequence on the classification performance. It confines the weights in the range (0, 1) . The final equation of 
TFCRF will be:
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(5)TV(m, n) =
TM(m, n)(1− TM(m, n))

H − 1

(6)DDE(m, n) =
DC(m, n)(1− TM(m, n))

√
TV(m, n)

(7)IDF(t) = log

(

|D|

DF(t)

)

(8)TF − IDF(t, d) = TF(t, d)× IDF(t)

(9)PosotiveRF
(

tk , cdi
)

=

∣

∣D
(

tk , cj
)∣

∣

∣

∣D
(

cj
)∣

∣

(10)NegativeRF
(

tk , cdi
)

=

∑|c|
m=1,m �=j |D(tk , cm)|
∑|c|

m=1,m �=j |D(cm)|

(11)crfValue(tk , cj) =
PosotiveRF

(

tk , cj
)

NegativeRF
(

tk , cj
)

(12)wki = log
(

tf (tk , di)× crfValue
(

tk , cdi
))

= log

(

tf (tk , di)×
PosotiveRF

(

tk , cdi
)

NegativeRF
(

tk , cdi
)

)



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5756  | https://doi.org/10.1038/s41598-022-08555-9

www.nature.com/scientificreports/

Accordingly, the content of each protein sequence is represented by a feature vector di = (W1i ,W2i , . . . ,Wki) , 
where k is the total number of selected features, and wki is the weight of feature (i.e., amino-acid) tk in sequence 
di . Wki indicates to what extent feature tk includes the concept of protein sequence di.

Most class-based weighting methods, such as IDF, have been used for information retrieval (IR) and docu-
ment analysis purposes. These methods have not been applied in protein sequence classification. Hence, some 
aspects of IR and document analysis, also associated with protein sequence classification, have been neglected. 
The weighting method of TFCRF contains such elements, as stated in the following.

Consider a set of protein sequences that belong to a number of classes, with a specific number of instances. 
Figure 1 depicts various distributions of a feature, namely x , in 4 hypothetical states regarding a class, namely ci . 
In this figure, a and b are the numbers of sequences in class ci that include and exclude feature x , respectively; also, 
c and d denote the number of sequences in all classes other than ci that include and exclude feature x , respectively. 
The frequency of feature x is taken constant in all states.

In IDF-based schemes, the weight of every feature is inversely related to the number of sequences including 
that feature. In the above instance, the weight of feature x in class ci can be calculated via (7) as:

where N is the total number of sequences. Lets ws
x denote the weight of feature x in state s of Fig. 1. Then, the 

relation between the weights of x in various states will be:

As it can be seen, the weight of feature x will not change in various states due to the identical number of 
sequences including it (i.e., b+ c ); while the status of feature x is apparently changed in class ci in multiple 
states, and this fact is overlooked in weighting this feature. Furthermore, in IDF-based approaches, the more 
the number of sequences including a specific feature, the less discrimination the feature will have; hence, it is 
assigned a lower weight. Although this is an accurate hypothesis in IR, it needs to be reformed for the purpose 
of protein classification. As evident from Fig. 1, despite a significant number of sequences including x , if most 
of those sequences belong to the same class ci (cases 3 and 4 in Fig. 1), feature x is not only efficient, but also it 
must be known significant to discriminate class ci from others and dedicated a great weight. In addition, a lower 
weight should be dedicated to x in class ci if a great number of sequences of classes other than ci include feature 
x (state 2 in Fig. 1).

(13)Wki = TFCRF(tk , di) =
log(tf (tk , di)× crfValue

(

tk , cdi
)

)
√

∑

k(log(tf (tk , di)× crfValue
(

tk , cdi
)

))2

(14)idf (x) = log
N

b+ c
= log

a+ b+ c + d

b+ c

w1
x = w2

x = w3
x = w4

x

Figure 1.  Distributions of feature x across classes in 4 hypothetical states.
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The introduced crfValue in TFCRF delivers a solution for the abovementioned problem. That is, the weight of 
every feature in each sequence has a direct relation with the number of sequences belonging to the class of that 
sequence and an inverse relation with the number of sequences belonging to the other classes. In the presented 
example of Fig. 1, the weight of feature x in class ci via (11) equals:

As a result, the relation between weights feature x in Fig. 1 will be:

It can be seen that in this method, the effect of classes, in which the features attend, is taken into account. It 
should be noted that crf Value is not independent of the number of sequences in each class, drastically increasing 
the performance of sequence classifiers.

PSSM. Position-specific scoring matrix (PSSM) is a scoring matrix used in the protein BLAST search, in 
which a score is dedicated to each amino acid separately, based on its position in the sequence of a number of 
 proteins41. This matrix can be shown as:

where L is the protein sequence length with a number of 20 possible amino acids. Each element of the PSSM 
matrix is calculated as:

where Mi,j is the probability of amino-acid j attending at position i , and bj is the background model for amino-
acid j (e.g. bj = 0.05 by postulating a uniform distribution for amino acids). PSSM scores are positive or negative 
values. Positive values show that the due amino-acid locational presence occurs more than expected stochasti-
cally, while the negative values depict that it takes place less than what is anticipated. PSSM includes locational 
and evolutionary information of protein sequences.

The proposed method
This section proposes a novel model for predicting malonylation sites based on feature extraction and machine 
learning algorithms. The overall schema of the proposed method is depicted in Fig. 2. It comprises five major 
stages: dataset selection, feature extraction, feature normalization, feature selection, and classification. Each 
stage is elaborated in the following.

Stage 1: dataset selection. Three datasets, namely Escherichia coli, Mus musculus, and Homo sapiens40, 
have been hired for training and testing the proposed method. The dataset is randomly divided into train and 
test sets. For efficient analysis, a tenfold cross-validation strategy is conducted. At each iteration, one fold is used 
as a test set, and the remaining nine folds are incorporated for training the model. Model parameters are tuned 
based on the training sets. The ultimate result is the average results of 10 iterations.

Stage 2: feature extraction. At this stage, feature extraction methods including EAAC, EGAAC, TFIDF, 
PSSM, and TF-CRF have been applied as:

a. EAAC and EGAAC  in EAAC, amino-acid frequencies are calculated, and in EGAAC, the protein sequences 
are converted to numerical vectors based on their characteristics. The resulting feature vectors will be of 
lengths 20 and 45, respectively.

b. TF-IDF it is used for calculating the weighted frequency of amino acids. This method shows the frequency of 
amino acids and aims to depict an amino acid’s significance by comparing its frequency in the dataset with 
a larger reference dataset. The resulting feature vector will be of length 20 in this method.

c. TF-CRF it is used for more precise weighting by two factors, i.e., psitiveRF and negativeRF. The resulting 
feature vector is of length 20.

d. PSSM a score is dedicated to a selected amino acid, solely based on its location in a protein sequence. The 
resulting feature vector will be of length 400.

e. PKA includes negative logarithm of isolation for each group in a molecule. The values pertaining to each 
amino acid are taken into account. The result will be a single numerical feature.

Stage 3: preprocessing. Having extracted features out of protein sequences, they would be of various 
ranges. The difference in feature values would plummet the effect of some important features. In the present 
work, the primitive values of features range from 0 to 0.03 and, in some cases, from 0 to 200. Additionally, hir-
ing features with a sprawling domain of fluctuations deteriorate the efficacy of the underlying learning models. 
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Accordingly, the data should be normalized to improve efficiency. In the present work, Z-score normalization is 
used for this purpose.

In fact, Z-score is a normalization strategy that prevents outlier data and features. The normalization equa-
tion is as follows.

where µ and σ are mean and variance of feature x . If a value equals the mean, it is normalized to zero. If it is less 
or greater than the mean, it is normalized to a negative or positive value. The magnitude of this negative/positive 
value is determined based on the variance. The variance of an abnormal feature would be a large number, and 
its normalized values dwindle to zero.

Stage 4: feature selection. The extracted features are used for malonylation site prediction. However, all 
of the features may not be efficient. Some of them may be irrelevant, and some may be redundant. Such features 

(18)z =
x − µ
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Figure 2.  The overall block diagram of the proposed method.
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results in model overfitting. Therefore, it is needed to preserve relevant features. Fisher’s score (F-score) method, 
a filter-based approach, is applied to identify relevant features. F-score criteria for the i’th feature is calculated as:

where xki  and xi are the mean of the i’th feature in the class k and the whole dataset, respectively, xkj,i is the i’th 
feature value of instance j in class k , nk is the number of instances in class k , and m is the total number of classes. 
A number of highly-ranked features are selected for classification in the next stage.

The key idea of the Fisher score is to find a subset of features, such that in the data space spanned by the 
selected features, the inter-class distances of data points are maximized while the intra-class distances are mini-
mized. Since this is a combinatorial optimization problem, it is reduced to computing a score for individual 
features, independently, via the scoring function of (19); then, a number of highly-ranked features are selected. In 
(19), the nominator and denominator represent inter-class and intra-class distances, only with regard to feature 
xi , respectively. Although some informative dependencies between features are ignored, this method will reduce 
the time complexity of feature selection to a linear order.

Stage 5: model assessment. A tenfold class validation strategy is conducted to assess the prediction per-
formance of the classification model. The classifiers include XGBoost, SVM, RF, and DNN. Various measures, 
including AUC, ACC, Sn, Sp, and MCC, have been used for performance assessment.

Experimental results
The datasets. A pilot confirmed dataset is hired for the  simulations40. The dataset includes 1746 malonyla-
tion sites of 595 proteins in “E. coli”, 3435 malonylation sites of 1174 proteins in “M. musculus”, and 4579 malo-
nylation sites of 1660 proteins in “H. sapiens”40. The length of amino-acid sequences is reduced to 25, centered 
at lysine (K). Table 1 elaborates the characteristics of the dataset.

Model assessment. A tenfold cross-validation strategy is conducted to tune the models’ parameters based 
on the training dataset, and the independent set is used for testing the model. Efficiency measures sensitivity (sn), 
Specificity(Sp), accuracy (acc), and Mathew’s correlation coefficient (MCC) have been used to assess the underly-
ing  models42. These measures are calculated as follows.

where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and false nega-
tives, respectively.

Sequence analysis. The datasets of “H. sapiens,” “E. coli,” and “M. musculus” have been incorporated to 
discriminate malonylation and non-malonylation sites. The statistical differences between protein sequences of 
malonylation and non-malonylation sites in the datasets mentioned above are depicted in Fig. 328. This figure 
represents the amino-acid distribution of a protein sequence in the dataset. As shown, lysine is located at the 
center, and the significantly enriched/depleted surrounding residues are described in the range − 12 to + 12. The 

(19)F − Score(i) =

∑m
k=1 n

k
(

xki − xi
)2

∑m
k=1

1
nk−1

∑nk

j=1

(

xkj,i − xki

)2

(20)Sn =
TP

TP + FN

(21)Sp =
TN

TN + FP

(22)ACC =
TP + TN

TP + TN + FP + FN

(23)MCC =
TP × TN − FP × FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

Table 1.  The number of malonylation and non-malonylation samples in the dataset.

Dataset Species Number of malonylation samples Number of non-malonylation samples

Training set

E. coli 1453 1453

H. sapiens 3585 3585

M. muscuus 2606 2606

Independent test

E. coli 100 100

H. sapiens 300 300

M. muscuus 600 600
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diagram depicts a significant difference in amino-acid frequencies between protein sequences of malonylation 
and non-malonylation sites in various sequence fragments. Compared to central lysine, an arbitrary amino acid 
is studied in two sections, i.e., enriched and depleted. It is observed that the frequency of amino acids is higher 
around central lysine than the other fragments in the enriched section. The more distant from the central lysine, 
the less frequency is observed. Moreover, the exclusive enriched/depleted amino acids around the central lysine 
unfold the importance of feature selection based on ordinal protein sequences. Accordingly, the importance of 
a feature extraction scheme based on the combination of multiple sequential features comes into the light to 
predict the malonylation sites more efficiently.

Figure 3.  The distribution of amino acids around the central lysine in (A) E. coli, (B) H. sapiens and (C), and 
M. musculus datasets.
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Feature extraction analysis. As described earlier, it is sought to extract different features out of pro-
tein sequences in order to identify malonylation sites precisely. In this study, seven feature extraction schemes 
were applied to protein sequences. A random forest classifier was trained based on each feature scheme EAAC, 
EGAAC, PKA, DDE, TF-IDF, TF-CRF, and PSSM through a tenfold cross-validation strategy to assess the attrib-
utes of each method.

The results are depicted in Fig. 4 for the three datasets. It is observed that TF-CRF is more discriminative 
than the others, with higher accuracy in all of the datasets. Moreover, EAAC, EGAAC, and PKA have promising 
and comparable results. Based on these results, the combination of features was exploited, and the RF classifier 
was trained and tested by each combination. In order to obtain the best features, they have been combined and 
compared with each other. In this phase, the features are selected and combined randomly. The features with 
higher independent prediction rates have been of higher selection priority. At this stage, combinations of 2 to 5 
features have been assessed and compared with each other, primarily.

Three combinations outperformed the others: (1) the combination of TF-CRF, EGAAC, and TF-IDF with a 
vector of 228 features, (2) the combination of EAAC, PKA, PSSM, and TF-CRF, with a vector of 494 features, 
(3) the combination of EAAC, PKA, PSSM, TF-CRF, and EGAAC with a vector of 599 features. The results of 
incorporating these feature combinations into various classification models and the ensued performance meas-
ures are taken in Table 2.

In this paper, a number of classification methods, including XGBoost, SVM, RF, and DNN, have been used. 
It should be noted that other classifiers, including k-nearest neighbors (KNN) and naïve Bayes classifiers, have 
also been assessed empirically; however, they were not reported due to their low performance. In order to assess 
various classifiers, they have been compared in terms of various metrics, including accuracy, error rate, etc. The 
results are reported in the following.

Parameter tuning is performed based on a series of trials. A penalty factor of 2 along with the RBF kernels 
are used in SVM classification. The number of random trees in the RF classifier has been 100, with the Gini split 
criterion. An exponential cost function is used in XGBoost. The number of estimators and the learning rate have 
been 80 and 0.1, respectively. Also, the DNN is modeled by a 4-layered structure with a learning rate of 0.08.

Moreover, as shown in Table 3, the feature selection method has increased the performance of various classi-
fiers. Indeed, the highly discriminative features have been selected via the F-score method, and redundant ones 
have been eliminated. This task has improved the performance measures of all of the approaches. Regarding the 
different dimensionality of datasets, a variety of features have been selected based on a number of trials. Appar-
ently, no unique combination outperforms the others in all of the datasets globally. In H. sapiens and M. musculus, 
the second combination has better performance, whilst the third is the best for E. coli. Regarding the number 
of training samples and the structural differences between protein sequences across the datasets, the extracted 
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Figure 4.  Classifiers’ performance comparison, based on singular features.
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features have different discrimination performances for each dataset, and they would differ. By eliminating the 
redundant and uncorrelated features at the phase of feature selection, the second combination outperforms the 
others in all of the datasets.

As depicted in Fig. 4, TFCRF has shown the best performance in all of the datasets. In this scheme, weighting 
features is performed by considering their distribution in classes, in addition to their distribution in sequences. 
Also, the weighting has not been independent of the number of sequences in each class. This issue has increased 
the classification performance based on TFCRF. In comparison with other feature weighting schemes, this 
method can drastically increase classification performance.

In order to deeper analysis of various feature combinations, the ROC diagram on the training dataset is 
sketched in Fig. 5. The ROC curve is depicted for the third combination, and selecting 80% of the best features 
in the datasets M. musculus, E. coli, and H. sapiens. As evident in the ROC curve of SVM, XGboos, RF, and 
DNN classifiers, the area under the curve for XGboost is considerably greater than that of the other methods, 
indicating its potent generalization and high performance for malonylation and non-malonylation site predic-
tion of lysine proteins.

The values of AUPR and AUROC for various classifiers on the three datasets are tabulated in Table 4. As it can 
be seen, XGBoost outperforms the other methods. To study the significance of the results, the p-values of AUPR 
(namely P-AUPR) and AUROC (namely P-AUROC) for various methods and datasets are depicted in Table 4 
too. As it can be seen, the prediction rate of each method is significantly higher than that of random prediction. 
In addition, XGBoost classifier outperforms the others, having a lower P-value.

Table 2.  The performance of classifiers with various feature combinations. Significant values are in bold.

Dataset Combination Classifier Acc (%) Sn (%) Sp (%) MCC AUC 

E. coli

TF-CRF, EGAAC, TF-IDF

SVM 59.33 60.91 57.75 0.6839 0.7223

RF 91.44 93.45 93.78 0.8902 0.9695

XGBoost 95.18 93.03 95.21 0.9049 0.981

DNN 68.63 86.09 51.14 0.7348 0.7891

EAAC,PKA, PSSM, TF-CRF

SVM 67.03 68.34 65.73 0.8261 0.8834

RF 96.69 93.59 95.79 0.9151 0.9711

XGBoost 97.21 94.31 95.72 0.9279 0.9768

DNN 92.99 92.46 93.52 0.9023 0.9649

EAAC, PKA, PSSM, TF-CRF, EGAAC 

SVM 66.83 68.83 64.84 0.8311 0.8714

RF 96.69 93.27 95.38 0.9147 0.9723

XGBoost 97.22 94.64 95.78 0.9311 0.9781

DNN 90.10 99.25 80.92 0.8973 0.9578

H. sapiens

TF-CRF, EGAAC, TF-IDF

SVM 65.90 66.42 65.38 0.7482 0.8831

RF 92.15 90.88 93.42 0.9087 0.9489

XGBoost 94.18 96.18 95.08 0.9234 0.9634

DNN 77.99 87.75 68.22 0.7841 0.9043

EAAC,PKA, PSSM, TF-CRF

SVM 69.86 68.67 71.04 0.8418 0.8931

RF 93.24 91.76 94.02 0.9287 0.9528

XGBoost 95.22 97.32 97.14 0.9448 0.9749

DNN 91.17 94.36 94.89 0.9142 0.9328

EAAC, PKA, PSSM, TF-CRF, EGAAC 

SVM 68.66 67.87 69.45 0.8346 0.8911

RF 92.73 91.24 93.61 0.8971 0.9518

XGBoost 94.71 97.1 96.42 0.9371 0.9659

DNN 91.45 93.45 92.61 0.9017 0.9503

M. muculus

TF-CRF, EGAAC, TF-IDF

SVM 64.37 65.16 63.58 0.7934 0.8942

RF 91.46 91.90 93.02 0.8872 0.9537

XGBoost 92.88 95.23 93.78 0.8943 0.9644

DNN 72.85 89.14 56.56 0.8136 0.8993

EAAC,PKA, PSSM, TF-CRF

SVM 71.74 70.91 72.56 0.8623 0.9061

RF 92.76 93.23 94.48 0.9023 0.9573

XGBoost 94.31 96.47 95.34 0.9217 0.9721

DNN 90.87 92.43 94.09 0.8983 0.9382

EAAC, PKA, PSSM, TF-CRF, EGAAC 

SVM 70.95 70.49 71.41 0.8582 0.9035

RF 92.21 93.82 93.47 0.8991 0.9548

XGBoost 93.29 95.93 94.62 0.915 0.9692

DNN 91.15 93.72 94.56 0.8932 0.9376
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Error analysis is carried out to depict model resistivity and stability. The error bar conveys estimated errors 
or uncertainty in order to achieve a deeper understanding of the measurements. Typically, error bars are used to 
denote the standard deviation, standard error, confidence intervals, or minimum/maximum values in a dataset. 
The length of an error bar helps to picture the uncertainty associated with a data point. A short error bar shows 
the compaction of values, signaling that the mean value has had a further effect in the training model, whilst a 
long error bar addresses sparsity and a lesser number of data values. A comparison is carried out between DNN, 
RF, XGBoost, and SVM. The accuracies of the algorithms via a tenfold cross-validation strategy are pictured out 
in Fig. 6 for the underlying datasets. As evident from Fig. 6, XGBoost has outperformed the others, and DNN 
depicts the highest error regarding the lengths of the bars. The lesser length of the error bars in Fig. 6 states a 
higher accuracy of the due algorithm and lower variance of the model accuracy. According to this diagram, it can 
be concluded that the results of iterations in the tenfold cross-validation have been close in XGBoost, leading to 
errors approximately equal to zero. Therefore, this model has a high generalization performance. However, the 
reverse has taken place for DNN, addressing that the results of the iterations in tenfold cross-validation are not 
close, leading to a higher variance in the accuracy, and hence, a lower generalization performance.

Evaluation through comparison with other methods. In order to further analysis, the proposed 
method is compared with various prediction methods for the datasets E. coli, H. sapiens, and M. musculus in 
terms of ACC, SN, SP, and MCC measures. The results are taken in Table 5. As shown, the proposed method has 

Table 3.  Classification performance with the combination of features when F-score is applied for feature 
selection. Significant values are in bold.

Dataset Combination Classifier Acc(%) Sn (%) Sp (%) MCC AUC 

E. coli

TF-CRF, EGAAC, TF-IDF

SVM 64.84 66.12 57.13 0.7123 0.7682

RF 92.78 93.76 94.18 0.8934 0.9734

XGBoost 95.93 93.24 95.89 0.9087 0.9867

DNN 72.07 76.92 67.15 0.7584 0.8241

EAAC,PKA, PSSM, TF-CRF

SVM 71.39 71.87 70.91 0.8411 0.8923

RF 97.17 94.67 95.87 0.9265 0.9761

XGBoost 97.65 95.71 96.29 0.9328 0.9846

DNN 95.18 97.11 96.06 0.9261 0.9704

EAAC, PKA, PSSM, TF-CRF, EGAAC 

SVM 68.56 71.67 71.46 0.8663 0.9037

RF 96.92 93.88 96.21 0.9241 0.9769

XGBoost 97.67 94.79 95.91 0.9378 0.9821

DNN 93.12 99.34 85.73 0.9023 0.9625

H. sapiens

TF-CRF, EGAAC, TF-IDF

SVM 67.21 69.34 68.84 0.7523 0.8934

RF 92.94 91.88 93.79 0.9123 0.9517

XGBoost 94.18 96.18 95.08 0.9234 0.9634

DNN 80.23 87.53 71.32 0.8032 0.9137

EAAC,PKA, PSSM, TF-CRF

SVM 71.97 73.15 71.20 0.8769 0.9022

RF 94.45 93.41 95.32 0.9327 0.9618

XGBoost 96.32 98.11 97.89 0.9541 0.9822

DNN 92.41 95.23 95.39 0.9243 0.9411

EAAC, PKA, PSSM, TF-CRF, EGAAC 

SVM 73.12 62.8 73.42 0.8671 0.9038

RF 93.21 93.44 95.15 0.9128 0.9593

XGBoost 95.72 97.23 97.31 0.9483 0.9695

DNN 92.37 93.89 93.72 0.9134 0.9609

M. muculus

TF-CRF, EGAAC, TF-IDF

SVM 65.91 65.58 66.23 0.8109 0.9037

RF 92.55 93.21 93.88 0.9023 0.9618

XGBoost 93.54 95.77 94.54 0.9142 0.9765

DNN 73.41 90.59 58.72 0.8517 0.9132

EAAC,PKA, PSSM, TF-CRF

SVM 77.79 77.5 78.07 0.8923 0.9129

RF 93.78 94.78 95.46 0.915 0.9678

XGBoost 94.78 96.88 96.75 0.9356 0.9778

DNN 91.55 93.43 94.89 0.9095 0.9508

EAAC, PKA, PSSM, TF-CRF, EGAAC 

SVM 73.32 74.41 75.21 0.8871 0.9173

RF 92.89 94.67 94.89 0.9097 0.9694

XGBoost 94.13 96.45 95.72 0.9254 0.9743

DNN 92.26 94.28 94.51 0.8156 0.9516
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outperformed  Malopred11, kmal-sp14,  DeepMal28 and RF-MaloSite40 with a higher ACC, SN, SP, and MCC, in 
all of the datasets. The 97.21% accuracy of the proposed method for E. coli is 12.71%, 17.41%, 4.2% greater than 
kmal-sp, MaloPred, and DeepMal, respectively. The 95.22% ACC index of the proposed method for H. sapiens 
is also 4.3% to 20.22% greater than the other prediction models. Performance measures MCC and AUC are high 
for this dataset too. The 94.31% accuracy of the proposed method for M. musculus is greater than the other pre-
diction approaches. The 92.17% MCC of the proposed method outperforms the others for this dataset and has 
considerably improved the results for malonylation site prediction.

Since the extracted features are based on TFCRF in the proposed scheme, the discrimination performance 
is higher (as discussed in Sections “Feature extraction” to “Term frequency and category relevancy factor 

Figure 5.  The ROC curve for the proposed method. (A), (B) and (C) diagrams pertain to M. musculus, E. coli, 
and H. sapiens datasets, respectively.

Table 4.  The values of AUROC, AUPR and their P-values for various classifiers and datasets.

Method

E.coli H. sapiens M. muculus

AUPR AUROC P-AUPR P- AUROC AUPR AUROC P-AUPR P- AUROC AUPR AUROC P-AUPR P- AUROC

SVM 0.122 0.59 9.47E−2 7.73E−02 0.141 0.65 1.00E−11 1.86E−07 0.136 0.64 1.09E−9 1.83E−6

RF 0.193 0.92 2.46E−37 7.00E−18 0.201 0.92 1.45E−71 6.83E−21 0.198 0.92 2.38E−58 5.34E−20

XGBoost 0.291 1.00 1.76E−46 1.20E−19 0.311 1.00 6.59E−76 3.16E−31 0.304 1.00 6.59E−68 3.16E−28

DNN 0.134 0.68 5.62E−05 7.98E−07 0.157 0.77 3.16E−31 1.27E−13 0.154 0.72 2.75E−27 1.36E−11
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(TF-CRF)”); thus, a higher recognition rate is achieved. In addition, dimension reduction through selecting 
highly relevant features has increased the performance of the proposed method since model overfitting is poten-
tially mitigated.

Conclusion
In this paper, a machine learning-based method has been proposed for malonylation site prediction. Since the 
input features are crucial in machine-learning models, several features, including a novel one based on TF-CRF, 
have been extracted out of protein sequences. Next, the features are combined. Since feature combination leads 
to high dimensional data and, in turn, model overfitting, the most efficient and discriminating features have been 
chosen based on a feature selection method. The results show that XGboost outperforms the other classifiers 
based on the extracted and selected features.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Figure 6.  Studying classification models based on error bars for E. coli, M. musculus, and H. sapiens.

Table 5.  A comparison between the proposed method and the approaches of DeepMal, Kmal-sp, Malopred, 
and RF-MaloSite.

Dataset Methods Acc(%) Sn (%) Sp (%) MCC AUC 

E. coil

Deepmal 93.01 91.71 94.31 0.8607 0.951

Malopred 79.8 75.0 81.0 0.561 0.755

Kmal-sp 84.5 0.83 0.86 0.69 0.930

RF-MaloSite – – – – –

Proposed method 97.21 94.31 95.72 0.9279 0.9768

H. sapiens

Deepmal 90.92 91.61 90.22 0.8186 0.9447

Malopred 82.7 82.9 82.4 0.653 0.871

Kmal-sp 86.0 84.9 87.0 0.720 0.944

RF-MaloSite 75 84 65 0.50 0.78

Proposed method 95.22 97.32 97.14 0.9448 0.9749

M. musculus

Deepmal 91.93 92.3 91.57 0.8045 0.9534

Malopred 78 91.71 94.31 0.8607 0.827

Kmal-sp 83.3 82.9 83.7 0.667 0.923

RF-MaloSite 68 72 65 0.36 0.75

Proposed method 94.31 96.47 95.34 0.9217 0.9721
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